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A well control optimization method is a key technology to adjust the flow direction of waterflooding and improve the effect of
oilfield development. The existing well control optimization method is mainly based on optimization algorithms and numerical
simulators. In the face of larger models, longer optimization periods, or reservoir models with a large number of optimized
wells, there are many optimization variables, which will cause algorithm convergence difficulties and optimization costs. The
application effect is not good because of the problems of time length, few comparison schemes, and only fixed control
frequency. This paper proposes a new method of a well control optimization method based on a multi-input deep neural
network. This method takes the production history data of the reservoir as the main input and the saturation field as the
auxiliary input and establishes a multi-input deep neural network for learning, forming a production dynamic prediction model
instead of conventional numerical simulators. Based on the production dynamic prediction model, a series of model generation,
production prediction, comparison, and optimization are carried out to find the best production plan of the reservoir. The
calculation results of the examples show that (1) compared with the single-input production dynamic prediction model, the
production dynamic prediction model based on multiple inputs has better prediction accuracy, and the results are close to the
calculation results of the conventional numerical simulator; (2) the well control optimization method based on the multiple-
input deep neural network has a fast optimization speed, with many comparison schemes and good optimization effect.

1. Introduction

As the development of waterflooding oilfields progresses, due
to the influence of reservoir heterogeneity, the directionality
of waterflooding increases and the difference in plane
production increases, which gradually weakens the effect of
water control and oil increase, forming a large area of
remaining oil retention. Through the optimization of the
production system, the flow direction of waterflooding can
be adjusted to increase the potential of remaining oil and
promote the effect of reservoir development. And for the oil-
field site, it is often not feasible to adopt a constant oilfield
production strategy, because it requires unrealistic bottom

hole pressure, which requires us to set up a set of changeable
production dynamic programs [1].

Over the past decades, a large number of experts and
scholars have conducted research on this, which can be sum-
marized into three categories: (1) Based on the reservoir engi-
neering formula method. This method combines the material
balance and trend fitting method to establish the production
dynamic prediction formula, then calculates the production
dynamics of different injection-production schemes, obtains
the objective function value (such as net present value and
cumulative oil production), and then compares and selects
the best [2–4]. But because reservoir development is affected
by multiple factors, and this method has ideal assumptions, it

Hindawi
Geofluids
Volume 2021, Article ID 8873782, 15 pages
https://doi.org/10.1155/2021/8873782

https://orcid.org/0000-0001-7306-5073
https://orcid.org/0000-0003-0336-8452
https://orcid.org/0000-0003-1554-4417
https://orcid.org/0000-0002-4205-3229
https://orcid.org/0000-0002-9521-6335
https://orcid.org/0000-0001-7235-4391
https://orcid.org/0000-0002-1098-191X
https://orcid.org/0000-0002-3596-4884
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8873782


leads to problems such as poor accuracy of results and nar-
row method adaptability. (2) Based on reservoir numerical
simulation methods: this method first establishes a numerical
simulation model based on the reservoir and fluid data pro-
vided by the oilfield, then uses the orthogonal experimental
design method to set up multiple sets of different injection
and production plans, and finally compares and selects the
best based on parameters such as net present value [5–9].
However, in order to consider the impact of reservoir hetero-
geneity, the grids are often finely divided. If multiple numer-
ical simulation programs are run, it will consume a lot of time
and manpower. In the process of comparing experimental
schemes, the value range of factors is limited, only a few or
dozens of schemes can be compared, and it is difficult to
obtain the real optimal injection-production scheme. At the
same time, the current method is basically static optimiza-
tion, and the result of dynamic optimization cannot be
obtained. (3) Method based on optimization theory: this
method applies optimization theory to find the best plan,
uses reservoir numerical simulation to predict the produc-
tion performance of the plan, then calculates the value of
the objective function, and finally obtains the best injection-
production plan [10–18]. This method can realize dynamic
optimization and can compare more sets of injection-
production schemes. Scholars can also achieve multiobjective
optimization based on this method and achieve more ratio-
nal decision-making [19, 20]. However, this method relies
on numerical simulation calculation, which also has the
problem of time-consuming. And as the number of wells
increases and the frequency of regulation increases, the num-
ber of optimization variables will greatly increase, which is
likely to cause dimensionality disasters. This type of method
is more often used for well pattern optimization [21, 22]. At
present, this method is still difficult to solve the problem of
obtaining the optimal control frequency.

In recent years, deep learning has provided new ideas and
methods for oilfield development. Many scholars use long-
and short-term memory (LSTM) to predict production
dynamics, pressure, and other time series data [23–29]. Based
on the existing problems of the existing well control optimi-
zation methods and the inspiration of deep learning, this arti-
cle establishes a new method of production dynamic
prediction based on deep neural networks. This method has
a faster optimization speed and more comparison schemes
and can find the optimal control frequency. This method
establishes a production dynamic prediction model based
on a multi-input deep neural network instead of conven-
tional numerical simulation software to calculate production
dynamics, which greatly reduces the model production
dynamic prediction time. Subsequent comparison schemes
are randomly generated under the constraints of reservoir
engineering, production performance prediction models are
used to quickly predict production performance, and then
the objective function value of each scheme is calculated to
compare and optimize the optimal scheme. In addition, this
method takes the control frequency as the optimization
parameter, and finally, after a large number of schemes are
optimized, the control frequency of the optimal scheme is
close to the optimal control frequency.

The core of this method is to establish a production
dynamic prediction model based on a deep neural network
to replace conventional numerical simulators. In establishing
the production dynamic prediction model, former scholars
found that the use of traditional production prediction
methods, such as the water drive curve method, the decline
curve method, and Weng’s prediction method, has low pre-
diction accuracy, especially in high water-cut oilfields [30–
34]. In order to solve the shortcomings of traditional fore-
casting methods, intelligent algorithms have also been intro-
duced into oilfield production forecasts. Because the output is
a sequential problem, in recent years, scholars have begun to
use the long- and short-term memory network LSTM algo-
rithm. However, oilfield production data has a strong phased
nature. In oil reservoir engineering, it is divided into a period
of rising production, a period of stable production, and a
period of declining production, with large fluctuations. Using
conventional long- and short-term memory neural networks
to predict oilfield production indicators, there will be a prob-
lem of poor generalization of the neural network, low predic-
tion accuracy, and even negative values for the predicted
output, with large deviations [35], especially when the sample
size is small; this phenomenon is more prominent [36–38].
In view of the poor generalization of the LSTM neural net-
work, scholars reduce the error by optimizing the neural net-
work architecture. Mao [39] proposed a long text sentiment
analysis method based on the attention double-layer LSTM;
Peng et al. [40] used double LSTM layers to adjust the param-
eters to improve the accuracy of sentence generation. Because
the volume of data that can be obtained for reservoir develop-
ment is limited, it is necessary to introduce reservoir engi-
neering constraint input to obtain higher prediction
accuracy with a smaller volume of data. Based on the above
two considerations, this article will propose a deep neural
network structure based on multiple inputs to optimize the
LSTM neural network, so that reservoir production predic-
tions can be taken into account in oilfield development and
improve the reliability and accuracy of the simulator.

This article will first introduce the core issue of the
method, namely, the establishment of a production dynamic
prediction model based on multi-input deep neural net-
works; secondly, this article will introduce how to optimize
production dynamics based on the production dynamic pre-
diction model; thirdly, this article will apply the well control
optimization method to optimize the actual reservoir and
conducts related discussions and finally draws a conclusion.

2. Neural Network Structure of Production
Dynamic Prediction Model

Production dynamic prediction is a time series prediction
problem, and a long- and short-term memory neural net-
work [41] (long- and short-term memory, LSTM) has excel-
lent accuracy in time series prediction problems and has been
widely used in speech recognition [42], network flow predic-
tion [43], predrilling log curve prediction [44], and other
fields. However, due to the staged characteristics of oilfield
production, there will be a problem of poor generalization
of neural networks. This article will optimize the neural
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network structure and propose a multi-input neural network
structure suitable for oilfield production data prediction. The
multi-input neural network structure is based on production
dynamic data and saturation field data, so that the trained
simulator can have a good prediction effect on the phased
production characteristics of the oilfield, thereby improving
the prediction accuracy of the production dynamic predic-
tion model.

Because the production dynamic data is time series data,
in deep learning, the most suitable deep neural network algo-
rithm is the recurrent neural network algorithm (RNN), but
the RNN has the problem of disappearing gradient. The
long- and short-term memory network (LSTM) solves the
problem of RNN gradient disappearance and realizes long-
term memory ability by improving the hidden layer unit
structure of the recurrent neural network. After continuous
testing by predecessors, it is proved that it has higher predic-
tion accuracy than the RNN and is widely used. Therefore,
the key algorithm used in the deep neural network estab-
lished in this article is the LSTM algorithm.

2.1. From RNN to LSTM

2.1.1. Recurrent Neural Network. The recurrent neural net-
work (RNN) can transfer the state information of the last
time to the current time, that is, the state of the current time
is the result of the joint action of the input of the current time
and the information of the last time. It has outstanding per-
formance in the field of natural language processing and is
widely used in machine translation and text recognition. Its
network structure is shown in Figure 1.

Assuming that the input time series data is X = fx0, x1,
x2,⋯, xt ,⋯, xng, and the output time series data is O = fo0
, o1, o2,⋯, ot ,⋯, ong, then the RNN calculation process is

st = f Uxt +Wst−1 + bð Þ,

ot = soft max Vstð Þ: ð1Þ

Among them, s is the value of the hidden layer; U is the
weight matrix of the input layer; o is the value of the output
layer; V is the weight matrix of the hidden layer to the output
layer; W is the previous value of the hidden layer as the
weight matrix of this input; f is generally a nonlinear activa-
tion function; b is a bias vector.

However, this method has the problem that the gradient
disappears, that is, the state at time t − 3 has no significant
effect on the state at time t, which is equivalent to the net-
work ignoring the state before time t − 3 during training. So
Hochreiter and Schmidhuber proposed the LSTM network
[41], and Hochreiter subsequently demonstrated the ability
of LSTM to avoid a vanishing gradient problem [45]. It has
become one of the most popular algorithms in recurrent neu-
ral networks.

2.1.2. Long- and Short-Term Memory Network (LSTM). The
most important difference between LSTM and RNN is the
hidden layer structure. The long-term memory ability is
obtained by replacing the RNN as a unit with the LSTM as

a unit. The LSTM hidden layer neural unit is shown in
Figure 2.

LSTM deletes or adds information through the gate
structure, realizes the forgetting and memory functions of
the neural unit, establishes long-term dependence between
time series data, and realizes the transmission of information
in different time spans. An LSTM hidden layer unit has three
gate structures, namely, the forget gate, input gate, and out-
put gate. The LSTM calculation process is as follows:

f t = σ Wf ⋅ ht−1, xt½ � + bf
� �

,

it = σ Wi ⋅ ht−1, xt½ � + bf i
� �

,

~Ct = tanh WC ⋅ ht−1, xt½ � + bCð Þ,

Ct = f t ∗ Ct−1 + it ∗ ~Ct ,

ot = σ Wo ⋅ ht−1, xt½ � + boð Þ,

ht = ot ∗ tanh Ctð Þ: ð2Þ

Among them, σ is an activation function, generally a sig-
moid function; Wf and bf are the connection weight matrix
and bias vector of the forgetting gate, respectively; Wi and bi
are the connection weight matrix and offset vector of the
input data and input gate; WC and bC are the connection
weight matrix and offset vector of the input data and the state
of the temporary unit; Wo and bo are the connection weight
matrix and offset vector of the output gate; ht−1 is the hidden
layer value at the previous time; xt is the current time input
value; f t is the value of the forget gate; it is the value of the
memory gate; tanh is the activation function; Ct is the unit
state at the current time; Ct−1 is the unit state at the previous
time; ~Ct is the temporary unit state; ot is the output gate
value.

2.2. Optimized Multi-Input Deep Neural Network Structure.
This paper establishes a multi-input deep neural network
structure to replace the conventional single-input deep neu-
ral network structure. Combining with the characteristics of
oilfield production, the main input of the multi-input deep
neural network is set to the production history data of each
well at each time, and the auxiliary input is the oil saturation
field at each time, so that the optimized network model can
predict more accurately. The established multi-input produc-
tion dynamic prediction model can predict the production
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Figure 1: Schematic diagram of the recurrent neural network.
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dynamic results of oilfields with large fluctuations and stage
characteristics. The neural network link method is to first
combine the main input and the LSTM algorithm to obtain
hidden layer 1, then combine the auxiliary input and the fully
connected layer to obtain hidden layer 2, and then combine
the two hidden layers into a new hidden layer. Afterwards,
the final output is obtained through multiple fully connected
layers and random inactivation layers. The structure of a
multi-input deep neural network is shown in Figure 3.

The important reasons why the neural network selects
the oil saturation field as the auxiliary input are as follows:
(1) the oil saturation field is a comprehensive performance
of the current production situation of the reservoir and has
the most direct correlation with the phased fluctuation char-
acteristics of reservoir production. Therefore, the selection of
the oil saturation field for auxiliary input can help solve the
problem that the neural network cannot predict the phased
fluctuation characteristics of the oilfield production dynam-
ics; (2) another important reason is that the oil saturation
field is the same as the historical production data. The same
time series data, after neural network training, can learn the
correlation between oil saturation field and production
dynamics at each moment, while other attribute fields, such
as porosity and permeability, are fixed values. If it is used as
an auxiliary input, the neural network cannot learn the corre-

lation between the dynamic production data and the different
production stages of the oilfield but affects the accuracy.

The neural network sets up multiple dropout layers to
avoid the problem of reduced generalization ability caused
by overfitting. This method was proposed by Srivastava
et al. [46]. Its core idea is that in the training process of a neu-
ral network, the network updates some nodes according to
Bernoulli probability, and some nodes are randomly dis-
carded without updating.

3. Production Dynamic Optimization Method

The principle of the well control optimization methods is as
follows: read production dynamic data and oil saturation
field data from the numerical simulation model, form train-
ing and test data sets through data processing, and use these
data to establish a production dynamic prediction model
based on a multi-input deep neural network. Then, randomly
generate injection-production schemes with different
injection-production parameters, apply the production
dynamic prediction model to predict the production dynam-
ics of each scheme, calculate the objective function value, and
select the scheme corresponding to the largest objective func-
tion as the optimal scheme. The flow chart is shown in
Figure 4.

A A
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Figure 2: LSTM hidden layer neural unit.
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Figure 3: Schematic diagram of the deep neural network structure.
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3.1. Numerical Model Establishment and Data Collection.
First, establish a numerical simulation based on the geologi-
cal data and fluid data of the reservoir, and then read the pro-
duction history data and oil saturation field data at each
moment in the model. The model assumes that there are N
wells, producing T days. Then, the production dynamics as
the main input and the saturation field data of the auxiliary
input are as follows:

(1) Production dynamic data: assuming that it is set on
day t, and qt consists of water injection volume of
all water injection wells, oil production volume, and
liquid production volume of all production wells,
the data table of the production dynamics as the main
input is Q = fq0, q1,⋯qt ⋯ , qn−1g. The production
dynamics of all wells are synthesized into a data
matrix as input at one time, and the neural network
structure learning can map the interwell connection
and production relations of multiple wells, which is
closer to the actual production of the reservoir

(2) Saturation field data: the saturation data of the 5 × 5
grid set around the ith well on the tth day form a vec-
tor st,i in the order shown in Figure 5

Then, the saturation vector composed of all wells on day i
is St = fst,1, st,2,⋯, st,Ng, and the production dynamic data
table as auxiliary input is S = fS0, S1,⋯, ST−1g.
3.2. Data Preprocessing

3.2.1. Data Cleaning. During the production dynamic data
recording process, due to well closure or human error record-
ing, there will be some large floating points in the production
dynamics. These data and normal production data are in dif-
ferent production conditions and should be eliminated. This
time, using the segmented regression interpolation method,

the 30-day data point is used as the fitting data to fit a straight
line. When the true value is much greater than the fitting
value, it is regarded as a noise point and the fitting value is
used instead.

3.2.2. Data Standardization. By standardizing the input fea-
ture parameters, the problems of nonconvergence of the
training process iterations and prediction errors due to the
large difference in physical scale between the feature data
can be alleviated, and the prediction accuracy is improved.
The min-max standardization adopted this time, the original
feature values are linearly transformed, and the data value
range is transformed between [0, 1]. The standardized min-
max formula is as follows:

x∗ = x − xmin
xmax − xmin

, ð3Þ

where xmax is the maximum value of the sample data, xmin is
the minimum value of the sample feature data, x is the

Establishment of production dynamic prediction 
model based on multi-input deep neural network

Mining plan 1 Forecast Plan 1

Mining plan 2 Forecast Plan 2

…… ……

Mining plan N Forecast Plan N

Generate different 
injection-production 

plans based on 
reservoir engineering 

constraints

Reading data: production dynamic
data, saturation field data

Comparison and optimization based 
on the objective function value

Calculate the objective function value of 
different injection-production plans

Forecast

Forecast

Establish a reservoir numerical 
simulation model

Forecast

Forecast

Figure 4: Flow chart of the production dynamic optimization model.
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Figure 5: Schematic diagram of sampling points of saturation field
data.
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original feature value before normalization, and x∗ is the fea-
ture value after normalization.

The production dynamic data and saturation field data
are normalized by columns.

3.2.3. Data Dimensionality Reduction. Because the auxiliary
input saturation field data takes 5 × 5 data points around
each well, the dimension of the data is large. If it is directly
used as an input neuron, it will cause dimensional disaster
and cause overfitting. Therefore, data dimensionality reduc-
tion is required. The author uses the PCA dimension reduc-
tion method to reduce the dimension n of the original sample
to the dimension k (k < n) through a series of matrix trans-
formations, that is, k-dimensional data can be used to repre-
sent most of the original n-dimensional information. The
regularization method of PCA can effectively reduce the
dimensionality and improve the convergence performance
of the neural network gradient calculation process [47]. The
steps are as follows:

Step 1. Standardize the data according to formula (3).
Step 2. Calculate the mean of all samples μ = ð1/nÞ∑n

i=nxi;
i represents the ith feature.

Step 3. Calculate the covariance matrix of the sample
data.

Step 4. Decompose the covariance matrix to obtain the
eigenvector ui and eigenvalue λi.

Step 5. Determine the principal components and obtain
new sample basis vectors.

Step 6. Transform the original data with a new basis vec-
tor to obtain new k-dimensional sample data.

3.2.4. Processed into Supervisory Data. The data of day t and
day t + 1 of production dynamic data and saturation field
data are used as input data X, and the data of day t + 2 are
used as output data Y , which is organized into a new data
table. The purpose is to allow the deep neural network to bet-
ter learn historical information and make the production
dynamic prediction results more accurate.

3.2.5. Data Set Division. This time, 80% of the data is used as
the training set to train the deep neural network, and 20% of
the data is used as the verification set to verify the accuracy of
the production dynamic prediction model.

3.3. Establish a Production Dynamic PredictionModel.Due to
the small volume of oilfield production history data, it is
impossible to use limited data training to obtain a predictive
model with excellent performance, and oilfield production
dynamics have phased and floating characteristics, and con-
ventional neural network models are not suitable for estab-
lishing the production dynamic prediction model.

Based on the multi-input deep neural network structure
proposed in Section 2.2, this paper uses production history
data as the main input and oil saturation field data as the aux-
iliary input to establish a production dynamic prediction
model specifically for oilfield production dynamic prediction.
The use of the oil saturation field can comprehensively reflect
the characteristics of the current oilfield production condi-
tions and constrain the learning of the production history
data by the learner, thereby improving the prediction accu-

racy of the established production dynamic prediction
model. Later, the production performance prediction model
will be used to replace the conventional reservoir numerical
simulator to calculate the future production performance of
the randomly generated injection-production plan.

3.4. Generation and Prediction of Injection-Production Plan
Based on Reservoir Engineering Constraints. In this step, the
control frequency is used as a part of the injection-production
parameter design, combined with reservoir engineering con-
straints, to generate different injection-production plans and
then use the production dynamic prediction model formed in
the previous step to predict the production dynamics and
obtain the future production dynamic results of each plan.

The parameters to be designed for each plan are as fol-
lows: (1) control frequency; (2) water injection volume of
each injection well during each regulation; (3) fluid produc-
tion volume of each production well during each regulation.

Assuming that there are N wells and T time periods, the
reservoir engineering constraints are as follows:

(1) Constraint of upper and lower fluid volume of a sin-
gle well

qmin < qi < qmax ∀i ∈ 0, 1,⋯, T − 1ð Þ: ð4Þ

For water injection wells, it needs to meet the following:
minimum injection volume of single well<water injection
volume of injection well<maximum injection volume of a
single well; for production wells, it needs to meet the follow-
ing: economic limit output of single well<production well
output<maximum output of a single well.

(2) Constraint of total reservoir fluid production

Ql,min < 〠
N

j=1
〠
T−1

i=0
qil,jΔt

i <Ql,max, ð5Þ

where qil,j is the fluid production of the jth well in the

ith period, and Δti is the ith period. The total fluid
production needs to be greater than the minimum
total fluid production and less than the maximum
total fluid production.

(3) Constraint of total reservoir injection volume

〠
N

j=1
〠
T−1

i=0
qiw,jΔt

i =Qconst, ð6Þ

where qiw,j is the water production of the jth well in
the ith period, and the total water production needs
to meet a fixed value.
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(4) Injection-production balance

〠
N

j=1
〠
T−1

i=0
qil,jΔt

i = 〠
N

j=1
〠
T−1

i=0
qiw,jΔt

i: ð7Þ

The total fluid production is equal to the total water injec-
tion. This option is optional and depends on the specific res-
ervoir conditions.

The injection-production plan generated according to
the above content is close to the actual production, and as
the number of comparison plans increases, the control fre-
quency of the optimal plan is close to the real optimal control
frequency.

3.5. Comparison of Injection-Production Schemes Based on
Objective Function. After using the production dynamic pre-
diction model to predict the future production dynamics of
the comparison scheme, the objective function value of each
scheme can be calculated. The objective function value is
used as the optimization criterion, and the scheme corre-
sponding to the maximum objective function value is
selected as the final optimization scheme.

From the perspective of reservoir management, oilfield
development seeks to maximize production and maximize
profits during the investment period. This paper takes the
economic net present value (NPV) of oilfield development
as the objective function. The larger the net present value,
the better the injection-production plan and the better the
investment benefit. The formula is as follows:

NPV = 〠
n

i=1

p0Q
o
t + pgQ

g
t − ppwQ

w·p
t + piwQ

w·i
t

1 + rð Þt

− 〠
N

i=1
CdrillHi + Ccð Þ,

ð8Þ

where NPV is the net present value, $; r is the discount rate,
decimal; n is the total production time, d; N is the total num-
ber of wells; Cdrill is the average drilling cost per unit length,
$/m; Hi is the well depth of the ith well, m; Cc is the comple-
tion cost, $/per port; p0 is the crude oil sales price, $/t; pg is
the natural gas sales price, $/m3; Qo

t is the crude oil sales vol-
ume on day t, t; Qg

t is the total sales volume of natural gas on
day t, m3; ppw is the unit cost of water extraction, $/t; piw is the
unit water injection cost, $/t;Qw⋅p

t is the amount of water pro-
duced on day t, t; Qw⋅i

t is the amount of water injected on day
t, t.

With the net present value (NPV) as the objective func-
tion, according to the historical production dynamic data
and the predicted production dynamic data, the net present
value of the generated injection-production plan at the end
of the forecast period is calculated. Select the injection-
production plan corresponding to the largest net present
value as the optimal plan. The schematic diagram of the
scheme optimization process is shown in Figure 6.

4. Example Application

4.1. Model Introduction. The actual reservoir model used in
this paper is the L reservoir, which is a deep-water turbi-
dite reservoir. There are two water injection wells and
three production wells in the reservoir, which are driven
by edge water. The model grid scale is 79 × 109 × 20, the
plane grid size is 50m × 50m, the average longitudinal
grid step length is 10m, the average porosity is 0.17, the
average permeability is 446mD, the oil saturation is 0.8,
and the average formation pressure is 49.2MPa. The L
reservoir has been in production for 225 days. The oil sat-
uration field and well location are shown in Figure 7. In
order to make the flow field displacement more uniform
and improve the oil recovery rate, the production system
is optimized.

Obtain the daily water injection volume of each
water injection well, the daily oil production and daily
fluid production of each production well, and form the
production dynamic input data table; obtain the daily
oil saturation field value of the 5 × 5 grid around each
well to form saturation. Enter the data table for the
degree field.

4.2. Economic Parameters. Because oil reservoirs produce
very little gas, natural gas prices are ignored. The total
production cycle of the reservoir is 10 years (3650 days),
and the net present value at the end of the production
forecast cycle is used as the objective function. The
parameter values of NPV in this article are shown in
Table 1.

4.3. Injection-Production Plan Generation Parameters.
According to the results of the reservoir engineering demon-
stration, the upper and lower bounds of the daily fluid pro-
duction of a single well of oil production wells are
3000m3/D and 0m3/D; the upper and lower bounds of the
daily water injection of a water injection well are 4050m3/D
and 0m3/D, respectively. The reservoir with the optimized
plan will be produced in the next 10 years (3650 days). Set
the maximum control frequency in the next 10 years of pro-
duction to 120 times. According to the above reservoir engi-
neering constraints, 10,000 injection-production schemes are
randomly generated.

4.4. Neural Network Training Parameters. Based on the
multi-input neural network structure proposed in Section
2.2, ReLU is used as the activation function, and Adam is
used as the optimizer. The number of neurons in the LSTM
layer is 32, the number of neurons in the fully connected
layer 1 is 32, and the number of neurons in the fully con-
nected layer 2 is 64. In the gradient descent process, the
learning rate is 0.8, the one-time training sample size is 30,
and the data is iteratively trained 5000 times. In order to
avoid overfitting, the node discarding is introduced and the
value is set to 0.2.

4.5. Training Error Evaluation Method. This article uses
mean relative error (MRE) and normalized root mean square
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error (nRMSE) as the evaluation criteria of training error.
The specific calculation formula is as follows:

MRE = 1
N
〠
N

i=1

yi′− yi
yi

�����

�����,

nRMSE = 1
ymax − ymin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
yi′− yi

� �2

vuut :

ð9Þ

Among them, N is the number of samples, yi is the pre-
dicted value of the ith sample, ymax is the true value of the i
th sample, ymin is the maximum value of the sample, and
the minimum value of the sample.

4.6. Results and Discussion

4.6.1. Comparison of Single Input and Multiple Input. The
core of the well control optimization method proposed in
this paper is to establish a production dynamic prediction
model based on a multi-input deep neural network to replace
the calculation of a reservoir numerical simulator, thereby
improving calculation efficiency. The accuracy of the produc-
tion dynamic prediction model determines whether the best
solution can be selected from many injection and production
solutions. Due to the phased characteristics of oilfield pro-
duction and the large fluctuations of historical production
data, the prediction results of the production dynamic pre-
diction model obtained by previous scholars using the con-
ventional LSTM neural network are not ideal. This paper
proposes a multi-input neural network structure, which uses
the oil saturation field to constrain the prediction of produc-
tion dynamics to improve the accuracy of production
dynamic prediction. In order to prove the effectiveness of this

method, this paper compares the prediction accuracy of the
production dynamic prediction model based on the single-
input neural network structure of LSTM and the multi-
input network structure. The single-input neural network
structure only uses the production history data to train the
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0.6675

0.1500

0.3225

0.4950
INJ-02

PRO-03

Figure 7: Oil saturation field of L reservoir.
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Figure 6: Scheme optimization flow chart.
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neural network, while the multi-input neural network struc-
ture uses the production history data as the main input and
the oil saturation field as the auxiliary input. Take the daily
water injection volume of INJ-01 well as an example. The
prediction results of the two are shown in Figures 8 and 9.

Compare the real daily water injection volume of INJ-01
in the verification set, the daily water injection volume pre-
diction value of the single-input production dynamic predic-
tion model of INJ-01, and the daily water injection volume

prediction value of the multi-input production dynamic pre-
diction model of INJ-01. The situation is shown in Table 2.

Comparing the single-input production performance
prediction model and the multiple-input production perfor-
mance prediction model in predicting the future production
performance error of the reservoir, using MRE and nRMSE
for evaluation, the results are shown in Table 3.

As can be seen from the table, compared with the single-
input production dynamic prediction model, the MRE of the

Table 1: Net present value parameter values.

Economic parameter name (unit) Value

Crude oil prices ($/m3) 377

Water injection price ($/m3) 20

Water treatment fee ($/m3) 40

Discount rate (%) 10

Drilling costs from the surface to the top of the reservoir ($/m) 515

Drilling cost per meter inside the reservoir ($/m) 500
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Figure 8: Forecast results of the single-input production dynamic forecasting model.
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Figure 9: Forecast results of the multi-input production dynamic forecasting model.
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production dynamic prediction model based on the multi-
input deep neural network is reduced by 0.043, and the
nRMSE is reduced by 0.2318. It can be concluded that the
multi-input deep neural network structure can improve the
accuracy of the production dynamic prediction model.

4.6.2. Forecast Accuracy of Production Dynamics. In order to
further explore the accuracy of the multi-input deep neural
network for the production dynamic prediction, compare
the water cut of the optimal solution under the numerical
simulator and the water cut of the optimal solution under
the production dynamic prediction model. And compare
them with the water cut of the basic plan. The result is shown
in Figure 10.

The results show that the water cut prediction based on
the multi-input neural network production dynamic predic-
tion model is basically the same as that of the traditional
numerical simulator. Reservoir water cut is a comprehensive
performance of reservoir production, so the optimized
injection-production plan obtained under the production
performance prediction model proposed in this paper is
credible.

4.6.3. Comparison of Production Effects. The basic plan is to
keep the production system at the last historical moment
unchanged and continue to produce for 10 years. Taking
the plan obtained through optimization of the production
system optimization model as the optimization plan, the total
daily liquid production and total daily water injection of the
optimized plan are shown in Figure 11.

This article will compare the basic plan and the optimized
plan from the following four aspects:

(1) Comparison of objective functions

Compare the NPV of the basic plan and the optimized
plan in the next 10 years, as shown in Figure 12.

It can be seen from Figure 11 that in the next 10 years of
reservoir water injection development, the NPV of the basic
plan is 1:81 × 109$, the net present value of the optimized

plan is 1:98 × 109$, and the optimized plan has increased
by 1:7 × 108$ compared to the basic plan NPV.

(2) Comparison of cumulative oil production and cumu-
lative water production

It can be seen from Figure 13 that the cumulative oil pro-
duction of the optimized plan increased by 103:8 × 104 m3

compared to the basic plan, and the cumulative water pro-
duction decreased by 108:4 × 104 m3.

(3) Remaining oil distribution map

It can be seen from Figure 14 that the remaining oil con-
tour of the optimized plan is flatter than the basic plan, the
displacement is more uniform, and the saturation of the
remaining oil is significantly reduced near the production
well, especially in the vicinity of the PRO-03 well, indicating
the optimization. The plan can improve the effect of oilfield
development.

(4) Recovery factor

It can be seen from Figure 15 that the optimized plan has
increased the recovery factor by 2.76% after 10 years of reser-
voir development compared with the basic plan, which has
promoted the development effect of the oilfield.

4.6.4. Optimization Time Comparison. This L model’s pro-
duction system optimization compares 10,000 plans, which
takes a total of 4.2 hours. The average time for a single plan
to predict 10-year production dynamics is 1.5 s. Regardless
of whether the predecessor optimization based on reservoir
numerical simulation or optimization theory is used, if you
want to compare 10,000 plans, you need at least 10,000 ×
0:8 h = 8000 h. In summary, the use of a deep neural
network-based production system optimization method
greatly improves the speed of optimization and reduces the
consumption of manpower and material resources.

4.6.5. Control Frequency. Because this method can quickly
generate thousands of injection-production plans and can
quickly optimize these plans, it is entirely possible to use this
advantage to control the frequency as part of the injection-
production parameter design. As the number of comparison
schemes continues to increase, the control frequency of the
obtained optimal scheme is closer to the real optimal control

Table 2: Comparison table of real value and predicted value of INJ-01 well.

Time
(date)

Actual
value
(m3/d)

Single-input
predicted value

(m3/d)

Relative error of single-input
predicted value (decimal)

Multi-input
predicted value

(m3/d)

Relative error of multi-input
predicted value (decimal)

2019.11.12 1935.82 1553.48 0.1975 1867.03 0.0355

2019.11.20 1895.92 1514.15 0.2014 1925.83 0.0158

2019.11.28 1886.85 1571.58 0.1671 1890.38 0.0019

2019.12.6 1959.36 1400.08 0.2854 1836.93 0.0625

2019.12.14 1968.58 1509.8 0.2331 1927.92 0.0207

2019.12.22 1946.16 1553.86 0.2016 1942.29 0.002

Table 3: MRE and nRMSE error results.

Production dynamic prediction model MRE nRMSE

Single-input 0.1259 0.5983

Multi-input 0.0829 0.3665
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frequency, and the search for the optimal control frequency is
realized to a certain extent. After comparing the 10,000 pro-
grams, the optimal control frequency of the optimal program
is once every 36 days, and a total of 101 times in 10 years.

5. Summary

(1) The core of this new method of a well control optimi-
zation method proposed in this paper is to establish a
production dynamic prediction model based on a
multi-input neural network. In order to solve the
problem that the LSTM neural network cannot accu-
rately predict the characteristics of the reservoir pro-
duction dynamics in stages and large changes, this
paper proposes a neural network structure based on
multiple inputs. With production dynamic data as
the main input, oil saturation field as the auxiliary
input, and LSTM, the production dynamic prediction
model has high accuracy and conforms to the actual
situation of reservoir production

(2) The optimization speed of the production system
optimization method based on a deep neural network
is extremely fast, because it gets rid of the limitation
of conventional reservoir numerical simulation soft-
ware, and does not require engineers to preselect
the plan. It only needs to use the algorithm to give
each parameter under the reservoir engineering con-
straints. With different values, tens of thousands of
solutions can be combined, and the optimal solution
can be quickly found out after optimization of pro-
duction dynamics. A large number of scheme com-
parisons ensure that the optimization scheme is
close to the true optimal scheme

(3) With the help of the characteristics of rapid optimiza-
tion, the control frequency can be used as the optimi-
zation parameter. After a large number of injection-
production schemes are compared and optimized,

the control frequency of the optimized plan is close
to the optimal control frequency in the true sense.
And it is determined that the optimal control fre-
quency of the L reservoir in the next ten years is
101 times

(4) The verification of the example shows that this
method achieves an increase in the NPV of the L res-
ervoir after ten years of development. The NPV
increases by 1:7 × 108$, the water cut decreases, the
cumulative oil production increases by 103:8 × 104
m3, and the cumulative water production decreases
by 108:4 × 104 m3. The recovery factor has been
improved by 2.76% and other excellent indicators,
proving that the optimization method of the produc-
tion system based on a deep neural network can
improve the recovery and economic benefits of oil-
field development
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