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In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation
potential of source rocks. At present, the commonly used methods for assessing TOC include△log R and neural network method.
However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale
interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon
(TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical
conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components
(solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore
water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component
in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model
parameters are determined through the optimization method, and the bisection iteration method is used to solve the model
equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in
shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.

1. Introduction

In assessing the exploration potential of the shale oil system,
the first task is to clarify the abundance, type, and maturity
of the source rock organic matter [1–3]. The organic matter
content is an essential indicator for judging the hydrocarbon
generation potential of source rock. The common source rocks
are mudstone or limestone rich in organic matter. In contrast,
the source rocks are usually shale beds for unconventional oil
and gas reservoirs [4]. The abundance of organic matter in
these rocks is generally determined with pyrolysis, which is
time-consuming and costly. In addition, during the experi-
ment analysis, the selection of samples is often subjectively
affected by the analyst. Because these samples are discrete,
the analysis results may not accurately reflect the actual situa-
tion of underground source rock. In this case, the use of well

logs to evaluate source rocks came into being [3, 5–9], because
logging data is more available than core samples and continu-
ous recording can eliminate the statistical errors of discrete
samples.

Using logging curves to evaluate source rocks has evolved
from the simple definition of shale to the combination of
porosity and gamma logging to identify source rocks [10,
11]. Previous studies classified source rocks based onmultivar-
iate analysis and established the petrophysical model of source
rocks. They treated the organic matter as a part of the rock,
and the logging curve response was a function of organic mat-
ter content [12, 13]. On this basis, Passey et al. [3] proposed
the quantitative calculation method of total organic carbon
(TOC) of the source rocks by superimposing the sonic and
resistivity curves in a reverse scale. This method is also called
the Δ log R method, which realizes the high-precision
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evaluation of the abundance of organic matter in different lith-
ological sections using conventional logging data. In addition,
based on the logging responses to organic matter and hydro-
carbons, Liu et al. [14, 15] proposed the variable coefficient
Δ log R method by introducing the proportional coefficient
K and wave impedance, thereby improving the accuracy in
predicting TOC. This method can also evaluate the free hydro-
carbon content in the pores of shale source rocks. The precon-
dition of using the Δ log R method assumes that the TOC of
the formation where the resistivity and sonic curve coincide
is zero, i.e., nonsource rock section. However, the natural shale
formation generally contains a certain amount of organic
matter. Therefore, it is necessary to correct the background
value according to the regional characteristics when using
the Δ log R method to evaluate the abundance of source rock
organic matter.

In this work, a petrophysical model for evaluating the
TOC of shale and mudstone was established by introducing
the theory of effective medium conductivity. The influencing
factor analysis proved that the prediction law of the model is
consistent with the actual situation. Moreover, this work also
presents the determination and solution methods of param-
eters for the new model. The newly established model is
applicable to different regions by adjusting the parameters.

2. Geological Setting

The Songliao Basin, located in Northeast China, is the largest
Mesozoic and Cenozoic continental petroliferous basin in
China [16–18]. It is approximately rhomboid in shape, located
between 42°25′-49°23′N and 119°40′-128°24′E, adjacent to
the Greater Khingan Mountains, Changbai Mountains, and
Zhangguangcai Mountains in the west, and adjacent to the
Lesser KhinganMountains in the north (Figure 1). The central
axis of the basin, about 750 km long, 330-370km wide, and
covering an area of 26000km2, is distributed in an NNE direc-
tion, spanning parts of Inner Mongolia and the three north-
eastern provinces (Liu et al., 2019a). The Daqing oilfield,
located in the north of the Songliao Basin, is a first-order tec-
tonic unit, including Qijia-Gulong sag, Sanzhao sag, Daqing
placanticline, and Chaoyanggou terrace (Figure 1(c)). The
shale oil in the Qijia-Gulong sag of the Songliao Basin is
representative in the China shale oil exploration. Up to
now, a series of industrial oil flow wells have been drilled in
the shale of the Upper Cretaceous Qingshankou Formation
(Figure 1(d)), showing a good exploration prospect [19, 20].

3. Samples and Methods

3.1. Samples and Experiments. The samples used for building
the model are primarily from the Qingshankou Formation of
the Qijia-Gulong sag. The lithology of these samples includes
shale, mudstone, and siltstone. The TOC of 78 samples (cores
and cuttings) was measured at the Heilongjiang Key Labora-
tory of Unconventional Oil and Gas Accumulation and Devel-
opment, Northeast Petroleum University, China. Carbonates
in the crushed samples have been removed with 10% hydro-
chloric acid, and all samples are heated to 50°C for 1 hour.
After all the carbonates were removed, the excess hydrochloric

acid solvent was wiped off with distilled water. Then, the TOC
was determined on a LECO CS-230 carbon/sulfur analyzer
with an experimental error of ±0.2%. In addition, the corre-
sponding physical property data (porosity, mineral composi-
tion, etc.) and well logging data of these samples were
provided by Daqing Logging Company.

3.2. The Effective Medium Conductive Model. The effective
medium conductive theory (EMCT) is a macroscopic model
for inhomogeneous media based on numerical and experi-
mental analysis. It is a common theory for studying, predict-
ing, and designing the electromagnetic response of natural
and structural materials. When using the EMCT to solve
electromagnetic problems, it generally depends on the elec-
trical and magnetic properties of the constituent materials
and the volume fraction of each component. Maxwell-
Garnett’s theory and Bruggeman’s theory are two critical
theories in developing the EMCT. Maxwell-Garnett’s theory
is a classic method to homogenize the medium, in which dis-
crete particles are dispersed in a continuous host medium or
matrix [22]. However, for mixtures with two or more com-
ponents randomly distributed, Bruggeman’s theory based
on statistical formulas is more appropriate [23].

Maxwell-Garnett’ and Bruggeman’s theories assume that
neither the dispersed and continuous phases conduct elec-
tricity. Hanai et al. [24] further extended the theory to the
case where both the dispersed and continuous phases con-
duct electricity. Bussian [25] applied the theory to solve the
conductivity of argillaceous sandstone. Berg [26] established
an effective medium resistivity model for determining the
water saturation of argillaceous sandstones. Koelman and
de Kuijper [27] processed the components of the rock in a
completely symmetrical form and finally established an
effective medium symmetrical conductivity (EMSC) model
suitable for n-component rock. The EMSC model has been
introduced to describe a shaly sandstone reservoir’s conduc-
tive mechanism and evaluate the reservoir oil-bearing prop-
erty [28], which is also the basis for this study to assess
shale’s conductivity.

4. Modeling Approach and Results

4.1. Four-Component Conductive Model of Shale Rock. The
EMSC model processed each component as a completely
symmetrical form and considered the anisotropy for each
element [27, 29]. In this study, the effective medium sym-
metrical conduction theory is introduced to the TOC evalu-
ation of shale rock.

It is well known that the main component of argillaceous
sandstone is usually the nonconductive framework (such as
quartz and feldspar). The argillaceous content is generally
less than 20%, and the pores are composed of conductive
formation water and nonconductive hydrocarbons, while,
in shale source rocks, clay minerals and nonconductive
organic matter are the main components. The content of
the nonconductive framework is significantly lower than
that of the reservoir. Meanwhile, the pores are mainly filled
with formation water in immature-low mature source rocks,
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but oil and gas fill up some of the pore space as maturity
increases.

Solid organic matter and free hydrocarbon have similar
physical properties, such as nonconduction, high acoustic
slowness, and low density [30]. Moreover, the total organic
carbon content primarily represents solid organic matter and

free hydrocarbons. Therefore, we treated the solid organic
matter and hydrocarbons as one component and defined them
as the organic component in this study. Based on the above
hypothesis, a four-component shale EMSC model was estab-
lished. The model assumes that the shale source rock com-
prises the nonconductive mineral rock matrix, conductive
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Figure 1: Tectonic zoning map of the Songliao Basin (modified after [21]).
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clay minerals, nonconductive organic components, and
formation water. The four-component source rock EMSC
model is shown in Figure 2, and its material balance equation
is shown in

Vma +Vcl + ϕo + ϕw = 1,

ϕo + ϕw = ϕ,

ϕo = ϕker + ϕh,

8>><
>>:

ð1Þ

where Vma and Vcl are the volume content of the rock
matrix and clay minerals, respectively. ϕo and ϕw are the vol-
ume content of organic components and formation water,
respectively. ϕ represents the total porosity, and ϕker and ϕh
are the volume content of kerogen and free hydrocarbons,
respectively.

According to the EMSC theory and the derivation prin-
ciple of the effective medium SATORI resistivity model pro-
posed by the previous studies [27, 29], the conductivity of

the four-component source rock can be expressed as follows:

Ct − C0g

Ct + 2C0g
= 〠

4

k=1
ϕk

Ck − C0g

Ck + 2C0g
, ð2Þ

where Ct, Cma, Ccl, Co, and Cw are the conductivity of
macrorock, nonconductive rock matrix, clay mineral,
organic components, and water, respectively (in S/m); C0g
is the conductivity of the virtual medium (in S/m).

By introducing Vma + Vcl + ϕo + ϕw = 1, ϕ1 = Vma, ϕ2 =
V sh, ϕ3 = ϕo, ϕ4 = ϕw, and Cma = Co = 0, get the following
formula:

Ct − C0g

Ct + 2C0g
= −

Vma
2

+ V sh
Ccl − C0g

Ccl + 2C0g
+ ϕw

Cw − C0g

Cw + 2C0g
−
ϕo
2
,

ð3Þ

where ϕ1, ϕ2, ϕ3, and ϕ4 are the relative contents of
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Figure 2: Volumetric physical model of the four-component source rock.
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nonconductive rock matrix, clay mineral, organic compo-
nents, and water, respectively (in decimal).

It is considered that when the argillaceous content is
high, the argillaceous particles are present in a continuous
phase; then, λsh ≠ 0; according to the C0g parameterization
method given by de Kuijper and Koelman [27], the result
is as follows:

C0g = 〠
4

k=1
hkCk = hmaCma + hshCsh + hoCo + hwCw: ð4Þ

By ∑4
k=1hk = 1 and hk = λkϕ

rk
k /∑

4
i=1λiϕ

ri
i (k = 1,2,3,4), the

calculation formula of C0g can be expressed as follows:

C0g = hclCsh + hwCw =
λshV

γcl
cl Ccl + λwϕ

γw
w Cw

λmaV
γma
ma + λclV

γcl
cl + λoϕ

γo
o + λwϕ

γww
,

ð5Þ

where hma, hcl, ho, and hw are the geometric parameters
of the rock matrix, clay mineral, organic components, and
formation water in the rock, respectively (in dimensionless);
λma, λsh, λo, and λw are the percolation rates of the rock
matrix, shale, organic components, and formation water in
the rock, respectively (in dimensionless); and γma, γsh, γo,
and γw are the percolation indexes of the rock matrix, clay
mineral, organic components, and formation water, respec-
tively (in dimensionless) [27].

4.2. Theory Analysis of the Conductivity Model. This section
mainly discusses the influence of Vma, V sh, ϕo, ϕw, λma, λsh,
λo, λw, γma, γsh, γo, and γw on the four-component shale
EMSC model. In the process of analyzing the sensitivity of
each parameter, the default value of each parameter is set
toVma = 0:30, V sh = 0:63, ϕo = 0:04, ϕw = 0:03, Cma = Co = 0
, Cw = 2 S/m, Csh = 0:2 S/m, ϕ = 0:07, λma = 1:0, λsh = 2:0,
λo = 2:0, λw = 2:0, γma = 1:0, γsh = 3:0, γo = 1:0, and γw =
3:0. The simulation process adopts single-factor variable
analysis; i.e., when investigating a specific parameter, keep
other parameter values constant to study the influence of
the target parameter on the model.

4.2.1. Effects of Clay Contents on the Model. The clay content
is an essential factor influencing the rock resistivity (Rt) and
resistivity increase coefficient (I) (Figure 3(a)). It can be
found that with the increase in clay content, the resistivity
of shale gradually decreases. In contrast, when the content
of clay minerals is constant, the resistivity of shale decreases
as the water saturation (Sw) increases. It is due to the relative
content of organic components which gradually decreases.
In addition, the increase coefficient of shale (Ishale) decreases
with the increase in water saturation, which is consistent
with the electrical properties of porous reservoir rocks
(Figure 3(b)). The feature is consistent with the actual obser-
vations, indicating that the model can describe the electrical
characteristics of shale.

It is worth noting that Ishale is nonlinearly related to Sw,
which is different from conventional reservoir rocks

(Figure 3(b)). Generally, for sandstone reservoirs with a clay
mineral content of less than 10%, the resistivity increase coef-
ficient is proportional to the water saturation in logarithmic
coordinates, which is also the basis for Archie’s formula to pre-
dict the water saturation of reservoir rocks [31]. However,
when the clay mineral content is greater than 10%, the Ishale
and water saturation will show a nonlinear correlation. Previ-
ous studies believe that this nonlinear relationship is mainly
due to the increase in the content of clay minerals, which leads
the conductive path of the rock to become more complicated
(De Witte, 1957; Poupon et al., 1954 [32, 33]). It is consistent
with the simulation result in this study, in which the clay min-
eral content of shale rock is generally greater than 20%.

The curvature of the Ishale-Sw correlation line gradually
decreases with the increase in clay content line, and the
75% clay content curve is a nearly linear correlation
(Figure 3(b)). It may be due to the increase in clay content
that has caused a change in the conductive path of the rock.
For the sample with a clay content of 35%, the conduction
path mainly relies on the pore water and the clay-bound
water, and the conduction path is relatively complicated.
By contrast, for rock with 75% clay content, its conductive
mechanism is more like pure sandstone rock saturated with
water.

4.2.2. The Influence of the Geometrical Parameters of
Nonconductive Components. The percolation rate (λ) and
index (γ) are geometric parameters to describe the discrete
phases in the model. The percolation rate refers to the connec-
tivity of discrete phases, while the percolation index describes
the influence of the geometry on its electrical conductivity
[27, 29]. For thematrix phase of nonconductiveminerals, when
λma and γma are constant, the electric conductivity of the non-
conductive matrix is fixed, and the contribution of this compo-
nent to the overall rock system mainly depends on the relative
content (Figure 4), while with the increase in λma, the rock
resistivity increases significantly, indicating that its conductiv-
ity to electricity becomes worse (Figure 4(a)). On the country,
with the increase in γma, the rock resistivity shows a decreasing
trend, but the decreasing amplitude is weaker than the change
caused by λma (Figure 4(b)). And when γma is less than 3.0, its
influence on the rock resistivity is more prominent. When γma
is greater than 3.0, the influence of this parameter tends to be
constant. Therefore, for the nonconductive matrix phase, the
sensitivity of λma is significantly higher than that of γma, and
the effective range for γma is between 0 and 3.0.

For the organic components, the influence of the perco-
lation rate and index is similar to that of the mineral matrix
(Figure 5). However, since both organic components and
formation water are parts of the total pores of the rock, when
the rock contains no organic matter (i.e., Sw = 1:0), the mac-
roscopic electrical properties of the rock will not be affected
by the organic components. In that case, the resistivity curve
will converge at one point (Figure 5).

4.2.3. The Influence of the Geometrical Parameters of
Conductive Components. The conductive elements consid-
ered in the model are mainly clay minerals and pore water.
When the rock composition is constant, with the increase
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in λcland the decrease in γcl, the resistivity of the rock appears
to decrease (Figure 6). As the value of λcl increases, the change
rate of rock resistivity is decreasing, approaching a particular
constant value. In this case, the influence of λcl on conductive
components becomes insignificant (Figure 6(a)). Moreover,
the effects of the percolation rate and index on conductive
and nonconductive constituents exhibit opposite properties
(Figures 4 and 6), which may be caused by the electrical con-
ductivity of the components. In other words, in the model
established in this study, for nonconductive or weakly conduc-
tive members, their connectivity (percolation rate) is the main
controlling factor affecting their electrical properties. On the
contrary, good conductive components’ geometric properties

(percolation index) are the main controlling factor that affects
their electrical properties. As for the pore water part, λw is not
sensitive to the conductivity characteristics of water
(Figure 7(a)), which may be caused by the water being a good
conductor of electricity and the relatively low water content in
shale rock. Then, the main factor that influences the conductiv-
ity characteristics of the pore water is the geometric characteris-
tics of water, i.e., the spatial distribution form (Figure 7(b)).

In summary, the four-component shale EMSC model
established in this paper can be used to characterize the electri-
cal conductivity of shale. The percolation rate and percolation
index have opposite laws for nonconductive and conductive
components. For nonconductive constituents (such as mineral
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Figure 4: Effect of changes in the percolation rate (λma) and percolation index (γma) of the mineral matrix.
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Figure 5: Effect of changes in the percolation rate (λo) and percolation index (γo) of the organic component on the model.
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framework and kerogen) and weakly conductive components
(clay minerals), the percolation rate and index are sensitive
parameters that affect the model. On the other hand, for good
electrical conductors (such as pore water), the percolation
index is more sensitive to the results predicted by the model.
Table 1 lists the sensitive ranges of geometric parameters for
each model component obtained from theoretical analyses.

4.3. Determination and Solution Method of Parameter

4.3.1. Determination of Model Parameter. The model parame-
ters mainly include two parts, relative content and geometric
parameters of each component. In this study, the determina-
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Figure 6: Effect of changes in the percolation rate (λsh) and percolation index (γsh) of the shale component on the model.
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Figure 7: Effect of changes in the percolation rate (λw) and percolation index (γw) of formation water on the model.

Table 1: Effective range of geometric parameters of the TOC
evaluation model.

Parameter Value Parameter Value

λma >0 γma 0~3.0
λsh 0~10 γsh >0
λo >0 γo 0~3.0
λw >0 γw 0~10
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tion of the mineral and porosity of the rock was based on the
XRD and physical property analysis data combined with con-
ventional logging calculation methods of clay content and
porosity:

(a) Clay content calculation formula is the classic natu-
ral gamma method:

V sh =
2:0 GCUR∗SHð Þ − 1:0
2:0GCUR − 1:0

,

SH =
GR −GRmin

GRmax −GRmin
,

ð6Þ

where V sh is the clay content, GCUR is the geochrono-
logical coefficient, SH is the clay content index, GR is the
curve value of natural gamma, and GRmax and GRmin are
the maximum and minimum values of the natural gamma
curve.

(b) Porosity calculation:

Using the three porosity curves (density, acoustic, and
neutron) to calculate porosity is a commonly used method
in well logging to determine the porosity of rocks. In this
study, the density curve is selected to calculate porosity.
The model treated the organic matter as a part of the total
pores, but the porosity calculated by the density curve repre-
sents the porosity filled with fluid (pore water and hydrocar-
bons). Therefore, the measured rock organic matter content
is used to correct the porosity when calculating the total
porosity. The calculation formula is as follows:

Port = Poreorg +
DEN −DG
DF −DG

, ð7Þ

where Port is the total porosity, Poreorg is the organic
matter in pore volume, DEN is the value of the density

curve, DG is the density of the rock matrix, and DF is the
fluid density.

(c) Nonconductive mineral matrix content is derived
from the equation of material balance of the shale
model:

Vma = 1 −V sh − Port ð8Þ

where Vma is the volume content of the shale rock
matrix, V sh is the clay content, and Port is the total porosity.

(d) Model geometric parameters:

The geometric parameters involved in the EMSC model
include λma, λsh, λo, λw, γma, γsh, γo, and γw. Previous studies
suggest defining λma = 1:0 and γma = 1:0 [27, 28]. In that
case, we use the measured core data as a constraint to opti-
mize other parameters, i.e., λsh, λo, λw, γsh, γo, and γw. A
total of 20 measured core data were used in the optimization
process. The model can predict the organic component with
an acceptable error (Figure 8). Table 2 shows the EMSC
model parameter for the shale oil interval in well X1.

4.3.2. Model Solution Method. The key to solving the ESMC
model is to get the organic component content ϕo in equation
(2). Then, use the equation TOC = ððϕo × ρoÞ/1:25Þ/DEN to
calculate the TOC, where ρo is the average density of the
organic matter component [34]. Equation (2) is an implicit
function about ϕo, so it should be solved by an iterative
method. In order to ensure the convergence of the iterative
process, a dichotomy algorithm is selected to solve the prob-
lem. The iterative form of the dichotomy is as follows:

ϕo n/2ð Þ =
ϕo 0ð Þ + ϕo nð Þ

2
,

ϕo 0ð Þ = ϕo n/2ð Þ, When f ϕo 0ð Þ
� �

× f ϕo nð Þ
� �

> 0,

ϕo nð Þ = ϕo n/2ð Þ, When f ϕo 0ð Þ
� �

× f ϕo nð Þ
� �

< 0:

8><
>:

ð9Þ

The following is the simulation verification and solution
process. First, calculate Ct from the given ϕo, and then, based
on the Ct value, use the binary iterative algorithm to reverse
calculating the ϕo value under different parameter conditions.
Compare the calculated ϕo with the real ϕo to verify the reli-
ability of the algorithm, and examine the convergence of the
model. Table 3 shows that the average relative errors are
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Figure 8: Comparison of the measured TOC with the model-
calculated TOC.

Table 2: Parameter range of the EMSC Model.

Parameter Value Parameter Value

λma 1.00 γma 1.00

λsh 8.90~10.00 γsh 0.10

λo 8.00~10.00 γo 0.27~1.49
λw 10.00 γw 10.00

8 Geofluids



smaller than 0.002 in different cases, indicating that the dichot-
omy algorithm can adequately solve the four-component
ESMC model.

4.4. Model Application. In order to verify the accuracy of the
EMSC model established in this study, a shale oil well inter-
val from the Daqing oilfield was selected for testing. The

lithology of the shale oil reservoir interval usually presents
an obvious sand-shale interbed. The corresponding logging
response is also very complicated in the area, which leads
to poor accuracy of conventional logging evaluation TOC
methods in shale oil intervals. The thickness of the shale
bed in the selected interval is generally less than 5m, and
the TOC is between 0.2% and 3.2%. The porosity of the tight
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Figure 9: Logging evaluation TOC results for shale oil well X1.

Table 3: Comparison of ϕo calculated by a binary iterative algorithm with its true value.

ϕo (λma = 1:0) ϕo (γma = 1:0) ϕo (λsh = 9:0) ϕo (λo = 9:0) ϕo (γo = 1:0) ϕo (real value)

0.0799 0.0799 0.0800 0.0800 0.0802 0.0800

0.0701 0.0702 0.0701 0.0700 0.0699 0.0700

0.0599 0.300 0.0600 0.0598 0.0601 0.0600

0.0500 0.0500 0.0499 0.0499 0.0499 0.0500

0.0399 0.0400 0.0402 0.0401 0.0399 0.0400

0.0299 0.0299 0.0299 0.0301 0.0300 0.0300

0.0200 0.0201 0.0201 0.0199 0.0199 0.0200

0.0098 0.0100 0.0099 0.0099 0.0099 0.0100
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sandstone layer is less than 10%, and the permeability is less
than 1mD. Apart from the EMSC model, the classic △log R
method [3] and the neural network method [35] were used
to evaluate the accuracy. Figure 9 shows the calculated TOC
results of well X1 derived from the three methods. It can be
seen that these three methods can give a relatively accurate
TOC value compared to the measured results. However, the
TOC trends predicted by the three methods show apparent
differences in the same interval, suggesting that the results
cannot be judged only based on the TOC used for scaling.

Finally, to verify the generality of the new model, we
selected well X2 with a conventional mudstone section from
the Baiyun Sag to calculate the TOC (Figure 10). The Baiyun
Sag of the Pearl River Mouth Basin is located in the deepwa-
ter slope area of the northern continental margin of the
South China Sea. Source rocks of the Baiyun Sag are mainly
the lacustrine and marine shales in the Wenchang, Enping,
and Zhuhai Formation [36]. In this study, the main mud-
stone layer encountered by well X2 is the Zhuhai Formation,
composed of deltaic, neritic, and bathyal sediments. The
measured TOC of the mudstone interval range from 1.28%
to 2.14%. Although the TOC predicted by the three methods
show an excellent fitting degree with the measured TOC
(Figure 10), differences can be observed among the predicted
results.

5. Discussion

Section 4.4 compares the application effect of the new model
and the traditional TOC evaluation method. The calculated
results are acceptable compared with the measured data,
but the TOC trends predicted by the three methods show
apparent differences in the same interval (Figures 9 and
10). We may find that the TOC curve predicted by the
ESMC model is similar to that of the △log R method. It is
because these two methods are based on the physical
response characteristics of the rock. In contrast, the TOC
curve derived from the neural network did not show appar-
ent fluctuation except the section with scaling data.

In some tight sandstone reservoir sections (2444~2448m
and 2660~2664m) (Figure 9), the sonic time curve and the
resistivity curve are approximately coincident, which leads
to the TOC value predicted by the △log R method being
lower than the measured value. Still, the model established
in this study has achieved better prediction results. More-
over, at the calcareous shale between 4430m and 4440m,
the TOC calculated by the new model is slightly higher. In
contrast, the value calculated by the △log R method is lower
(Figure 10). It is mainly due to the calcium mineral in this
shale section which causes a relatively low acoustic slowness,
and the resistivity curve shows a relatively high value.
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Figure 10: Logging evaluation TOC results for well W2 of the Baiyun Sag.
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Finally, these two curves are close to coincidence. Therefore,
the TOC value predicted by the △log R method is relatively
low. By contrast, the EMSCmodel is a four-component model
and does not consider the calcium content of the rock. Thus,
the high resistivity of calcium leads to a false high TOC.

Although the neural network method has the highest
prediction accuracy, the predicted TOC value is unaccept-
able in the two cases of this study. It is inconsistent with
the results of both the model established in this study and
the △log R method. We inferred that the neural network
method generally needs a large number of samples to sup-
port the modeling. However, the measured TOC value of
well X1 has a small range (1.29%~2.14%), which makes the
neural network unable to extract the sufficient characteristic
values of different lithological conditions effectively.

6. Conclusion

(1) Based on the effective medium symmetrical conduc-
tivity theory, a logging evaluation model of the total
organic carbon of the rock was established. The new
model is a four-component petrophysical model,
which mainly considers the nonconductive rock
skeleton, conductive clay, organic components (ker-
ogen and hydrocarbon), and pore water

(2) Compared with the classic △log R and neural net-
work methods, the new model considers the influ-
ence of rock mineral composition, component
structure, and shape on rock conduction. Therefore,
the new TOC evaluation model is suitable for inter-
vals with a large section of shale rock, and lithology
frequently changes intervals

(3) In the actual application process, the EMSC model
has achieved high evaluation accuracy, which is
comparable with the △log R method and neural net-
work method, confirming the practical application
value of this method. However, it is worth noting
that the model will cause more parameters to be
involved in the application process, which requires
systematic analysis and test data as support
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