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China’s marine-continental transitional facies shale gas resources are abundant with shale gas resources of about 19.8 trillion cubic
meters, while the exploration and development of these shale gas resources are still in the initial stage. The Upper Permian
Longtan coal series shale is one of the most important transitional shales in the Yangtze platform, China. In this study, the
comprehensive methods of mineralogy and organic geochemistry are used to discuss the characteristic of organic matter and
sedimentary environment of the Longtan coal series shale in western Guizhou Province, South China. The results show that
(1) the total organic carbon (TOC) content of this shale ranges in 0.6%-28.21%, mainly in 3%-12%, indicating a “good-
excellent” hydrocarbon source rock, and its vitrinite reflectance (Ro) ranges from 1.48% to 2.93%, indicating a high-overmature
organic matter; (2) the organic matter in this shale is multiorigin, and most of them come from the terrestrial higher plant
while the rest come from the plankton; (3) type index (TI) of organic matter is from -65 to 41, indicating most of the kerogens
which are II1-III types; and (4) the sedimentary environment of this shale is dominated by suboxic-anoxic fresh water
environment, which provides a favorable condition for the preservation of organic matter. In addition, the warm and humid
climate during the Late Permian in the Yangtze platform promotes plant growth, and as a result, the Longtan coal series shale
is rich in organic matter and has great potential of shale gas exploration and development.

1. Introduction

Shale gas has become an important part of natural gas pro-
duction growth in China [1, 2]. In 2020, China has achieved
shale gas production of 200 × 108 m3, and it was mainly pro-
duced from four major shale gas fields (they are Jiaoshiba,
Changning, Weiyuan, and Zhaotong shale gas fields) [2].
However, the commercial development of shale gas in China
is limited to marine strata in the Sichuan Basin and its

periphery. The exploration and development of marine-
continental transitional facies shale gas have not made great
progress and are still in the early evaluation stage [3]. Large-
scale marine-continental transitional facies shale gas
resources are enriched in the Upper Carboniferous Taiyuan
and Lower Permian Shanxi Formations in Ordos, Qinshui,
Southern North China, and Bohai Bay Basins and Upper
Permian Longtan Formation in the Yangtze platform. The
Longtan Formation is rich in shale gas resources, accounting
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for a quarter of the total shale gas resources in China, and
has great potential of hydrocarbon exploration and develop-
ment [4, 5].

The marine-continental transitional facies shale gas
develops in delta, estuary, barrier island, tidal flat, lagoon,
and other environments. Organic-rich shale is more com-
mon in lagoon phase, and its sedimentary model is barrier
island-lagoon sedimentary model. Influenced by terrigenous
clastic materials and sea level change, organic-rich shale
often intercalates with coal and tight sandstone and changes
laterally, with high organic matter abundance and complex
organic matter composition (covering kerogens of type I,
type II, and type III) [3, 5–9]. These characteristics provide
a favorable hydrocarbon-generating material basis and pres-
ervation conditions for marine-continental transitional shale
gas, but increase the difficulty of studying the organic matter
enrichment mechanism and sedimentary environment of
this kind of shale.

The Longtan coal series shale in Guizhou Province is one
of the significant transitional fine grain rocks in the Yangtze
platform, which is rich in organic matter, and the recover-
able shale gas resources are about 3107:73 × 108 m3 [8,
10–13]. Influenced by weathering products of Kangdian
ancient land and seawater intrusion, there is little research
on the occurrence characteristics and sources of organic
matter in this coal series shale, which restricts the explora-
tion and development process of shale gas.

In this study, the source and sedimentary environment
of organic matter in the Longtan coal series shale in south-
western Guizhou Province were studied by combining the
analyzing methods of organic geochemistry and mineral
petrology, which could provide theoretical reference for the
exploration and development of this kind of shale gas
resources.

2. Geological Background

Guizhou Province is located in the southeastern margin of
Upper Yangtze Block, which rose to land at the end of the
Middle Permian and experienced long-term denudation.
During the Late Permian, the basement subsidence and sea-
water intrusion occurred again, resulting in the coal-bearing
series in continental, marine-continental transitional facies,
and marine facies [14]. Because the Kangdian rift zone
revived at the end of the Middle Permian, the Kangdian
ancient land rose to generate a palaeogeographic pattern of
higher west and lower east in the Upper Yangtze platform.
Thus, the Kangdian ancient land was the main terrigenous
supply area in the Upper Yangtze platform during the late
Permian coal accumulation period [14, 15]. At the same
time, seawater intruded from the east and southeast, which
caused the Upper Permian coal measure strata in the Upper
Yangtze platform to be affected by both continental input
and seawater, and sedimentary systems such as ancient land
(denudation area), alluvial plain river, delta, tidal flat-lagoon,
carbonate platform, and deep water basin were distributed in
turn from west to east (Figure 1) [12, 16, 17]. The Longtan
Formation is the most significant coal-bearing strata of the
Upper Permian, which belongs to marine-continental transi-

tional facies. Xuanwei Formation, Wujiaping Formation,
and Longtan Formation are deposited at the same time
(Figure 2). In contrast to the Longtan Formation, the Xuan-
wei Formation belongs to continental sediments and the
Wujiaping Formation is mainly marine sediments. The
coal-bearing properties of the Xuanwei and Wujiaping For-
mations are obviously lower than that of the Longtan
Formation.

3. Samples and Experiments

3.1. Sample Collection. In this study, 81 fresh core samples of
the Longtan coal series shale in Guizhou Province were col-
lected. Among them, 63 samples were collected from well
W2 in Pu’an County (see Figure 1), and 18 samples were
from well W4, Zhijin County.

3.2. Experiments. For the collected shale samples, the exper-
iments about the total organic carbon (TOC) content, vitri-
nite reflectance, organic maceral and mineral compositions,
chloroform asphalt “A” extraction, group component sepa-
ration, and saturated hydrocarbon gas chromatography-
mass spectrometry (GC-MS) were conducted.

The total organic carbon (TOC) content was analyzed by
TL851-5A sulfur and carbon analyzer. The analysis of min-
eral composition was completed on D/MAX2000 X-ray dif-
fractometer. The chloroform asphalt “A” extraction and
group component separation experiments follow two oil
and gas industry standards (SY/T 5118-2005 and SY/T
5119-1995).

The gas chromatography-mass spectrometry analysis
was completed on Agilent 7890 GC-MS, and the carrier
gas was helium with a purity of 99.99%. During this analysis,
the conditions were set as (1) the injector temperature was
300°C, and the chromatographic column was a 30m × 0:25
mm × 0:25 μm HP-5MS elastic quartz capillary column; (2)
the initial temperature was 50°C, and after 3 minutes, it
was heated to 320°C with a rate of 3°C/min; (3) the flow rate
of carrier gas was 1mL/min, lasting for 20min. The method
of data acquisition was multi-ion detection.

In addition to the above samples and experiments, this
paper also collates the preliminary analysis results of organic
geochemical parameters of the Longtan coal series shale, Gui-
zhou Province, including well W1, well W3, and well W5
(Figures 1 and 3), and discusses the organic matter source
and sedimentary environment of the Longtan coal series shale
combined with the experimental results in this study.

4. Results and Discussion

4.1. Organic Geochemical Characteristics

4.1.1. Types of Organic Matter. According to the morphology
of organic matter and its contact relationship with minerals,
the occurrence of organic matter in the Longtan coal series
shale can be divided into four types, and they are banded
organic matter, massive organic matter, dispersed organic
matter, and interwrapped organic matter (Figure 4). The
source of organic matter in source rocks is closely related
to kerogen types. Type I kerogen mainly comes from lower
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plankton, such as algae and fungi, while type III kerogen
mainly comes from terrestrial higher plants. Type II kerogen
is a mixed source of lower plankton and higher plants. The
kerogen type index, such as TI index, is a significant method
to judge the kerogen type of source rocks. TI ≥ 80 indicates
type I kerogen, 40 ≤ TI < 80 is a main character of type II1
kerogen, TI value ranges in 0-40 indicating type II2 kerogen,
and type III kerogen generally has TI value less than 0 [18].
The TI values of the Longtan coal series shale samples range
from 41 to 65 (32-39 for W2 well and 41-65 for W4 well,
Figure 3), indicating that II2-III kerogens are the main
organic matter components of this shale.

4.1.2. Abundance of Organic Matter. Organic matter is the
material basis of hydrocarbon generation in source rocks,
and its abundance is a key factor determining the hydrocar-

bon generation capacity of source rocks. Geochemical indi-
cators for evaluating the abundance of organic matter
mainly include TOC content, chloroform asphalt “A”,
hydrocarbon generation potential (S1 + S2), and total hydro-
carbons [19]. Among these indicators, chloroform asphalt
“A”, hydrocarbon generation potential, and total hydrocar-
bon can effectively reflect the original hydrocarbon genera-
tion ability of source rocks in the low maturity evolution
stage. With the increase of thermal evolution degree and
the continuous hydrocarbon generation and expulsion, the
mass fraction of organic carbon remaining in source rocks
in the high-overmature evolution stage is low. Thus, it is dif-
ficult to accurately and objectively evaluate original hydro-
carbon generation capacity of high-overmature source
rocks by hydrocarbon generation potential and total hydro-
carbon [19, 20]. In contrast, TOC content has high stability
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during thermal maturation and can effectively reflect the
organic matter abundance of high-overmatured source rocks
[18]. The Longtan coal series shale of the Upper Permian in
Guizhou Province is generally high-overmature [12]. In this
study, TOC content was used as a key parameter evaluating

the organic matter abundance of this shale, combined with
chloroform asphalt “A”, hydrocarbon generation potential,
and total hydrocarbon.

The TOC content of shale samples in W2 (Pu’an
County) well ranges in 0.61%-12%, with an average of
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Figure 3: Organic geochemical characteristics and mineral composition of the Longtan coal series shale (the data of W1 is from [11, 12]; W3
is from [8]; W5 is from [10]).
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3.34%, and which is 1.12%-17.24% (averaging 5.34%) in
these samples from W4 well (Zhijin County) (Figure 3). Pre-
vious studies recognized that the TOC content of coal series
shale in W1 well, Xingren County, ranges from 0.6% to
11.72%, with an average of 3.43% [12], and the TOC content
of coal series shale in W3 well, Shuicheng County, is as high
as 2.18%-28.21% (averaging7.7%) [7]. The TOC content of
coal shale in W5 of Qianxi County is between 1.29% and
14.8%, with an average of 5.27% [10]. The above results indi-
cate that the TOC content in the Longtan coal series shale in
Guizhou Province is relatively high, and this shale belongs to
“good” or “excellent” source rocks according to the evalua-
tion standard of organic matter abundance of coal series
shale [21] (Figure 5).

The total hydrocarbon content of the shale sample in
this study ranges from 32.79% to 47.37%, indicating that it
is an excellent source rock. However, the content of chloro-
form asphalt “A” in these samples is between 0.0014% and
0.0084%, with an average of 0.00368%, which is much lower
than the limit of hydrocarbon generation potential of coal
series source rocks (0.15%). According to the total hydrocar-
bon content, the Longtan coal series shale studied here
belongs to nonhydrocarbon source rocks. The range of
hydrocarbon generation potential is 0.1097-2.7018mg/g,
implying that most of the shale samples in this study belong
to inferior source rocks, and a few of them are nonsource
rocks. The reason for the low content of chloroform bitumen

“A” and hydrocarbon generation potential in the Longtan
Formation coal series shale is that the shale has a high ther-
mal evolution degree, which generally reaches a high-
overmature evolution stage [12]. During this stage, a large
number of liquid hydrocarbons are cracked to generate gas-
eous hydrocarbons and then lead to a decrease in hydrocar-
bon generation potential.

Considering the high stability of TOC content, the Long-
tan coal series shale in Guizhou Province is mainly catego-
rized as “good” and “excellent” source rock according to
TOC content. In addition, the TOC content has a good pos-
itive correlation with hydrocarbon generation potential
(Figure 5(a)), indicating that the higher the TOC content,
the greater the hydrocarbon generation potential.

4.1.3. Organic Thermal Maturity. Vitrinite reflectance (Ro)
and biomarker compounds are significant indicators of ther-
mal evolution of source rocks, and the maturity of organic
matter of shale gas in the Longtan Formation coal series
shale was analyzed in this study based on these indexes.

The Ro values of well 2 range in 2.26%-2.58% (Figure 3),
with an average of 2.41%, and the Ro values of W4 are from
1.46% to 2.52%, averaging 1.89%. These results indicate that
the Longtan Formation coal series shale in Guizhou Prov-
ince is in a high-overmature evolution stage. Previous stud-
ies have also shown that this shale is in the high-overmature
evolution stage, such as the Ro values of the Xingren W1 well
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are 1.92%-2.93% [11, 12], and which range in 1.48%-1.84%
in the Shuicheng W3 well [8] and 1.89%-2.74% in the Qianxi
W5 well [10]. Based on previous studies and experimental
results in this paper, it can be inferred that (1) shale gas in
the Longtan Formation coal series shale in Guizhou Prov-
ince is in a high-overmature evolution stage; (2) the maturity
of organic matter in the zone of Pu’an-Qinglong-Zhenfeng-
Xingyi is the highest, which is basically in the evolution stage
of overmaturity (Ro ≥ 2:0%). The organic matter in the zone
of Weining-Panxian-Zhijin-Nayong is mainly high maturity
(1:3% < Ro < 2:0%), and some of them are overmature [12].

The odd-even predominance (OEP) of saturated hydro-
carbon of the Longtan Formation coal series shale ranges
from 0.82 to 1.21 (averaging 1.04), and even carbon number
dominance is not obvious. The carbon preference index

(CPI) ranges from 1.12 to 1.51, with an average of 1.26,
indicating that source rocks have all entered the mature
stage (Figure 6(a)). Compared with Ro, some biomarker
compounds (Table 1) reflect that the maturity of the
Longtan Formation coal series shale samples is low. For
example, the steranes C29ααα20S/ð20S + 20RÞ and C29ββ/
ð20R + 20SÞ in the samples range in 0.27-0.42 (averaging
0.37) and 0.22-0.38 (averaging 0.31), respectively, which
are significantly higher than the hydrocarbon generation
threshold and did not reach their thermal evolution equi-
librium. This result indicates that the organic matter is in
the mature stage. The Ts/ðTm + TsÞ ratios range from 0.4
to 0.69, with an average of 0.5, and the content of C3122
S/ð22R + 22SÞ range in 0.57-0.62 (averaging 0.59) indicates
that the organic matter evolution degree of the Longtan
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Formation coal series shale is close to the peak stage of
hydrocarbon generation. The biomarker compound index
is greatly affected by maturity. The above indexes have a
high accuracy in the immature stage of organic matter,
and this accuracy decreases when organic matter enters
into high-overmature stage [19, 20, 22, 23]. Therefore,
based onRo, combined with CPI-OEP diagram to judge
the maturity of organic matter in this study, the results
show that the Longtan Formation coal series shale is in
the high-overmature stage.

4.2. Organic Matter Source. According to biomarkers data,
the content and distribution of n-alkanes are of great signif-
icance to reveal the source of organic matter. The character-
istics of n-alkanes in the Longtan Formation coal series shale
samples include (1) the carbon number distributes in nC14-
nC35; (2) the carbon peaks are mainly distributed among
nC15-nC18 (Figure 7), followed by nC24, nC25, and nC21,
indicating the multiple sources of organic matter in the sam-
ple; (3) mudstone has higher nC21-/nC22+, and the ratio
ranges in 0.5-8.4 (averaging 2.72), implying that light
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Table 1: The results of GC-MS analysis of the saturated hydrocarbon in the Longtan shales.

Sample
Regular sterone C29ααα20S/ 20R + 20Sð Þ C29ββ/ 20R + 20Sð Þ Ts/ Ts + Tmð Þ C3122S/ 22R + 22Sð Þ γ-Waxane/C30Hop

C27 C28 C29

W2-1 36.14 21.39 42.48 0.32 0.25 0.44 0.58 0.12

W2-2 38.53 23.8 37.67 0.41 0.32 0.41 0.59 0.12

W2-3 35.48 24.01 40.51 0.42 0.38 0.48 0.61 0.13

W2-4 36.5 22.53 40.98 0.36 0.31 0.46 0.6 0.15

W2-5 39.09 22.85 38.06 0.42 0.35 0.49 0.6 0.14

W2-6 38.62 22.93 38.46 0.4 0.34 0.5 0.58 0.13

W2-7 39.24 22.93 37.83 0.41 0.32 0.4 0.59 0.1

W2-8 40.23 22.62 37.15 0.42 0.35 0.5 0.58 0.14

W2-9 36.92 21.61 41.47 0.37 0.31 0.51 0.61 0.13

W2-10 38.6 22.26 39.14 0.4 0.31 0.49 0.61 0.15

W2-11 38.17 23.01 38.82 0.4 0.33 0.49 0.6 0.14

W2-12 41.37 22.75 35.88 0.4 0.33 0.5 0.6 0.13

W2-13 38.18 22.51 39.31 0.41 0.33 0.49 0.59 0.13

W4-1 40.91 21.47 37.62 0.38 0.3 0.56 0.59 0.12

W4-2 48.17 18.82 33.01 0.27 0.23 0.59 0.57 0.14

W4-3 43.22 20.06 36.72 0.34 0.28 0.51 0.58 0.12

W4-4 38.51 21.11 40.38 0.42 0.32 0.53 0.61 0.14

W4-5 40.76 22.15 37.09 0.42 0.32 0.51 0.59 0.11

7Geofluids



hydrocarbon components occupy an absolute advantage;
and (4) ðnC21 + nC22Þ/ðnC28 + nC29Þ is between 0.78 and
2.36 (averaging 1.34) indicating a significant low carbon
advantage. These characteristics comprehensively reflect
that the organic matter in the Longtan Formation coal series
shale has various sources.

The Longtan Formation coal series shale samples con-
tain abundant terpenoids. Pentacyclic triterpenoids are the
richest one, followed by tricyclic diterpenes and long-chain
triterpenoids, and tetracyclic terpenes and gammaceranes
are less compositions (Table 1). It is generally believed that
the hopanes are derived from microbial bacteria, and the
high abundance of Epimedium is also related to the strong
bacterial activity during the deposition period. The content
of hopane compounds in the samples in this study is rela-
tively high, and C30 hopane is the dominated one. Octane
was detected from C31-C35, indicating that organic matter
is contributed by lower organisms such as algae. Tricyclic
terpanes mainly come from the cell membrane of protozoa
or low aquatic organisms such as algae, which are closely
related to the saline water environment. The abundance of
tricyclic terpanes in some samples is low, and the main peak
is located in C15-C18, reflecting a large amount of organic
matter come from higher plants. High abundance of tricyclic
terpanes was also detected in some samples, implying that
some organic matters come from lower aquatic organisms.

The main steranes detected in the Longtan Formation
coal series shale samples are regular steranes C27, C28, and
C29 and progesterone steranes, and there is also a small
amount of rearranged sterane. The average relative contents
of C27, C28, and C29 were 37.98%, 22.76%, and 39.25%,
respectively (Table 1). The high C29 content indicates that
organic matter mainly comes from terrestrial higher plants,

and the input of low aquatic organisms is relatively weak.
The ternary diagram of regular steranes C27, C28, and C29
is one of the methods to classify the parent material types
of organic matter, and as shown in Figure 8(a), the organic
matter of the Longtan Formation coal series shale is rich
and has a mixed source.

4.3. Sedimentary Environment. Geochemical indicators
including TS/2 ∗ TOC, isoprenoids, and steroids are effec-
tively used to reveal sedimentary environment. Among
them, TS/2 ∗ TOC is a good indicator to distinguish the dif-
ference of salinity in marine and terrestrial water, and the
larger the value, the higher the salinity of the reaction water.
The TS/2 ∗ TOC value of the Longtan Formation coal series
shale ranges from 0.014 to 1.08 (sample number is 36)
(Figure 3) [8]. About 77.78% of the samples were deposited
in fresh water with a TS/2 ∗ TOC value less than 0.38, and
only a small amount of the samples indicate salt water.
The biomarker compounds contain small amounts of preg-
nane and gammacerane (Figure 7), also indicating that the
Longtan Formation coal series shale was mainly deposited
under fresh water condition. This fresh water condition
may be the result of strong terrigenous input.

The original substance of pristane and phytane is phytol,
which is influenced by water oxidation-deoxidation condi-
tions and microbial differences. In general, pristane indicates
the oxidation environment and phytane indicates the reduc-
tion environment, so the ratio of pristane to plant (Pr/Ph)
can be used as an indicator to judge the oxidation-
deoxidation state of the sedimentary environment [24–26].
Pr/Ph ≤ 1 denotes an oxygen-containing environment and
anoxic environment, and this ratio is higher than 1 when
oxygen-containing conditions appear. In general, this ratio
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is close to 1 indicating alternation of oxygen-containing
environment and anoxic environment [18, 24]. The Pr/Ph
of the Longtan Formation coal series shale ranges from
0.58 to 1.25 (sample number is 18), with an average of
0.865, indicating that the water was mainly in an anoxic
environment and oxygen content fluctuated during the
deposition period. The results of Zhang et al. (2020) [8]

show that the Longtan Formation coal series shale has a high
sulfur content, with an average of 3.73%, proving that it is
mainly deposited in an anoxic water environment. Based
on previous studies and experimental results in this study,
the relationship between Pr/nC17 versus Ph/nC18 is used to
judge the sedimentary environment, which indicates that
this coal series shale was deposited under subanoxic to
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anoxic conditions. Especially, the water body in Shuicheng
County is mainly an anoxic environment, while in Pu’an
and Zhijin Counties is mainly an anoxic and suboxic envi-
ronment. Combined with the tidal flat-lagoon sedimentary
background of the Late Permian in the study area [13, 27],
the Longtan Formation was supplied by the provenance
from the western Kangdian ancient land during the sedi-
mentary period, which was mainly composed of clay min-
erals and terrigenous clastic quartz, and the lithology
included siliceous shale, clayey shale, and mixed shale
(Figure 8(b)). Among them, shale samples from W4 are clay
shale or siliceous shale with very few carbonate minerals
(averaging 1.33%). The carbonate mineral content of shale
samples from W2 (averaging 15.27%) is much higher than
that of W4. The reason may be that seawater invaded from
the southeast during this period (Figure 1). Moreover,
because the influence of seawater was greater in W2 in the
south, carbonate mineral content is higher there. Therefore,
under the comprehensive influence of terrigenous detrital
injection and marine transgression, the organic matter of
the Longtan Formation coal series shale came from both ter-
restrial higher plants and marine low organisms, which has a
mixed source. During the Late Permian, the Upper Yangtze
platform was in a warm-humid palaeoclimate background,
and plants flourished, providing a rich primitive material
basis for the enrichment of organic matter [14, 15, 27].
The suboxic-anoxic water environment in this block pro-
vided superior conditions for preserving organic matter
(Figure 9) and leading to the abundance of organic matter
in this coal series shale (Figures 3, 4, and 5) and the great
potential of shale gas resources.

5. Conclusions

In this study, by combined methods of organic geochemistry
and mineral petrology, the sedimentary environment and
origin of organic matter in the Upper Permian Longtan coal
series shale in western Guizhou Province were studied, and
following conclusions were recognized.

(1) The coal series shale in the study area has a high
abundance of organic matter, with a TOC content
of 0.6%-28.21%, most of which are “good” or
“excellent” source rocks, and the organic matter is
in the high-overmature evolution stage (Ro value
is 1.48%-2.93%). Under the influence of high ther-
mal evolution degree, the chloroform pitch “A”
and hydrocarbon generation potential in the
organic matter of this coal series shale are rela-
tively low

(2) The analyzing results of organic microscopic com-
ponents, such as n-alkanes, isoprenoids, regular
steranes, and terpenoids, show that the organic
matter of the coal series shale of the Longtan For-
mation in Guizhou Province has multiple sources.
The main source of this shale is terrestrial higher
plants, and the kerogen in this shale is mainly
II1-III type

(3) The analyzing results of TS/2 ∗ TOC, isoprenoids,
and steroids show that the depositional environment
of coal series shale in the Longtan Formation in the
study area is dominated by suboxic-anoxic environ-
ment, which provides more favorable conditions
for the preservation of organic matter

(4) During the deposition of the Longtan Formation, the
warm and humid paleoclimate background led to the
flourishing of organisms, which provided a rich orig-
inal material basis for the enrichment of organic
matter, coupled with favorable conditions for pre-
serving organic matter. The coal series shale of the
Longtan Formation in the study area was rich in
organic matter, and it has a great potential for shale
gas exploration and development
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