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REV-scale LBM (representative elementary volume scale lattice Boltzmann method) provides a possible way for the unified
microscopic simulation of transscale seepage combined with pore-scale LBM. However, shown by numerical results, when
simulated fluid flows in tight porous media with discrete microfractures or dispersed dissolution pore, the nonphysical
oscillation phenomenon will occur in the region of relatively greater velocity gradient, due to the insufficient computational
node caused by computational capability constraints. And for that reason, the increase in simulation scale under certain
computational capability will be restricted. In order to solve this problem, this paper extends the application of the original
LBM local refinement algorithm into REV-LBM and corrects the original REV-LBM velocity processing method, such that
REV-scale LBM has a more reasonable local refinement algorithm. Through conventional computation example, this paper
proves that the local refinement algorithm can maintain well computational accuracy while at least double the time efficiency
and could save more than 30% of CPU time in the practical application. This algorithm has a great potential of application in
simulating flows in larger size porous media with complex micro-nano structures and can provide a new idea to transscale
simulation in porous media.

1. Introduction

The computational fluid dynamics (CFD) applied in fluid
flow and transportation simulation in porous media includes
two types of calculation methods—the conventional N-S
equation and the particle solver, including three scale
simulation methods: macro continuous media simulation,
mesoscopic kinetic simulation, and microscopic molecular
dynamics simulation [1]. Among them, the mesoscopic
kinetic simulation method based on the mesoscopic kinetic
model not only has free constraints in continuity assump-
tions as the microscopic molecular dynamics simulation
does but also maintains the simplicity of the continuous
media simulation method which ignores the description of

individual molecular motion. Therefore, it is suitable for
simulating flow patterns in porous media with micro-nano
pore throat structure (e.g., tight sandstone [2, 3], shale [4,
5], fibrous porous media [6], and porous electrode [7]). This
simulation method mainly has lattice Boltzmann method
(LBM) [8], direct simulation Monte-Carlo (DSMC) [9],
dissipative particle dynamics (DPD) [10], etc. Whereas due
to the simple and advantageous boundary conditions pro-
cessing of the LBM method, it is more suitable to simulate
flows in complex porous media.

The LBM simulation method for flows in porous media
includes pore-scale LBM and REV-scale LBM. The pore-
scale combined with the numerical model of porous media
[11–13] can be used to study the microscopic flow of
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complex fluid such as multiphase flow, multicomponent
fluid flow [14, 15], and non-Newtonian flow and is the pop-
ular trend of micro-nano pore-network seepage simulation.
However, when the pore-scale LBM simulates the transscale
porous media model, which could have the matrix of large-
scale multicontinuum representation and discrete micro-
fractures or dispersed dissolution pore, it will be insufficient
due to the excessive number of nodes required for calcula-
tion. Unlike pore-scale LBM, REV-scale LBM avoids pore-
throat detail characterizations and simulates the flow in the
porous media which must have a REV’s size firstly. This
method not only includes changing the classical well
rebound form to fit the partial rebound model of Darcy
equation [16] but also includes the resistance model con-
structed by adding external force term to transform into
Stokes or Brinkman function. Among them, the generalized
Lattice Boltzmann equation (GLBE) resistance model pro-
posed by Guo and Zhao [17] is used most extensively. By
only adjusting the porosity of the calculated grid, GLBE
can accommodate all types of porous medium node, includ-
ing adjusting the porosity and permeability to nearly achieve
a blank or structure node which both referred in pore-scale
LBM [18]. Thus, GLBE-based REV-scale LBM has good
compatibility with pore-scale LBM. By simulating the fluid
transportation in micrometer-scale shale containing micro-
fractures, Zhang et al. [19, 20] confirmed that the combined
REV-scale LBM and pore-scale LBM can simulate flows in
homogeneous porous media, complex heterogeneous porous
media, and single-phase flow in porous media with discrete
microfractures. Therefore, GLBE-based REV-scale LBM
provides an effective simulation method for the unified
simulation of transscale seepage in porous media with
micro-nano pore-throat structure. However, even so, shown
by numerical simulation results, when simulating the seep-
age problem related to tight porous media with low perme-
ability, the large velocity gradient generated by the wall
boundary (near the fixed structure) or the fracture boundary
(junction of the matrix-fracture system) will cause nonphys-
ical oscillation in the boundary region when the calculation
nodes are insufficient, thus leading to false perceptions of
flow field and restricting the simulation size shown as chap-
ter 4.1 in the reference [21]. Usually, the nonphysical oscilla-
tions caused by a lack of nodes can be solved by refining
blocks or locally refining nodes to increase the nodes in rap-
idly varied boundary areas, in which the local refinement
approach has more practical benefits. The local refinement
algorithm applied to LBM was first proposed by Filippova
and Hanel (FH algorithm) [22]. After several improvements
[23, 24], it was mainly applied to simulate single-phase and
multiphase flow [25, 26] or to explore particle transportation
law [27], etc. However, the application to REV-scale LBM in
simulating fluid seepage in porous media remains blank, and
the REV-scale LBM has been used in the tight porous
medium contained microfractures or dispersed dissolution
pore with no verification of accuracy at the boundary layer
having a large velocity gradient [20].

In order to make up the gap of the existing local refine-
ment algorithm application and solve the nonphysical oscil-
lation problem in the boundary region caused by insufficient

nodes, this paper extends the application of the original local
refinement algorithm to REV-LBM and adjusts the equilib-
rium velocity model of Guo’s REV-LBM to make the local
refinement algorithm more suitable for REV-scale LBM. In
this way, the local refinement algorithm can ensure the cal-
culation accuracy as much as possible under certain calcula-
tion capacity constraints, saving calculation nodes, reducing
the time consumption of at least one time to reach the sim-
ulated equilibrium condition, and enlarging the simulation
size as well as the efficiency of the porous media flow simu-
lation with complex microfractures or dispersed dissolution
pore, when combined with pore-scale LBM. Therefore, it can
provide a direction for future flow simulation of large size
tight porous media and develop a new idea for simulations
of transscale flow in porous media.

2. Porous Media Flow Simulation by Using
REV-LBM with Multigrid
Refinement Approach

2.1. REV-Scale Lattice Boltzmann Method. In the LBM
method, fluid is assumed to be elements with finite discrete
velocities distributed along a regular grid; through the colli-
sion and migration evolution, simulation of fluid motion is
realized. Similar to the traditional LBM model, the REV-
scale LBM model of porous media can establish the seepage
resistance model by modifying the traditional rebound for-
mat to fit the seepage law or adding the external force term.

Taking the D2Q9 model [28] LBM as an example, its dis-
crete velocity model is shown in Figure 1.

The corresponding parameters are shown in Table 1.
For BGK model or LBM with single relaxation time [29],

its specific evolution equation is as follows:
Collision:

~f i x, tð Þ = f i x, tð Þ + Δt
τ

f eqi x, tð Þ − f i x, tð Þ� �
+ 1 − Δt

2τ

� �
FiΔt:

ð1Þ

Streaming:

f i x + ciΔt, t + Δtð Þ = ~f i x, tð Þ: ð2Þ

Wherein the equilibrium distribution function and the
force source term are as follows:

f eqi = ωiρ 1 + ciαuα
c2s

+
ciαciβ − c2sδαβ
� �

uβuα
2c4s

" #
, ð3Þ

Fi = ωi
ciaFα

c2s
+

ciαciβ − c2sδαβ
� �

uβFα

c4s

" #
: ð4Þ

Guo realizes the REV-LBM algorithm by adding an
appropriate resistance term of porous media. This algorithm
integrates porosity into equilibrium state distribution
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function and force source term to meet the porous media
seepage model, i.e.,

f eqi = ωiρ 1 + ciαuα
c2s

+
ciαciβ − c2sδαβ
� �

uβuα
2εc4s

" #
, ð5Þ

Fi = ωi
ciaFα

c2s
+

ciαciβ − c2sδαβ
� �

uβFα

εc4s

" #
: ð6Þ

To ensure the computational accuracy, the macroscopic
fluid density and macroscopic velocity brought into the
equation of equilibrium state are ρeq =∑i f i and ρueq =∑i f i
ci + ð1/2ÞFΔt, respectively. The fluid force in porous media
includes the resistance term and the external force term,
which is F = −ðεμ/KÞu − λρu2 + εG (Where, the first term
on the right is the Darcy flow term, the second term is the
nonlinear seepage term, and the third term is the external
force term. Considering that there are various models of
nonlinear seepage terms and external force terms, in this
paper, the most universal algorithm is focused on; thus, the
most common model is only discussed for Darcy flow to
demonstrate the local refinement algorithm of REV-LBM).
Since the force model is related to velocity, it is an implicit
equation of velocity. Guo’s velocity model treats it as a sim-
ple quadratic equation.

ρueq = ρu0 +
1
2 F ueqð ÞΔt: ð7Þ

When the seepage is classified as Darcy flow without
external force term, the equilibrium macroscopic velocity
can be simplified as ueq = ð1 + ð1/2Þðεν/KÞΔtÞ−1u0.

To facilitate calculation, all physical quantities are uni-
formly nondimensionalized, and let Δl∗ = Δl/Cl = 1, Δt∗ = Δt/
Ct = 1, ρ∗ = ρ/Cρ = 1, and thus, the equation of REV-LBM is
transformed into as follows:

Collision:

~f
∗
i x∗, t∗ð Þ = f ∗i x∗, t∗ð Þ + 1

τ∗
f eq,∗i x∗, t∗ð Þ − f ∗i x∗, t∗ð Þ� �

+ 1 − 1
2τ∗

� �
F∗
i :

ð8Þ

Streaming:

f ∗i x∗ + c∗i , t∗ + 1ð Þ = ~f
∗
i x∗, t∗ð Þ: ð9Þ

Equilibrium distribution function:

f eq,∗i = ωi 1 + c∗iαu
∗
α

c∗2s
+

c∗iαc
∗
iβ − c∗2s δαβ

� 	
u∗βu

∗
α

2εc∗4s

2
4

3
5: ð10Þ

Force source term:

F∗
i = ωi

c∗iαF
∗
α

c∗2s
+

c∗iαc
∗
iβ − c∗2s δαβ

� 	
u∗βF

∗
α

εc∗4s

2
4

3
5: ð11Þ

Force model of porous media:

F∗ = −
εν∗

K∗ u∗ − λ∗u∗2 + εG∗: ð12Þ

2.2. Multiblock Local Grid Refinement Approach

2.2.1. Parameter Settings. REV-LBM local refinement mesh
model is the same as the conventional LBM local refinement

Figure 1: D2Q9 discrete velocity model.

Table 1: The D2Q9 velocity set in explicit form.

i 0 1 2 3 4 5 6 7 8

c∗ix 0 +1 0 −1 0 +1 −1 −1 +1

c∗iy 0 0 +1 0 −1 +1 +1 −1 −1

ωi 4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36

Boundary of
fine block

Boundary of
coarse block

𝛥lf

𝛥lc

Figure 2: Local refinement structure with two blocks.
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mesh model. For double mesh, the local refinement mesh
model has two block systems with different block distances.
The schematic model is shown in Figure 2. The lattice spac-
ing of the coarse block is Δlc, and the boundary nodes that
intersect the fine blocks are represented by blue squares.
The lattice spacing of the fine block is Δl f , and boundary
nodes that intersect the coarse blocks are represented by
red circles.

Similar to the conventional LBM local refinement algo-
rithm data processing method, when it denotes the ratio
between fine and coarse blocks as nref = Δlc/Δl f to ensure
the consistency in the lattice speed of sound between two
different block systems, let Δl/Δt = const then:

Δtc
Δt f

= Δlc
Δl f

= nref : ð13Þ

By using the kinematic viscosity of the macroscopic fluid
and the porous media’s local permeability that is indepen-
dent of block size, it can be obtained that:

c2s τ∗c −
1
2

� �
Δtc = c2s τ∗f −

1
2

� �
Δt f , ð14Þ

ν∗c
Δl2c
Δtc

= ν∗f
Δl2f
Δt f

, ð15Þ

K∗
c Δl

2
c = K∗

f Δl
2
f : ð16Þ

The relation between fine block parameters and coarse
block parameters can be obtained as follows:

τ∗f = nref τ∗c −
1
2

� �
+ 1
2 , ð17Þ

ν∗f = ν∗c nref , ð18Þ

K∗
f = n2refK

∗
c : ð19Þ

After adjusting the basic physical parameters, it can be
found that if the REV-LBM local refinement algorithm still
uses the macro velocity processing in the equilibrium
equation without external force in Guo’s model, then after
a single step duration in the coarse block, due to ueq,∗c =
ð1 + ð1/2Þðεν∗c /K∗

c ÞÞ−1u∗0 ≠ ð1 + ð1/2Þðεν∗f /K∗
f ÞÞ−nrefu∗0 = ueq,∗f ,

the equilibrium velocities of the same block node on coarse
and fine block systems are not matched, and the velocity on
the coarse block node is slightly higher than that on the fine
block node, making the simulation result of local refinement
algorithm to produce unreasonable convex phenomenon in
coarse block velocity. The convex velocity marked by blue
can be observed in the simulation results in Figure 3. To fix
this problem, the second term on the right side of the
quadratic equation in the original Equation (7) is converted
to the summation term, namely:

ρueq = ρu0 +
1
2 lim
n⟶∞

〠
n

F uð ÞΔt
n

" #
: ð20Þ

Similarly, considering that the flow in porous media is
Darcy flow without external force, the equilibrium macro-
scopic velocity can be expressed as follows:

ueq = lim
n⟶∞

1 + 1
2
εν

K
Δt
n

� �−n

u0 = exp −
1
2
εν

K
Δt

� �
u0: ð21Þ
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Figure 3: Poiseuille flow solved by local grid refinement method with two different velocity models.
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After nondimensionalized, the macroscopic velocity model
in the equilibrium equation becomes ueq,∗ = exp ð−ð1/2Þðεν∗/
K∗ÞÞu∗0 . After a single step duration in the coarse block, ueq,∗c

= exp ð−ð1/2Þðεν∗c /K∗
c ÞÞu∗0 = exp ð−nref ð1/2Þðεν∗f /K∗

f ÞÞu∗0 =
ueq,∗f would satisfy the velocity matching of nodes on coarse
and fine block systems. Based on the macroscopic equilib-
rium velocity expression, the coarse block velocity convex
problem caused by the local refinement algorithm simulation
due to the original velocity processing equation can be
improved to a certain degree. Figure 3 illustrates that the
macroscopic equilibrium velocity expression is more scien-

tific. Though certain velocity convex in coarse block zone’s
nodes can still be observed, the convex is resulted from differ-
ent cumulative errors on the fine and coarse blocks with differ-
ent accuracy, and compared with the original equilibrium state
velocity processing model, the modified equilibrium velocity
processing model in this paper reduces the original velocity
calculation error ðErr = ðumodel − uexactÞ/uexact × 100%Þ from
1.6% to about 0.8%.

2.2.2. Multigrid Algorithm. To ensure the regular collision,
migration, and evolution of the coarse and fine block sys-
tems, the nodes on the coarse and fine block need to

Spatial interpolation for 

Calculate the equilibrium variables
of 𝜌eq and ueq in the coarse block 

of 𝜌eq and ueq in the fine block 

Calculate the equilibrium variables

at nodes
the boundary offine block

Collision in the coarse block Collision in the fine block

Streamingin the coarse block t
c
⁎+1

Streaming in the fine block +1/2

Transfer at nodes
the boundary of fine block

Collision in the fine block

Loop ending condition

Output 𝜌,u,...to disk

N

Y

1/2 

0 1 
onthe boundary of fine block obtained with

the linear interpolation method based on and 

Calculate the equilibrium variables

Transfer at nodes on the boundary of coarse block
Transfer at nodes on the boundary of fine block 

on

of 𝜌eq and ueq in the fine block 

t
c
⁎

on

 on
the boundary of fine block

at nodes

t
c
⁎+1

Figure 4: Multigrid REV-LBM program flowchart.
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exchange data. Same as the conventional LBM local refine-
ment algorithm, take distribution functions into consider-
ation f i = f eqi + f neqi , where
f neqi ≈ τ∗ΔtðDf i/DtÞ ≈ τ∗ΔtðDf eqi /DtÞ. Since f eqi,c = f eqi,f , f neqi,f
= ðτ∗f Δt f /τ∗c ΔtcÞf neqi,c = ðτ∗f /τ∗c nref Þf neqi,c . The data exchange
method on common points of coarse and fine blocks can
thus be obtained.

Coarse to fine:

f i,f =
τ∗f

τ∗c nref
f i,c − f eqi

� �
+ f eqi : ð22Þ

Fine to coarse:

f i,c =
τ∗c nref
τ∗f

f i,f − f eqi
� 	

+ f eqi : ð23Þ

To avoid the singularity problem occurred in τ∗ = 1 of
FH algorithm, the idea of data exchange before the collision
is adopted, which based on the DC algorithm [24]. The spe-
cific algorithm flow is shown in Figure 4.

Among them, the nodes that need spatial interpolation
on the fine block boundary adopt the serendipity element
as shown in Figure 5 for interpolation calculation, that is f i
= ð1/2Þð f i,3 + f i,4 − f i,1 − f i,2Þ + f i,6. Since the interpolation
element only depends on known nodes, which means differ-
ent interpolation nodes are independent of each other.
Moreover, the interpolation requirements on the four
boundaries can be satisfied by rotation, and the calculation
formulas before and after rotation are similar, so the parallel
ability of the whole algorithm can be improved.

The original REV-LBM algorithm features high parallel
computing capability, which mainly focuses on collision
and migrations, whereas the local refinement algorithm has
multiple parallel parts besides collision and migration parts
on different block systems, which also includes the delivery
of node values on coarse and fine blocks as well as the calcu-
lation of interpolated nodes on fine blocks. Therefore, the
local refinement algorithm is capable of turning a single

major task assignment into multiple small parallel assign-
ments. Due to the peak performance of a single logical
CPU, the local refinement algorithm can take advantage of
computational capability for each line by disassembling
major assignments under certain computational capability
restrictions.

3. Numerical Case

3.1. Poiseuille Flow in Homogeneous Porous Media. The
accuracy and efficiency of the local encryption algorithm
were verified by simulating the Poiseuille flow in homoge-
neous porous media. The model size of the porous media
is 50μm× 16μm, the local permeability is 3:33 × 10−3 μm2,
the local porosity is 10%, the fluid viscosity is 1 × 10−6m2/
s, and the fluid density is 1 × 103 kg/m3. The fluid is driven
by fixed pressure difference at both ends, and the centerline
flow rate is always maintained at u∗ = 1 × 10−6. Nonequilib-
rium extrapolation scheme is adopted for the inlet and outlet
boundary, and the halfway bounce-back scheme is adopted
for the upper and lower walls.

The local refinement method of the model block is
shown in Figure 6, and the parameters of each simulation
method are shown in Table 2.

The simulation results are shown in Figure 7. It can be
found that when only coarse blocks are used for simulation,
the lack of calculation nodes on the solid wall boundary will
cause about 8% abrupt error, while the local refinement
algorithm can obviously eliminate the nonphysical oscilla-
tion on the boundary caused by the insufficient calculation
nodes in a single coarse block system. Besides, although
the number of nodes used in the local refinement method
of Refinement-1 and Refinement-2 is different, the calcu-
lated results of the two methods are similar. Also, either
Refinement-1 or Refinement-2 can get results close to fine
block accuracy, which shows that as long as the refinement
region covers large velocity gradient nodes, the error control
of such abrupt velocity nodes can be realized, and the appro-
priate reduction of the local refinement region will not cause
obvious changes in the overall results or cause nonphysical
oscillations again.

In order to fully illustrate the efficiency of the local
refinement algorithm, this paper doubled the simulation size
with the local refinement block model as shown in Figure 6.
At this point, the local refinement algorithm will further
highlight the advantages of saving nodes and will be more
prominent when under constraints of certain computational
capability limits; the local refinement algorithm spends a
shorter time to obtain a relatively good simulation result.
The simulation parameters of each method are as shown in
Table 3.

OpenMP was adopted for parallel acceleration in the
above three simulation methods, and the maximum number
of logical CPU cores for parallel programs was set as 8 cores.
After repeated running several times, the running time
results are shown in Figure 8. It can be found that when
the same number of time steps t∗ = 2000 is simulated, the
single duration of each local refinement method is smaller
than that of the fine block, and the average duration of the

34

61 2

5

𝜂

𝜉

Figure 5: Serendipity element used in spatial interpolation for
nodes on the boundary of the fine block.
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local refinement method is 431.101 s, less than that of the
fine block 473.182 s, which exemplifies the time advantage
of local refinement method. Moreover, the time required
by the local refinement method is about 4.5 times that of a
single coarse block. This is because, under a single step dura-

tion of the coarse block, the local refinement algorithm
needs to carry out two node data exchanges between coarse
and fine boundary, two collision migrations in the refine-
ment region, and one collision migration in the coarse block
region. Combined with the simulation parameters, the com-
putational task load is found out to be about 4 to 5 times that
of the coarse block, meaning that the local refinement algo-
rithm has made full use of the computational capacity of a
single logical processor. However, the computational task
load of the overall refined block is 4 times that of the coarse
block, but the time required is about 5.0 times that of the
coarse block only, which shows that the overall refined block
approach has exceeded the optimal peak of a single logical
processor under the computational force constraints. The
local refinement algorithm’s ability to make full use of each
line’s computational capability by dissembling a major task
under certain computational constraints is illustrated. In
addition, the local refinement method has a similar relaxa-
tion time with coarse block, thus enabling the local refine-
ment method to reach equilibrium faster and obtain about
2 times the calculation efficiency. At the same time shows
the local encryption algorithm compared with the overall
elaboration grid in the same stability condition by the simu-
lation speed of at least one times, which also shows that the
local refinement algorithm improves the simulation speed at
least twice as fast as the overall refined block method under
the same stability condition.

3.2. Flow in Fractured Porous Media. This method can also
eliminate the nonphysical oscillation located at fracture
boundary (REV-scale LBM is only used for the matrix, but
the fracture flow is calculated by pore-scale LBM. The junc-
tion of the matrix-fracture system has a large velocity gradi-
ent which will lead to the nonphysical oscillation.). The size
of porous media model with real fractures, shown as
Figure 9, is 320 μm× 160 μm. In addition, this model is only
contained 28800 nodes which will be cost about twice by
means of FEM (finite element method) under the same

Fine block

Coarse block

Fine block

Figure 6: Physical model.

Table 2: Parameter sets.

Simulation method Block size Refined region size Total nodes count Relaxation time (∗coarse block/fine block)

Coarse 100 × 32 — 3200 0.52

Refinement-1 100 × 32 199 × 13 × 2 8347 0.52/0.54∗

Refinement-2 100 × 32 199 × 23 × 2 12354 0.52/0.54∗

Fine 200 × 64 — 12800 0.54

0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08
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0.06

0.08

0.10

0.12

y
/H

u/U

Exact
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0.0 0.2 0.4 0.6 0.8 1.0
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0.8
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Figure 7: Poiseuille flow solution with different grid settings.

Table 3: Parameter sets.

Simulation
method

Block
size

Refined
region size

Total
nodes
count

Relaxation time
(∗coarse block/
fine block)

Coarse 200 × 64 — 12800 0.52

Refinement 200 × 64 399 × 13 × 2 23174 0.52/0.54∗

Fine 400 × 128 — 51200 0.54
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Figure 8: (a) Running time when t∗ = 2000. (b) The central velocity change with dimensionless time step in different grid settings.
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structure accuracy. And the local permeability of matrix is
3:33 × 10−3 μm2; the local porosity of matrix is 10%. With
the same simulation parameters and settings as the previous
case, the simulation result is as follow in Figure 10.

From the velocity distribution colormap of the simula-
tion results (Figure 10(a)), it can be clearly observed that
many discontinuous color speckles appear at the fracture
edge, and discontinuous color bands appear at the solid wall
boundary, which is due to the numerical oscillation at the
fracture edge and solid wall boundary caused by the original

single coarse grid algorithm. Compared with Figure 10(a), it
can be found that the discontinuous color speckles and color
strip disappear in Figure 10(b).

As the partial enlarged view of Figure 10(a) is shown in
Figure 11, it can be discovered that the bright speckles (green
circles) appear at a certain distance from the fracture edge,
while the dark speckles (red dash circles) are almost close to
the fractures edge. This phenomenon is consistent with the
previous case (Section 3.1), which shows that the single coarse
grid algorithm will cause extremely serious nonphysical

Figure 9: Imaginary homogenous porous media model with real microfracture: the black color is the homogenous porous media, while the
white color is the microfractures.
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Figure 10: Velocity distribution colormap: (a) original coarse algorithm result; (b) refinement algorithm result.
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oscillation when the velocity gradient is large and will cause
great interference to the simulation results of the porous
media model. The smooth transition of the velocity distribu-
tion near the fractures edge in Figure 10(b) also proves the
superiority of the numerical accuracy of the local refinement
algorithm. What is more, it could save more than 30% of
CPU time in this practical application, which is similar as
the previous conventional example mentioned in Section 3.1.

4. Conclusion

In this paper, the existing LBM local refinement algorithm is
extended to combine with the REV-scale LBM algorithm,
and because of that, REV-scale LBM is more applicable to
solve the complex porous media seepage problem indepen-
dently or with the cooperation of pore-scale LBM. By adjust-
ing the processing of macroscopic velocity in the equilibrium
state equation in Guo’s original model, the problem of veloc-
ity mismatch on coarse and fine block caused by the applica-
tion of the original model to the local refinement algorithm
is eliminated. The simulation results show that the local
refinement algorithm based on REV-scale LBM can achieve
high computational accuracy with limited computational
capability and less computational time (nearly 9 times error
reduction at the boundary layer with only 70% CPU time),
which can provide an idea for the flow simulation of trans-
scale porous media with matrix meeting the REV’s size
and complex microfractures or dissolution pore structures.

Symbols

ci: Discrete velocity set, m/s
cs: The lattice speed of sound, m/s
Cl: Conversion factor for length, m
Ct: Conversion factor for time, s
Cρ: Conversion factor for density, kg/m3

Df /Dt: Total derivative, kg/(s·m3)
f iðx, tÞ: Particle distribution function with velocity ci at

position x and time t, kg/m3

~f iðx, tÞ: f i after collision, kg/m
3

F: Body force, N/m3

G: External force, N/m3

H: Porous channel height, m
K : Local permeability, m2

nref : The ratio of lattice spacing between two blocks,
dimensionless

u: Velocity, m/s
u0: Initial velocity, m/s
U : Centerline velocity, m/s
Δl: Lattice spacing, m
Δt: Time step, s
ε: Local porosity, dimensionless
λ: Turbulence coefficient of high-speed non-Darcy

flow, m−1

μ: Dynamic viscosity, Pa·s
ν: Kinematic viscosity, m2/s
τ: Relaxation time, s
ρ: Density, kg/m3

ωi: Weight with velocity ci, dimensionless.

Superscripts

eq: Equilibrium state
neq: Nonequilibrium state
∗: Dimensionless parameter.

Subscripts

c: Coarse grid
f : Fine grid
i: Parameter with velocity ci
α, β: Tensor index.

Data Availability

The numerical data and algorithm, except the information
presented in the manuscript, used to support the funding
of this study is restricted by the safety law of Petrol China,
while the source code of the local refinement algorithm
written in the manuscript is not open source before
commercialization.
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