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Reservoir simulation is critical to the design of reservoir development plan and has been extensively used. However, it is
challengeable for to simulate the production process for fractured reservoirs, because of the fracture geometry and the fracture
deformation. Specifically, three problems need to be solved. First, there is a lack of mathematical models that can predict the
fracture deformation with acceptable precision. Second, the fracture deformation is stress-dependent; therefore, a geocoupled
equation should be used to quantify the stress change, but the solution is extremely expensive. Third, the fracture geometries
pose great challenges to traditional gridding techniques. This paper proposes a new geocoupling simulation method that is
capable of modeling the complex fracture geometry as well as the fracture mechanical behavior. The geomechanical effects and
the reservoir production performance are modeled through an implicit geocoupled model, which is developed based on the
poro-mechanics theory. The fixed stress strategy is used to solve the geocoupled equations. Moreover, a comprehensive
fracture modeling method is proposed, in terms of the fracture deformation model and the fracture gridding technique to
model the fracture effects. Ultimately, this method is used to analyze two field-scale cases. The results demonstrate that this
method exhibits good practicability and has practical significance for fractured reservoir development.

1. Introduction

In recent years, more and more attention has been attracted
to fractured reservoirs. Actually, most unconventional reser-
voirs can be classified as fractured reservoirs. In fractured
reservoir development, fracture is the major flow channel.
Understanding the fracture effects on production is impor-
tant, but is also extremely difficult. The reasons are:

1.1. Fracture Geometry. Fracture geometry is critical to reser-
voir simulation but is difficult to be integrated into the sim-
ulation algorithm [1]. On one hand, the geometry is
irregular; on the other hand, the combined form of fracture
networks is varied. As the properties of fractures are very
different from those of the matrix, fractured reservoirs
exhibit a high degree of heterogeneity. Describing the geo-
metric features of fractures is challenging because the frac-
tures exhibit various length scales and complex shapes. In

a simulation, as the evolution of mechanical unknowns are
not as dramatic as that of flow unknowns, the fracture geom-
etry could be simplified in geomechanics simulation, but in
flow simulation, the fracture geometry should be modeled
explicitly. Traditionally, reservoir simulations use the dual-
porosity dual permeability (DPDK) model [2] to model the
fracture effects. DPDK treats the fractures and the matrix
as two overlapped interacting continua. In a DPDK grid ele-
ment, fractures are distributed in a predetermined pattern,
and the transmissibility between fracture and matrix is
derived accordingly. As the fractures are idealized in DPDK,
the transmissibility is misrepresented in the case of large-
scale fractures, making the application of DPDK limited in
fractured reservoir simulation. Different from DPDK, both
the discrete fracture model [3] (DFM) and the embedded
discrete fracture model [4, 5] (EDFM) are capable of repre-
senting real fracture geometries. DFM is the most direct
method because the fractures are modeled using grid
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elements. Flow behaviors in fractures and between fractures
and matrix are calculated using the grid transmissibility. The
nature of DFM brings both advantages and disadvantages
for DFM. The advantages are as follows: (1) the flux calcula-
tion method is simple and (2) the accuracy is high. The dis-
advantage is that the fidelity of fracture representation
depends on the gridding technique; currently, the “X”
shaped fractures could not be modelled. The limitation of
DFM leads the development of the embedded discrete frac-
ture model (EDFM). EDFM models fractures with virtual
2D polygon plates, which are inserted into the background
grid. As the computational domains of the fractures and
the matrix are different, the complicated gridding is not nec-
essary in EDFM. The flow mass transfer between fractures
and matrix is calculated using the non-neighboring connec-
tions (NNC). Three types of NNC are required in EDFM;
they are as follows: (1) NNC between a fracture cell and its
neighboring matrix grid block; (2) NNC between two cells
of an individual fracture; and (3) NNC between two inter-
secting fractures. The detailed procedure using EDFM
modeling fracture flow could be found in the work of Li [6].

1.2. Fracture Mechanic Behavior. In reservoir geomechanics
simulation, the fracture mechanical deformation is modeled
with a tailored constitutive model which is a superposition
of fracture and matrix properties. The matrix can be treated
as an elastic-plastic block, and the deformation could be cal-
culated according to the elastic-plastic mechanics. However,
fracture deformation is a complicated question because of
the different stress-strain relationships between normal and
shearing deformations [7]. For normal deformation, the
constitutive relationship is monotonic and nonlinear.
Researchers have proposed different empirical constitutive
models [8–10] to describe the relationship. The most com-
monly used models are Shehata’s model [11] and Bandis’
model [12]. But for shear deformation, the constitutive rela-
tionships between shear stress and shear strain are not
monotonic due to peak-shear strength [13]. Specifically,
the fracture pre-peak deformation is usually assumed to be
elastic, whereas the post-peak deformation is plastic [14].
Among the extant models, Barton’s empirical model [15] is
the most frequently utilized due to its simplicity and capabil-
ity of predicting the shearing deformation of fractures with
acceptable precision. Moreover, some theoretical models
are based on the solid mechanics are proposed, and related
works can be seen in Desai [16] and Amadei [17]. The most
widely used theoretical model is Plesa’s model [18], which is
based on the theory of plasticity and contact mechanics.
Currently, existing fracture constitutive models are still
immature. Empirical models provide reasonable results in
a predetermined range of stresses, but since the principles
of energy conservation are not involved in such models,
some nonphysical results may be produced when complex
mechanical deformation processes are involved; moreover,
because the model establishment is not based on a strict
mathematical derivation, the robustness of empirical models
cannot be guaranteed. Even through the theoretical model is
more rigorous, the existing mechanics theory is not capable
of modeling fracture behaviors in all aspects.

1.3. Geomechanics Simulation. Because of the importance of
reservoir deformation, 3D mechanical calculation is necessary
for fractured reservoir simulation. Two types of simulation
methods, i.e., the continuum method and the discrete method,
can be used. The finite difference method (FDM) discretizes
the mechanical equations by replacing the partial derivatives
with the numerical differences defined on neighboring grid
points directly. Under preassigned initial/boundary conditions,
the mechanical deformation can be obtained by solving the dis-
crete equation. However, because of the complex geometry of
the reservoir numerical domain, FDM may not be a suitable
method. The finite element method (FEM) [19] which was first
proposed in the early 1960s offers another choice. The advan-
tages of FEM are its flexibility in modeling reservoir geometries
and the convenience of dealing with complicated boundary
conditions. To solve a problem, FEM also discretizes the target
reservoir into many regular-shaped elements. The difference is
that FEM does not discrete the equation directly, but set up
the formulation in a weak form, and replaces the initial function
with a set of trial functions for each subdomain. The discrete
process for a FEM equation follows the law of energy conserva-
tion, so its results are more physical. In recent years, to improve
the capacity of FEM in fractured reservoir applications, many
corresponding developments have been proposed, such as the
Generalized/eXtend Finite Element Method (GFEM), which is
developed based on the partition of unity principle [20], the
Virtual Element Method [21] (VEM), and the Boundary Ele-
mentMethod [22] (BEM). As reservoir simulation is for macro-
scale problems, the block-type discrete methods are also
suitable. The most well-known and representative discrete
method is the distinct element method (DEM) [23]. In the orig-
inal framework of DEM, the solution strategy is explicit. Shi and
Goodman further proposed an implicit solution strategy for
DEM, which is also named the [24] discontinuous deformation
analysis (DDA).

To integrate the geomechanical behaviors, the geomecha-
nics equation and the flow equation should be coupled, and
the coupling process would lead to a complex equation system.
Three candidate solution schemes exist [25]: the loosely
coupled scheme, the fully coupled scheme, and the sequen-
tially coupled scheme. In loosely coupled scheme, the coupling
is explicit. The geomechanical equation is solved every certain
time step. Although this method saves computational costs
compared to other coupling techniques, it is not rigorous
and fails to capture some physical phenomena. In contrast,
both fully coupled scheme and sequentially coupled scheme
are implicit. Fully coupled scheme solves the governing equa-
tions of fluid flow andmechanics simultaneously at every time
step. It is also unconditionally stable when the coupled prob-
lem is well-posed, but the computational cost can be prohibi-
tively expensive. Sequential implicit scheme partitions the
coupled problem into two subproblems, and the subproblems
could be solved by different methods. The solution is identical
to that calculated from the fully coupled scheme, but the com-
putational cost is much less. The fixed stress splitting strategy
[26] is an ideal sequential implicit scheme. It solves the flow
sub-problem first with fixed volumetric stress. Kim et al. have
shown that fixed-stress splitting exhibits excellent convergence
properties for both single-phase and multiphase flow
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problems [27]. From a pragmatic perspective view, fixed stress
splitting is preferred to other schemes in geocoupled reservoir
simulations.

This paper proposes a new geocoupled model for frac-
tured reservoir simulation. The core idea of this model is
that it emphasizes the effects of fractures and geomechanics
simultaneously. The remainder of this paper is organized as
follows: Section 2 presents the mathematical model for com-
positional flow and geomechanics. Section 3 describes the
fracture model, including the fracture constitutive model,
and the method to estimate fracture permeability. Section 4
proposes the fracture gridding technique, which includes
the grid system and fracture modeling method. Section 5
first validates the accuracy of this model with two bench-
mark cases and then presents two large-scale cases to illus-
trate the applicability of this model. This work is
concluded in Section 6 with a discussion of the advantages
of this model.

2. Governing Equations

We treat that the solid computational domain and the fluid
computational domain are overlapped. The governing equa-
tion of fluid flow is set up based on the theory of mass bal-
ance, and the governing equation of geomechanics is based
on the theory of momentum conservation. Under the
assumption of (1) quasi-static, (2) linear elastic, and (3)
infinitesimal transformation, the governing equation for
geomechanics can be written as

Div Cdr : ε − bpEδð Þ + φρf + 1 −φð Þρs
h i

g = 0,

ε = 1
2

u∇+∇uð Þ,
ð1Þ

where Divð·Þ is the divergence operator; Cdr is the rank-4
elastic drained bulk modulus; ε is the strain tensor; b is the
Biot coefficient; pE = Swpw + Sopo + Sgpg is the equivalent
pore pressure; Sw, Sg, and So denote the saturation of water,
gas, and oil, respectively; pw, pg, and po denote the pressure
of water, gas, and oil phase, respectively; δ is the rank-2
identity tensor; ϕ is the true porosity; ρf = Swρw + Soρo +
Sgρg is the fluid density; ρs is the rock density; g denotes
gravity; and u is the displacement.

Related studies show that the phase transition behavior
of underground fluid [28, 29] is very complex; therefore,
we use the fully compositional flow model as the flow gov-
erning equations. The mass-balance equation for hydrocar-
bon component i is expressed in terms of the Eulerian
derivative as

∂ xiSoρo + yiSgρg
� �

ϕ
h i

+ xiSoρo + yiSgρg
� �

ϕ
h i

∂εv
∂t

= ∇ ⋅ xi
ρokro
μo

k ∇po − ρog
!� �

+ yi
ρgkrg
μg

k ∇pg − ρgg
!� �" #

− qi,

ð2Þ

where xi and yi are the mole fractions of component i in the
oil and the gas phase, respectively; εv is the volumetric strain,
which is the trace of the strain tensor ε; μo and μg are the
viscosity of oil and gas, respectively; kro and krg are the rela-
tive permeability of oil and gas, respectively; k is the absolute
permeability; and qi is the mole flow rate of component i
from the grid to wells and/or boundaries. Owning to the
Euler’s form and the infinitesimal transformation, both the
flow equation and the geomechanics equation can be discre-
tized on static grids. From the consideration of efficiency
and stability, fixed stress splitting and iteration is an ideal
solution method for our model. This is also proven in the
benchmark tests hereinafter. Li et, al. [3] proposed flow
equation in terms of coupling terms for the fixed-stress split-
ting, which can be expressed as

dmi

dt
=Ni,p

∂p
∂t

+Ni,Sw
∂Sw
∂t

+Ni,Sg

∂Sg
∂t

+Ni,x1
∂x1
∂t

+Ni,y1
∂y1
∂t

⋯+Ni,xnc
∂xnc
∂t

+Ni,ync
∂ync
∂t

+Ni,σ
∂σv
∂t

,

ð3Þ

where Nα,β is the coupling coefficient and subscripts α and β

denote a component and a variable, respectively. For com-
ponent i, they are

Ni,p =Dc Sw
∂pw
∂pg

+ So
∂po
∂pg

+ Sg

 !
+ xiSgϕ

∂ρg
∂pg

+ yiSoϕ
∂ρo
∂pg

,

ð4Þ

Ni,Sw =Dc Sw
∂pw
∂Sw

+ So
∂po
∂Sw

� �
+ yiρoϕ

∂So
∂Sw

, ð5Þ

Ni,Sg =Dc Sw
∂pw
∂Sg

+ So
∂po
∂Sg

 !
+ xiρgϕ + yiρoϕ

∂So
∂Sg

, ð6Þ

Ni,xi =Dc Sw
∂pw
∂xi

+ So
∂po
∂xi

� �
+ Sgρgϕ + xiSgϕ

∂ρg
∂xi

, ð7Þ

Ni,yi =Dc Sw
∂pw
∂yi

+ So
∂po
∂yi

� �
+ Soρoϕ + yiSoϕ

∂ρo
∂yi

, ð8Þ

Ni,σ =
xiSgρg + yiSoρo
� �

b

Kdr
, ð9Þ

where Dc = ðxiSgρg + yiSoρoÞðððb − ϕÞ/K sÞ + ðK s/KdrÞÞ.
For the water phase, the coupling coefficients are as fol-

lows:

Nw,p =Dw1
∂pw
∂pg

+Dw2
∂po
∂pg

+
b − ϕ

K s
Sg +

ρwSwSgb
2

Kdr
, ð10Þ

Nw,Sw =Dw1
∂pw
∂Sw

+Dw2
∂po
∂Sw

+ ρwϕ, ð11Þ
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Nw,Sg =Dw1
∂pw
∂Sg

+Dw2
∂po
∂Sg

, ð12Þ

Nw,xi =Dw1
∂pw
∂xi

+Dw2
∂po
∂xi

, ð13Þ

Nw,yi =Dw1
∂pw
∂yi

+Dw2
∂po
∂yi

, ð14Þ

Nw,σ =
ρwSwb
Kdr

, ð15Þ

where Dw1 = ððb − ϕÞ/K sÞSw + ðρwS2wb2/KdrÞ + Swϕρwcw and
Dw2 = ððb − ϕÞ/K sÞSo + ðρwSwSob2/KdrÞ.

When two hydrocarbon phases coexist, the equation sys-
tem is not closed. Equal fugacity equations and linear con-
straints for compositions and saturations should be added
to the equation system to constrain the variable set:

f Li − f Vi = 0, i = 1,⋯, nc, ð16Þ

〠
nc

i=1
xi − 1 = 0, ð17Þ

〠
nc

i=1
yi − 1 = 0, ð18Þ

Sw + Sg + So = 1: ð19Þ
Equations (3) to (19) describe the geocoupled composi-

tional flow equation system, where the variable set is u, pg,
Sw, Sg, So, x1, ·⋯ , xnc, y1, ·⋯,ync. The Peng-Robinson (PR)
equation of state and the L.B.C. model are used to calculate
the fluid property.

3. Fracture Deformation Model

3.1. Fracture Constitutive Model. We choose the Barton-
Bandis model to estimate fracture’s deformation because

(1) Barton’s model can model the deformation on normal
and shear deformation simultaneously and (2) the experi-
mental stress range of the Barton-Bandis model could cover
that of our problem. The definition of a fracture’s compli-
ance follows the work of Bandis et al. [12] and is expressed
in matrix form as

Cj = diag K‐1n , K
‐1
s , K

‐1
s

� �
, ð20Þ

where the normal and shear stiffness are defined as follows:

Kn = Kni 1 −
σn

vmKni + σn

� 	−2
; Ks = Km

s 2 −
σn
UCS

� � σn
UCS

� �
,

ð21Þ

where Kn is the normal stiffness; Kni is the initial normal
stiffness; σn is the effective normal stress; vm is the maximum
closure; Ks is the shear stiffness; K

m
s is the maximum shear

stiffness; and USC is the dimensionless compressive strength
of rock. Kni and vm are related to the joint roughness coeffi-
cient (JRC), joint compressive strength (JCS), and unstressed
joint aperture a0:

Kni = −7:15 + 1:75JRC + 0:02
JCS

a0
, ð22Þ

vm = −0:1023 − 0:0074JRC + 1:135
JCS

a0

� �
− 0:251:

ð23Þ
The definition of fracture compliance matrix describes

the mechanical property of a fracture in its local coordinate
system ½x′, y′, z′�. To construct a pseudo-continuum, the
fracture compliance matrix should be transformed into the
global coordinate system [x, y, z], which accords with the
coordinates of the solid and fluid zone. Equation (24) consti-
tutes the final formulation of the transformation matrix T:

For a fractured rock mass, the compliance is

Ct = Ci + 〠
nf

j=1

1
sj
TT
j CjT j, ð25Þ

where Ct is the resulting compliance of the fractured rock
mass; Ci is the compliance of the intact rock matrix, which

is assumed to be linear-elastic and is the inverse of the ele-

ment stiffness matrix; nf is the number of fractures; and sj
is the fracture spacing.

3.2. Estimation of Fracture Permeability. In the ideal situa-
tion, in which a fracture only consists of two smooth and
parallel plates, the hydraulic aperture is equal to the
mechanical aperture, and thus the fracture permeability
could be evaluated through the cubic law with respect to

T =

cos x′x
� �2

cos x′x
� �

cos y′x
� �

cos x′x
� �

cos z′x
� �

cos x′y
� �2

cos x′y
� �

cos y′y
� �

cos x′y
� �

cos z′y
� �

cos x′z
� �2

cos x′z
� �

cos y′z
� �

cos x′z
� �

cos z′z
� �

2 cos x′x
� �

cos x′y
� �

cos x′y
� �

cos y′x
� �

+ cos x′x
� �

cos y′y
� �

cos z′x
� �

cos x′z
� �

+ cos z′z
� �

cos x′x
� �

2
666664

2 cos x′y
� �

cos x′z
� �

cos x′z
� �

cos y′y
� �

+ cos y′z
� �

cos x′y
� �

cos x′z
� �

cos z′y
� �

+ cos z′z
� �

cos x′y
� �

2 cos x′x
� �

cos x′z
� �

cos y′x
� �

cos x′z
� �

+ cos x′x
� �

cos y′z
� �

cos z′x
� �

cos x′z
� �

+ cos x′x
� �

cos z′z
� �

3
777775:

ð24Þ
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the hydraulic aperture as follows:

kf = kf ,0 ⋅
w3f
w3f ,0

, ð26Þ

where the subscript 0 denotes the reference state; kf is the
fracture permeability; and wf is the hydraulic aperture.
Due to the roughness of the two facing walls, the distribution
of local apertures in a fracture is not uniform. For validity of
the cubic law, this model employs Barton’s empirical equa-
tion (Equation (27)) [30] to convert the mechanical aperture
to the hydraulic aperture:

wf =
a2mJRC

‐2:5, τh/τp ≤ 0:75,ffiffiffiffiffiffi
am

p
JRCmob, τh/τp > 0:75:

(
ð27Þ

Consequently, the key to updating fracture permeability
is estimating the mechanical aperture am, which can be
expressed in terms of normal and shearing deformations:

am = a0 − Δan + τv, ð28Þ

where a0 is the initial mechanical fracture aperture under
zero effective stress; Δan is the change of fracture aperture
due to the perturbation of normal effective stress; and τv is
the shear induced dilation. Following Barton [31], Δan can
be calculated as follows:

Δan =

−
σn
Kni

, σn ≥ 0,

1
vm

−
Kni
σn

� �−1
, σn < 0:

8>>><
>>>: ð29Þ

The shear induced dilation τv is calculated using Asadol-
lahi’s model [32], in which the shear stress-dilation relation-
ship comprises four stages: (1) linear elastic stage; (2)
hardening stage; (3) softening stage; and (4) residual stage.
The shear induced dilation is formulated as

τv =

2τ2h
3τp

−
τh
3

� �
tan JRC ⋅ lg

JCS

σn

� �� �
, τh ≤ τp,ðτh

τp

tan JRC ⋅
JRC

σn

� �
τp
δ

� �
0:381

� �
dτ + τv,p, τh > τp:

8>>>><
>>>>:

ð30Þ

where τ is the shear displacement of fracture; τp is the peak
shear displacement; and τv,p is the dilation displacement. τp
and τv,p are both functions of joint roughness coefficient
(JRC) and joint compressive strength (JCS):

τp = 0:007L0:45
σn
JCS

� �0:34
cos JRC ⋅ lg

JCS

σn

� �� �
, ð31Þ

τv,p =
1
3
τp tan JRC ⋅ lg

JCS

σn

� �� �
: ð32Þ

It should be noted that the fracture permeability model is
not unique in the geocoupled simulator. Equations (26) to
(32) mostly follow the work of Barton [31], but other choices
could exist. One advantage of the pseudo-continuum
method is the flexibility in dealing with fracture geometries.
Indeed, it is possible to use any empirical or tabular consti-
tutive models for fractures.

4. Fracture Gridding Technique

For reservoirs with preexisting fractures, it is reasonable to
treat the fractured block as a continuum, because the
mechanical behavior of a fracture constitutes prior knowl-
edge. By keeping the strain energy conservative, a fractured
rock block can be represented as a pseudo-continuum [7],
which exhibits the same mechanical behavior as the discon-
tinuity. In particular, the mechanical property of the pseudo-
continuum (fractured block) is obtained by summing the
compliances of fractures and the intact rock.

In the flow problem, EDFM is used to model large-scale
fractures, and DPDK is used to model small-scale fractures.
The fracture deformation has two influences on the simula-
tion process: the cumulative term calculation and the perme-
ability updating. In the cumulative term calculation, the
fracture deformation affects the calculation of material
derivative and the volume strain distribution in DPDK
model. In the calculation of flow term, the fracture deforma-
tion changes the permeability of fractures and then affects
the calculation of fracture conductivity. In a geomechanical
simulation, the constitutive properties of fractures directly
affect the constitutive properties of fractured blocks. Based
on the principle of strain energy balance, this section pro-
poses the geomechanical discrete method of fractures,
including the construction of equivalent continuous ele-
ments and the distribution method of fracture element
deformation. The former is used to model the influence of
fracture constitutive properties on element properties. The
latter is used to distribute the volume strain and calculate
the fracture conductivity.

The construction of an equivalent element is based on
the conservation of strain energy. For an element, the energy
conservation equation is

Vf
Vt

εf +
Vm
Vt

εm
� �

=
Vf
Vt

Cf′ +
Vm
Vt

Cm

� �
: σB = Ct

: σB = εB, ð33Þ

where V is the volume and the footnotes f, m, and t denote
the fracture, matrix, and the equivalent element, respec-
tively. εB is the strain of the equivalent element; σB is the
stress tensor of the equivalent element; and Ct, Cf′ and Cm
are the compliance of equivalent element, fracture, matrix,
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respectively. Hence, the Ct can be calculated as

Ct =
VfL
Vt

CfL′ +
VfS
Vt

CfS′ +
Vm
Vt

Cm, ð34Þ

where L and S represent large scale and small scale, respec-
tively. It can be seen that the flexibility of the quasi-
continuous element is equal to the weighted sum of the vol-

ume of the crack and the matrix. This equation assumes that
the permeability of fracture and matrix are described in the
same coordinate system, but in reality, the mechanical prop-
erties of fracture and matrix are often established in different
coordinate systems, so it is necessary to combine the coordi-

nate systems of the two. According to the space conversion
principle of vector, the coordinate conversion matrix is

where ∠αβ is the angle between local axis α and global axis β
. Then, we can get the construction equation for the equiva-
lent element:

Ct = 〠
nfL

j=1

VfL,j

Vt
TT
j CfL,jT j + 〠

nfS

i=1

VfS,i
Vt

TT
i CfS,iT i +

Vm
Vt

Cm, ð36Þ

where nfL is the number of large fractures in the element and
nfS is the number of small fractures. In DPDK, small frac-
tures are assumed to be uniformly distributed in the element
at the same angle; they are equivalently treated as a change
in porosity. In this case, the second item at the right end of
the equation can be replaced by the following formula:

〠
nfS

i=1

VfS,i
Vt

TT
j CfS,iT j =

ϕfS
ϕt

TTCfST: ð37Þ

In flow simulation, fracture and matrix are calculated
separately. Therefore, it is necessary to decompose the defor-
mation for fracture and matrix according to the deformation
of the equivalent element, respectively. The deformation
decomposition has two functions in the simulation. The first
is to provide volume strain for the generation of the cumu-
lative term in DPDK model. The second is to provide the
stress state of fractures for the calculation of fracture perme-
ability, so as to calculate the opening of fractures. The defor-
mation distribution of equivalent elements is also based on
the strain energy balance theory. The total deformation of
the equivalent continuous element is the sum of the defor-
mation of fracture and matrix:

εtVt = εfVf + εmVm: ð38Þ

According to the energy conservation theory, the strain
energy of an equivalent element meets the following condi-
tion in 1D situation:

Kdr,t εv,tð Þ2Vt = Kdr,f εf ,tð Þ2Vf + Kdr,m εv,tð Þ2Vm: ð39Þ

Then, the strain energy balance equation can be
extended to

Kdr,fVf + Kdr,m
Vf

2

Vm

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

εf
2 +

−2VtVf
Vm

Kdr,m|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
c

εtεf + Kdr,m
Vt

2

Vm
− Kdr,tVt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

εt
2 = 0:

ð40Þ

It can be concluded that when the quasi-continuous vol-
ume strain is known, the volume strain of crack and matrix
are calculated as follows:

εf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2/4að Þ c2/4að Þ − bð Þεt2

p
− c/2

ffiffiffi
a

p� �
εtffiffiffi

a
p : ð41Þ

It is obvious that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4a
− b

� �
εt2

s
= 0: ð42Þ

Therefore, the strain of crack and matrix can be calcu-
lated as follows:

εf = −
c
2a

εt,

εm =
εtVt‐εfVf

Vm
:

ð43Þ

The stress calculation method under three-dimensional
state of a fracture is

σf = −
c
2a

Df εt, ð44Þ

where Df is the stiffness matrix of a fractured element in cur-
rent state.

The governing equation system is linearized through the
Newton-Raphson method. The coupling problem is solved
through the fixed-stress splitting strategy, which solve the
flow problem first with a fixed volumetric stress in one

T =

cos ∠x′x
� �2

cos ∠x′x
� �

cos ∠y′x
� �

cos ∠x′x
� �

cos ∠z′x
� �

cos ∠x′y
� �2

cos ∠x′y
� �

cos ∠y′y
� �

cos ∠x′y
� �

cos ∠z′y
� �

cos ∠x′z
� �2

cos ∠x′z
� �

cos ∠y′z
� �

cos ∠x′z
� �

cos ∠z′z
� �

2 cos ∠x′x
� �

cos ∠x′y
� �

cos ∠x′y
� �

cos ∠y′x
� �

+ cos ∠x′x
� �

cos ∠y′y
� �

cos ∠z′x
� �

cos ∠x′z
� �

+ cos ∠z′z
� �

cos ∠x′x
� �

2
666664

2 cos ∠x′y
� �

cos ∠x′z
� �

cos ∠x′z
� �

cos ∠y′y
� �

+ cos ∠y′z
� �

cos ∠x′y
� �

cos ∠x′z
� �

cos ∠z′y
� �

+ cos ∠z′z
� �

cos ∠x′y
� �

2 cos ∠x′x
� �

cos ∠x′z
� �

cos ∠y′x
� �

cos ∠x′z
� �

+ cos ∠x′x
� �

cos ∠y′z
� �

cos ∠z′x
� �

cos ∠x′z
� �

+ cos ∠x′x
� �

cos ∠z′z
� �

3
777775,

ð35Þ
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iteration step. The fracture information is coupled with the
governing equation system explicitly and is updated at the
beginning of each time step. In each coupling step, the flow
problem is solved first with the volumetric stress fixed; then,
the geomechanical problem is solved with a frozen pressure.
In the intermediate step, the displacement does not need to
be calculated, because the mechanics problem is quasi-static.

5. Numerical Results

We show the validity and applicability of this model through
some cases in this section. Case 1 is the Mandel’s problem,
which is widely used to validate the accuracy of geocoupled
simulators. Case 2 is a reservoir with two fractures, which
is set up to validate the accuracy of this method in dealing
with fracture problems. Case 3 and Case 4 are two field-
scale cases; they are set up to demonstrate the applicability
of this method.
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Figure 2: Pressure profile along the x-axis at 0.05 s, 0.5 s, and 3 s.

F = 10000 Pa

Figure 1: Illustration of Mandel’s problem.

Table 1: Parameters for Case 2.

Variable Value Unit

Porosity 0.33 /

Permeability 15 mD

Rock density 2050.36 kg/m3

Water density 1000 kg/m3

Water viscosity 0.96 mPa·s
Poisson’s ratio 0.4 /

Biot’s coefficient 0.95 /

Young’s modulus 1.0 GPa

Production well

Injection well

X Y

Z

Figure 3: The geological model for Case 2.
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Figure 4: Comparison of oil production rate for Case 2.
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Case 1.Mandel’s problem. The physical model of this case is
an infinitely long rectangular specimen sandwiched between
two frictionless, rigid plates. Two lateral sides of the speci-
men are drained and traction-free. Initially, a force acts on
the top surface, causing the Mandel-Cryer effect. The geom-
etry set for Mandel’s problem refers to Figure 1. The bench-
mark solution can be found in Goulet’ work [33], and the
numerical model is built using the parameters listed in
Table 1. Because of the symmetry of the specimen, we only
generate the numerical domain for a quarter of the speci-
men. The numerical solutions for pore pressure along the
x-direction at various times are shown in Figure 2. It can
be seen that the Mandel-Cryer effect is captured by this
model. The solution from this model and the analytical solu-
tion are in good agreement.

Case 2. Comparison with CMG. Case 2 is a water-flooding
problem in a rectangular reservoir. The reservoir size is
3000m × 3000m × 244m. The traction is set to 32.9MPa

to face I+, J+, and K+, and the fixed displacement boundary
condition is acted to face I-, J-, and K-. All sides are no-flow
boundaries. The physical properties are listed in Table 1. Ini-
tially, the fluid pressure is 300 Bar, and the reservoir is oil-
saturated. The grids are generated as shown in Figure 3.
We set the initial oil production rate to 1589 m3/d and the
water injection rate to 476.96m3/d. We choose the CMG
[34] as the benchmark simulator, which employs the explic-
itly coupled method to model the geocoupled problems.
Figure 4 shows the comparison of the oil production rate
and the water production rate. The result is outputted once
when the solution reaches convergence. When the solution
is not converged, the time step would be reduced, and the
simulation would be rolled back. It can be seen that the
results calculated by this model are very close to those of
CMG, but because of the implicitly coupled strategy, the
convergence of this method is better.

Case 3. Tight oil production.
Case 3 is a tight oil production problem, which contains

a horizontal well that is 15m long, with eight hydraulic frac-
tures striking at different orientations. The stages 2, 4, and 6
are closed. The fractures are modeled using the EDFM
method. The reservoir is discretized into 15084 grid cells,
as shown in Figure 5. The geomechanical domain and the
reservoir domain are identical. The top surface of the over-
burden is traction-free, and the bottom of the under-
burden is fixed. The vertical stress gradient is 20.5 kPa/m.
The ratio between the maximum horizontal stress to the ver-
tical stress is 0.9, and the ratio between the minimum hori-
zontal stress to the vertical stress is 0.8. Initially, the fluid
pressure is 155 Bar. Other physical properties of the case
are listed in Table 2. The well is working under a constant
bottom hole pressure (BHP) of 50 Bar.

0.072 0.09 0.108 0.126 0.144 0.162
PORO

Figure 5: The geological model for Case 3.

Table 2: Parameters for Case 2.

Variable Value Unit

Fracture porosity 0.01 /

Matrix porosity 0.3 /

Fracture initial permeability 200 mD

Matrix initial permeability 0.12 mD

Young’s modulus 30 GPa

Poisson’s ratio 0.4 /

Biot’s coefficient 0.95 /

Rock density 2050 Kg/m3

Joint roughness coefficient (JRC) 10 /

Joint compressive strength (JCS) 250 Bar
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Figure 6: The simulation results of Case 3.
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Figure 6 shows the simulation results; the simulation
results of the initial state, the 1440th day, and the 2550th
day are shown from left to right, from which we can see that
the geomechanics affects the reservoir to a considerable
degree. As the major flow channel, the fractures are critical
to production. The volumetric strain and fluid pressure
evolve mostly around the stimulated reservoir volume.
Because of the press evolve, the difference between the max-
imum and minimum principal stress changes may affect the
subsequent re-fracturing effect.

Case 4. Tight oil production: CO2 Huff-N-Puff.
Case 4 is designed to show the capability of this method in

simulating the coupled geomechanics and compositional flow
process in the presence of phase transition. As shown in
Figure 7, the flow domain is a fractured reservoir with one
horizontal well and two hydraulic fractures. Initially, the reser-
voir is oil-saturated, and the fluid composition is shown in
Table 3. The reservoir fluid consists of fourteen pseudo hydro-
carbon components, as shown in Table 2. The initial reservoir
pressure is 250 Bar. The boundary conditions and physical

properties used in this example are the same as those in Case
3. The schedule is from 0 to 1000 days, and the well is set to
production with the bore pressure of 200 Bar; then, we start
the Huff-N-Puff operation. The operation is implemented
for 5 cycles; each cycle is 90 days, of which the first 30 days
are the gas injection stage; and the daily gas injection is 800
m3. After that, soak the well for 20 days and open for 40 days.
Figure 8 compares the cumulative oil production under differ-
ent conditions. It can be seen from the figure that the effect of
geomechanics predicted from the geocoupled model is lower
than that of the component model. After 1000 days of produc-
tion, the production capacity of production wells was seriously
insufficient. After the implementation of the Huff-N-Puff
operation, the production capacity was effectively improved
and the final cumulative production was increased by about
7.7%.

The main mechanism of the Huff-N-Puff operation is
that it improves the fluidity of fluid by injecting light compo-
nents while increasing the reservoir pressure. In the first
1000 days, the composition of the fluid is evenly distributed.
The heterogeneous distribution is caused by the injection of

X

Z

Y

Figure 7: The geological model for Case 4.

Table 3: The fluid composition of Case 4.

Component name Mole fraction Critical pressure (Bar) Critical temperature (K) Mole weight Critical volume m3/kgmol

C1 78.17 46.4 190.7 16 0.0977

N2 0.55 33.9 126.2 28 0.089

C2 11.99 48.8 305.4 30 0. 147

C3 5.07 42.6 369.9 44 0. 202

CO2 0.55 73.9 304.2 44 0.0944

IC4 0.66 36.5 408.2 58 0.263

NC4 1.62 38 425.2 58 0.256

IC5 0.37 33.3 460.4 72 0.306

NC5 0.47 33.7 469.8 72 0.314

NC6 0.528 30.3 507.9 86 0.373

C7+ 0.0055 27.8 589.2 114 0.463

C11+ 0.0055 21.2 679.8 166 0.667

C15+ 0.0055 16.6 760.2 230 0.92

C20+ 0.0055 10.4 896.8 409 1.67
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CO2. Therefore, the reconstruction degree of reservoir fluid
can be tracked according to the molar concentration of CO2.
Figure 9 shows the carbon dioxide distribution simulated
from the component model and the geocoupled model,
respectively. From the fluid geocoupled model, it can be
seen that after the CO2 injection, because the transverse
permeability is much larger than the longitudinal perme-
ability, it first improves the fluid of the perforated layer.
After well soaking, due to its low molar mass, the compo-
nent distribution is affected by buoyancy, resulting in its
funnel-shaped distribution in the latter situation. In the
geomechanical model, due to fracture closure behavior,
the permeability of the fractured reservoir is low, and the
fluid pressure is high. Therefore, the CO2 distribution pre-
dicted in the geocoupled model is smaller than that in the
component model, and the concentration of CO2 in the

distribution area is higher than that simulated in the com-
ponent model.

6. Conclusion

In this work, a new geocoupled fractured reservoir model is
proposed, which has the following advantages:

(1) Modeling the dynamic geomechanics field. Because
of the implicit fully coupled model, the geomecha-
nics field can be calculated and outputted in every
time step. The geomechanics numerical field and
the reservoir numerical field are identical

(2) Modeling the fracture deformation behaviors. The
fracture treatment is a systematic work. In this work,
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Figure 9: The concentration distribution for CO2.
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the fracture mechanical behaviors are modeled
through Barton’s model, and a novel fracture gridd-
ing technique, which is based on strain energy con-
servation, is proposed to integrate the fracture
model into the simulation

We presented some numerical cases to demonstrate the
accuracy and applicability of this model. Moreover, numer-
ical cases show that this method is capable of dealing with
some complicated problems, such as simulating the geocou-
pling process in the case of EDFM and DFM and coupling
compositional flow and geomechanics. The practicality of
this method makes it applicable for more complicated field
problems.
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