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Discontinuity investigation and characterization onsite is a labor-dependent work because current techniques cannot precisely
handle multiple discontinuity identifications automatically under different work conditions. This paper proposes the multi-
CrackNet which enables us to identify and segment linear discontinuities (joints and cracks) for random types of rock surface.
A modified feature extraction network called the multiscale feature fusion pyramid network (MFFPN) has been developed based
on FPN to capture and fuse more sensitive texture features of cracks across different types of background. With the help of a new
training scheme by setting up 3 stages of training to simulate the human-based learning process, the established model can learn
more features steadily and robustly from well-labelled databases. Additionally, a hybrid pixel-level quantification method is
proposed to automatically compute the length, width, and inclination of cracks. Results show that the proposed method can
achieve a detection accuracy of 87.1% for 1 to 9 sets of cracks on the rock surface across different types of rock. Case studies in
Anshan West are provided to verify the reliability and accuracy of our method in macrolinear discontinuity identification and
quantification, which sees great potentials in site investigation by saving a large amount of labor force.

1. Introduction

According to the “Suggested Methods for the Quantitative
Description of Discontinuities in Rock Masses” proposed by
the Standardization Committee for Laboratory and Field Tests
of International Society for Rock Mechanics (ISRM) in 1978,
the discontinuity of rock mass is mainly composed of joints
and faults. Discontinuities indicate the boundary between
interlayers in the rock mass and reveal the weak zones and
the directions of fracturing of the rock mass under loading.
The strength of rock mass in macroscopic scale is mainly
determined by the strength of discontinuities and their combi-
nation forms. Therefore, in actual rock engineering, the pri-
mary task is to carry out sophisticated site investigation and
research on the characteristics of rock discontinuous and to

clarify the engineering geological characteristics and spatial
distribution law of rock discontinuous. Specifically, the fine-
grained characterization of geometric parameters of complex
rock discontinuities is vital to the geological investigation of
engineering rock masses. Traditional visual inspection of rock
discontinuities is generally operated by observing and manual
recording with geological compasses and measuring tapes,
which is time-consuming and labor-intensive [1–3]. Addition-
ally, restricted by terrain, traditional survey methods with
compasses or tapes are only applicable to accessible places.
Meanwhile, traditional geological statistics is inevitably
accompanied by margin of errors due to environmental or
human bias.

Therefore, it is vital to bring down manual demands and
seek better ways on discontinuity survey to improve the
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investigation level by developing noncontact inspection
methods. Over the past decades, vision-based methods with
the development of photogrammetry and digital image tech-
nology for the discontinuity inspection of fractured rocks
have been greatly developed and utilized [4–7]. Many
remote sensing techniques such as digital photogrammetry,
terrestrial lasering scanning system, and unmanned aerial
vehicles with high-resolution cameras can acquire 3D point
clouds information so as to interpret the discontinuity
planes or linear discontinuities [8–11]. With the help of
accurate 3D point cloud information, it is indeed feasible
to acquire geometrical features of discontinuities such as ori-
entation, spacing, persistence, number of sets, and block size
mentioned in ISRM in 1978 [12, 13]. To reduce manual
workload in site investigation, semiautomatic or automatic
program based on 3D point cloud techniques is developed
to conduct reginal discontinuity analysis. For instance, Li
et al. [14] proposed an automatic method for trace map-
ping based on normal tensor voting theory. Guo et al.
[15] also developed a new approach based on 3D point
cloud to extract trace information from outcrops. Kong
et al. [16] provided a hybrid method to identify and
extract four discontinuity parameters from 3D point cloud,
namely, number of sets, orientation, spacing, and trace
length. However, these techniques heavily rely on the
sophisticated equipment to capture precise spatial infor-
mation of the outcrop terrain, allowing comprehensive
interpretation from different aspects.

The detection of discontinuities on the rock surface is
extremely challenging via simple photography-based tech-
nology, especially at the pixel-wise level, because the com-
plex geometric shapes and morphologies hinder the
performance of typical object detection methods. Current
research mostly considers all linear discontinuities as proper
joints without any displacement between interlayers, which
ignores the width of linear discontinuities. This paper aims
at identifying linear discontinuities (joints or cracks) by con-
sidering their real size and real shape; this means our detec-
tion task requires pixel-level performance to achieve in situ
picking-up of discontinuity features. To this point, deep
convolutional neural networks (DCNNs) have been adopted
to deal with such detection task on rock surfaces. Current
research adopting DCNNs in civil engineering mostly
emphasizes the detection and maintenance of civil infra-
structure, including concrete crack detection [17–20], rust
inspection of iron structure [21], loosen state of bolts [22],
sewerage leakage determination [23, 24], and pavement
health detection [25, 26]. These applications have greatly
improved the working efficiency of defect detection and
made significant contributions to engineering informatiza-
tion. However, these studies rarely aim at the image acquisi-
tion scenarios of rock discontinuities.

In this paper, we aim to carry out fine-grained identifica-
tion and quantification of rock linear discontinuities (cracks)
on various types of rock surfaces and segment each crack
from the background at pixel level. Current batch-based seg-
mentation methods have provided excellent pixel-wise seg-
mentation methods for rock defect detection using deep
learning, but they mostly consider simple weak interlayer

segmentation or tunnel face defect identification [27–29].
These methods can barely handle the fine-grained segmenta-
tion problem of multiple linear discontinuities at the pixel
level. Therefore, this paper provides an approach to process
rock images captured by normal cameras or cell phones and
provides the multi-CrackNet framework based on mask R-
CNN to identify each crack from multiple intersecting inter-
layers. The method mainly contributes to the following three
points:

(1) Deep learning-based method requires larger training
dataset; thus, this paper proposes an image augmen-
tation method to enlarge the dataset from 257
images to 4369 images, and these images are then
labelled manually at pixel-level granularity to feed
to the multi-CrackNet. Furthermore, a sequential
training method is proposed based on human-
based learning process to increase the accuracy of
segmenting each staggered discontinuity from each
other

(2) Multi-CrackNet, developed based on mask R-CNN
[30], proposed a special feature pyramid network
denoted as multiscale feature fusion pyramid net-
work (MFFPN) which merges a hierarchy of differ-
ent features obtained by different convolutional
cores and provides better combination feature maps
to the next stage

(3) An intelligent quantification method is proposed
based on the distance transfer method (DTM) to
efficiently compute the length and maximum width
of each segmented linear discontinuity. Our method
combines a variety of image process techniques
such as binarization, skeletonization, corrosion,
expansion, and DTM. This fused quantification
method can accurately characterize basic geometric
information of the segmented cracks with robust
performance

(4) Case studies in Anshan West elucidate that the pro-
posed method succeeds in denoting the number of
cracks in seconds and segmenting 1 to 9 sets of stag-
gered cracks with 87.1% accuracy on random types
of rock surface across different environments. Addi-
tionally, this hybrid method shows great perfor-
mance of quantification of linear discontinuities on
a selected outcrop, which sees potential onsite inves-
tigation with handy portable equipment such as
smartphones

2. Related Work

The past few years have seen great progress in research of
vision-based crack detection. Typically, existing methods
for rock crack identification can be classified into the follow-
ing categories: (1) the first category is based on grayscale
intensity threshold, which assumes that the crack and the
noncrack background have obvious grayscale differences.
Many reported methods for threshold optimization involve
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global thresholds [31], local thresholds [32], and the self-
adaptive threshold method using the Otsu algorithm [33].
These methods are relatively fast in processing simple
images with less noise but yield poor performance for com-
plicated scenarios and even fail in crack segmentation. (2)
The second category is based on edge detection methods
such as Gabor filters [34], Laplace filters [35], and Gaussian
filters [36], which pay attention to the boundary between the
background and the cracks. These methods perform better
than grayscale-based methods but can barely handle a single
crack segmentation. (3) The third category relies on machine
learning and deep learning techniques. The convolutional
neural network (CNN) is well known for feature extraction
and producing promising results in crack detection [37].
CNN-based methods normally detect the objects from
patches of pixels obtained from the feature map. These
methods can only determine whether or not the patch con-
tains the object (crack) or the presence of the object in the
image. However, a comprehensive analysis shows that many
engineering works require not only the object detection but
also accurate semantic segmentation of the objects; for
example, the detection problem requires pixel-level segmen-
tation of each crack from the background, which can further
provide robust data support for in-depth geological analysis.

Pixel-level crack segmentation is substantially affected by
the number of cracks and the layout of cracks. Many efforts
have been made over the past few years to deal with single
crack segmentation or interlayer segmentation, but very lim-
ited research has focused on multicrack segmentation,
namely, identifying and segmenting each crack among vari-
ous sets of discontinuities from the background. It is very
challenging for AI training because most AI models such
as fully connected network (FCN) [38], faster R-CNN [39],
and mask R-CNN [40] are good at extracting features from
a particular shape of a type of object. However, the shape
of cracks is arbitrary and hard to describe by a set of partic-
ular features, which yields poor performances of crack seg-
mentation because of the complicated geoenvironment and
working conditions. Furthermore, crack detection is heavily
affected by noise and lights; existing methods rely on prepro-
cessed approaches to distinguish known features between
cracks and background noises, such as numerical features
in segmented patches [29] and multiple greyscale filters
[41]. However, the above methods require prior knowledge
of different types of cracks, which means that the obtained
features can be barely generalized to various types of cracks.
Some postprocessed techniques such as Bayesian decision
theory are utilized to filter out falsely detected cracks by
eliminating the impact of noises from similar types of back-
grounds, environments, or working conditions [34]. These
methods use very limited pixel-level information obtained
from the images to identify noise or noncrack pixels, which
can hardly handle complex crack detection conditions across
different types of environments. In this paper, the proposed
multi-CrackNet with MFFPN structure to further refine the
segmentation results from different complex backgrounds by
aggregating different scales of pixel-level features accompa-
nied with a special training scheme, which enhances the
learning ability of the detection model.

3. Geological Background

Anshan West is located at southwest of Anshan city in Liao-
ning province of China. It is an abandoned open-pit region
with complex geological structure as indicated in Figure 1.
This site is selected as the region of interests due to the recov-
ery need for habitation. Because its distinctive geological con-
ditions and the columnar structures are prone to rockfall or
toppling, it is necessary to carry out detailed site investigation
before the launch of any engineering project. The joint is a
structural plane formed by rock mass under the action of
stress. It is a kind of tectonic fracture with no displacement
or very small displacement. Although the extension of joints
is not frequent and the depth development is not large, they
dominate the majority. Thus, the stability, failure mode, and
failure process of the ore body and its surrounding rock mass
are controlled by the orientation, quantity, size, and morphol-
ogy of the joints. At the same time, as a kind of tectonic move-
ment, joints can also reflect the tectonic outline of the region,
which provides basic data for the mechanical analysis of
regional tectonic stress field and tectonic system.

To master the quality and stability of rock mass in our
study area, we carried out a detailed investigation on surface
joints and collected the strike, the dip, the inclination, the
spacing, and filling conditions of joints. The general distribu-
tion information of joints is listed in Table 1. There were
1471 groups of joint statistical data with an average spacing
of 32.3 cm. According to the dip analysis, there were 4 groups
of dominant orientation, accounting for 70.17% of the total
number of joints. The first group had a dip of 10°~50°,
accounting for 14.67% of the total number of joints, with an
average dip of 29.57° and an average dip angle of 64.59.05°.
The second group had a dip of 90°~160°, accounting for
30.53% of the total number of joints, with an average dip of
124.00° and an average dip angle of 61.11°. The third group
had a dip of 190°~230°, accounting for 12.87% of the total
number of joints, with an average dip of 210.72° and an aver-
age dip angle of 65.96°. The fourth group had a dip of
290°~330°, accounting for 12.10% of the total number of
joints, with an average dip of 310.67° and an average dip angle
of 54.82°. According to the strike analysis, there are two groups
of dominant orientation which are 35° and 295°, and the incli-
nation is mainly distributed in 57°~66°. The distribution char-
acteristics of joints are shown in Figure 2.

During investigation, a fundamental issue for character-
istic analysis of rock mass is to efficiently acquire the trace
length and width of the joints. Manual acquisition of these
parameters relies on tedious and repetitive notation work
(see Figure 3). Although current cloud-point-based tech-
niques can perform well on characterizing joint features,
they mostly rely on high-end instruments or special onsite
setting to know the spatial information of the joints. In this
paper, we develop a hybrid method to accurately identify
and segment each joint out of complex fractured rock sur-
face from ordinary images taken by a smartphone or any
other handy equipment. Our method can automatically
compute the trace length and width in pixel level regardless
of scale or types of rock. Detailed methodology will be elab-
orated in the following chapters.
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4. Methodology

In this paper, we have divided our task into 4 parts,
namely, the image acquisition and annotation, crack iden-
tification and segmentation, crack classification, and onsite
validation. Initially, an image augmentation method is
introduced first to enlarge our initial database to meet
the requirements of deep-learning-based methods. Accom-
panied with a new proposed training scheme based on the
progressive learning process, the constructed deep learning
framework can produce desirable performance. The pro-
posed deep learning framework is called the multi-
CrackNet which is based on mask R-CNN with several
improvements, especially targeting at rock crack (joint)
detection under multiple working conditions, detailed
elaboration is explained in Section 4.2. To quantify and
characterize rock cracks after segmentation, a well-design
size measurement method is proposed based on the dis-
tance transfer method (DTM) to automatically calculate
the length, width, and inclination of each crack. Finally,
case studies from Anshan West are performed to prove

the validation of our method in site investigation. As
shown in Figure 4, multi-CrackNet is developed based
on mask R-CNN to localize and segment each crack from
the background at pixel level. The segmented cracks are
then fed into the quantification framework with hybrid
methods to derive the length and width of the crack into
pixels.

4.1. Data Collection and Annotation. Images of rocks with
fissures and joints vary greatly due to many factors such as
rock types, source regions, capture means, and sampling
window size; thus, crack recognition for random scenes is
barely possible. Furthermore, there exist multiple interlaced
cracks within a single sampling window. Normally, inter-
layered cracks create difficulties in segmenting each crack;
current research focuses on the segmentation of all cracks
within a single sampling window from the background,
which indicates that the fine-grained segmentation of a sin-
gle crack from a set of interlaced cracks is challenging. To
deal with the above problem, the goal of this paper is to train
the model with various types of rock on different scales and

Table 1: Distribution of joints in the study area.

Outcrop length (m) Number of joints Average spacing (cm)
Number of joints
containing filling

Rigid Soft

475.8 1471 32.3 120 60

(a) (b) (c)

Figure 1: Geographical location of the study area and site work. (a), (b), and (c) aremanual investigationwith geological compass and tapemeasure.
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achieve fine-grained crack segmentation for different types
of working conditions. Therefore, the database appears to
be particularly important.

Initially, 257 images with size 1024 × 1024 were captured
from different types of regions to build the primary training
database S0. These raw images are then cropped into 16 small
256-by-256 images which form the secondary database S1
with 257 × 16 = 4112 small images. According to the number
of cracks in each small image, the paper manually classified
the secondary database into three subdatabases, that is, S1-1,
S1-2, and S1-3. S1-1 contains images with only 1 set of cracks;

S1-2 possesses images with 2-3 sets of cracks; S1-3 covers
images with more than 3 sets of cracks. Then, this paper uses
LabelMe [42] to annotate each crack on each image to finalize
the formation of dataset S1-1, S1-2, and S1-3.

Figure 5 elucidates the transfer-learning process of train-
ing the multi-CrackNet; specifically, a pretrained model
from the COCO dataset [43] is used to train subdatabase
S1-1; the output model weight W1 is adopted to train subda-
tabase S1-2 subsequently; after that, the output model weight
W2 is applied to trained the subdatabase S1-3 with model
weight W3 as the final output.
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Figure 2: Pole density plot of dip and strike with inclination. (a) The dip angle of discontinuities; (b) the strike angle of discontinuities.
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(a) (b)

Figure 3: Tedious and tiring manual detection of discontinuities in site investigation. (a) and (b) are examples of manual labelling of
discontinuity traces.

Original
image

Crack
identification

Crack segmentation Crack quantification

Multi-CrackNet Modified DTM

Figure 4: Overview of the hybrid multicrack identification and quantification method.

6 Geofluids



4.2. Crack Detection Framework. The modified crack detec-
tion framework is multi-CrackNet based on mask R-CNN
which utilizes the advantages of many state-of-the-art algo-
rithms through combination. The framework of multi-
CrackNet is presented in Figure 6. Similar to mask R-
CNN, the framework architecture involves 4 parts, namely,
a multiscale feature fusion pyramid network (MFFPN) back-
bone, a regional proposal network (RPN), the classifier and
bounding box regression branches from faster R-CNN, and
a fully convolutional network for instance segmentation.

4.2.1. Multiscale Feature Extraction and Fusion of Cracks.
The mask R-CNN algorithm was developed for multiclass
object detection across different application environments;
in this paper, to deal with rock crack detection in complex

scenarios, an improved feature extraction network is
designed based on the traditional feature pyramid network
(FPN) to capture and merge more levels of texture features
of rock cracks. The uneven scale of natural defects on rock
surfaces brings great challenges to the identification of
cracks due to the scale of effect. To solve this problem, the
multiscale feature fusion pyramid network (MFFPN) aims
at stratifying and extracting different scales of crack features
from images based on an FPN framework presented in
Figure 7. Convolutional neural network (CNN) can extract
different features from the target image matrix by using dif-
ferent convolutional kernels. For machine vision, image fea-
tures are mainly embodied as texture features, namely, flat
textures, vertical textures, and inclined textures of joint and
fissure correspondingly. To project the texture features of

Image acquisition

Primary database
S0

Secondary database
S1

Image crop

Sub database
S1-2

Sub database
S1-1

Sub database
S1-3

Pretrained model from COCO

Roi align

Roi align

Roi align

Model W1

Model W2

Model W3
Conv Conv

Conv

Conv

Conv

Conv

Class
B-Box

Class
B-Box

Class
B-Box

Figure 5: Operation schematic diagram of crack detection (the training of model weight W1 to W3 is contributed by the same framework of
multi-CrackNet).

Figure 6: Detection framework of multi-CrackNet.
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different cracks onto the feature mapping layer, this paper
proposed a fusion network that combines multiple convolu-
tional cores in an FPN architecture. Specifically, the MFFPN
is based on an FPN architecture with 4-layer downsampling
(M1~M4), 4-layer upsampling (P1~P4), and a subsampling
layer P5 from P4; each downsampling layer contains multi-
ple convolutional operations with different convolutional
cores. The convolutional results are then concatenated
together to feed on the upsampling structure; the upsam-
pling layers will fuse all convolutional results from each con-
volutional core and then proceed with the upsampling
operation, passing all texture features through the whole
upsampling stream to maintain as much texture information
as possible during the upsampling operation. For instance,
in Figure 7, the traditional FPN in layer F1 only concatenates
the convolutional results from layer M1 and the upsampling
results from layer F2, which neglects crack features in other
scales. Our modified MFFPN utilizes all convolutional
results from layers M1, M2, and M3 and then concatenate
them with the upsampling result from layer F2. In this man-
ner, our feature extraction network can maximize the reten-
tion of crack characteristics at different scales.

In this research, rock defects are normally strip-shaped
with crossing nodes; therefore, this paper selects 5 primary
convolutional kernels that can reflect the characteristics of
flat, vertical, inclined, and cross texture of the cracks; these
primary convolutional kernels are then trained to adapt the
shape of cracks. To be specific, for example, the M4 layer will
go through multiple convolutional cores to extract different

types of texture feature; these features are then concatenated
together to feed to F1 to F4; at the same time, other down-
sampling layers from M1 to M3 will go through the same
operation and seed concatenated features to F1 to F5. Each
layer in the upsampling layer, such as F3, will receive 4 fea-
ture maps from M1 to M4, and these feature maps will be
concatenated together with F3 to keep upsampling to F2.
During this process, upsampling or downsampling opera-
tion (see Figure 7) will be applied to each feature map
derived from M1 to M4 to ensure that the size is fitting to
each upsampling layer (F1 to F4) so that concatenating oper-
ation can proceed. It is noticeable that this MFFPN frame-
work turns out to be a prune-able network, which means
that during the training or inference stage, we can apply
pruning operation to cut off some convolutional cores that
may lead to undesired results.

4.2.2. Location of Crack Positions. The MFFPN can obtain
various texture information of multiscale cracks from the
images, but the extracted information contains not only
the texture information of cracks but also the information
from the background. To narrow down the detection regions
and localize the position of cracks, the RPN was adopted to
generate proposed bounding boxes for each image to indi-
cate the position of cracks. The RPN relies on a shared slid-
ing windows on the convolutional feature maps (F1~F5)
passing from MFFPN to generate 15 predesigned anchors
on each pixel; these anchors contain 5 kinds of size with 3
types of ratio. Different sizes of anchors will be applied to
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Proposed MFFPN
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Down sampling sequence: 1024 256 128 64 32

Figure 7: Comparison between traditional FPN and the proposed MFFPN.
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different layers of the feature map from F1 to F5, respec-
tively; to localize different scales of cracks, different ratios
of anchors are utilized to adapt different shapes of cracks.

Specifically, the anchor sizes are designed as (482, 962,
1922, 3842, and 7682) and the anchor scales are set to be
(1 : 4, 1 : 1, and 4 : 1). As indicated in Figure 8, the sliding
window will go through each pixel on the convolutional fea-
ture maps generated from MFFPN and create 15 anchors;
these anchors are then used to compare with the ground
truth bounding boxes of each crack by the Intersection over
Union (IoU) algorithm to select the most likely anchors step
by step. The IoU algorithm determines the similarity of the
anchor box and the ground truth bounding box by simply
calculating the overlapping area of the two boxes.

IoU = area of overlap
area of union : ð1Þ

In this paper, we choose the IoU limit as 0.7, which indi-
cates that the only anchors with an over lapping ratio greater
than 0.7 can be retained; subsequently, those anchors whose
IoUs of the same ground truth are greater than 0.7 should be
compared via the nonmaximum suppression (NMS) method
[44] to keep the most likely anchors corresponding to each
crack. As seen in Figure 9, if the IoUs of more than two
anchors over the same ground truth are greater than 0.7,
we need to compare these anchors by calculating their IoU;
if the IoU of these anchors is greater than 0.5, we need to
abandon the one with the lower IoU over the ground truth;
finally, the remaining anchors are output as proposals.

4.2.3. Classification and Segmentation of Cracks. In Figure 8,
RPN utilizes proposals to localize the candidate positions of
each crack; before entering the next stage, these proposed
regions are fed to RoI align layers to resize to the proper size.
RoI align is proposed by Gkioxari et al. and firstly applied in
mask R-CNN [30]. Because the generation of proposals
relies on convolutional operation in each layer from F1 to
F5 and the size of each proposal is different, RoI align is
introduced to resize and standardize the proposals to fit in
the input requirement of fully connected network (FCN).
After standardization, these fixed feature maps are
concatenated together and fed to two branches of prediction
which output the crack position and shape (see Figure 6).
On one hand, the first branch of FCN flattens the feature
maps to reveal and pass higher levels of semantic informa-
tion to the regression and classification layers; on the other
hand, the feature maps will go through another branch of
the fully convolutional layer to predict the shape of crack.

Specifically, as depicted in Figure 10, the 7 × 7 feature
maps will go through a fully convolutional layer to extract
high-level semantic information of the proposals (RoI align),
and the output convolutional feature maps will be flattened
by two branches of FCN; the first FCN will pass the informa-
tion to a softmax [45] operation to normalize the results as a
class probability which reveals the confidence of crack detec-
tion with the proposals; those proposals with class probabil-
ity higher than 0.75 are considered to be cracks (positive

anchors) while the others are consider to be the background
(negative anchors).

The second FCN operation provides robust information
to the bounding box regression, which trains the bounding
box to approach the ground truth. It can be seen from
Figure 9 that the proposed anchor box is slightly different
from the ground truth, so a fine-tuning operation is
needed [30]. If we suppose the coordinate of the ground
truth is G = ½Gx,Gy,Gw,Gh�, here, Gx and Gy are the coordi-
nates of the center and Gw and Gh are the width and height
of the ground truth box. Given that the position of the pro-
posed bounding box is Bbox = ½Bx, By , Bw, Bh�, then we are
looking forward to a transformation that leads to

F Bx, By , Bw, Bh

À Á
= Gx′ ,Gy′ ,Gw′ ,Gh′
� �

, ð2Þ

where ðGx′ ,Gy′ ,Gw′ ,Gh′Þ should be as close as possible to ðGx

,Gy,Gw,GhÞ. In this paper, we assume that the transformation
of bounding box is simply comprised of a translation and a
scaling, which can be written as follows:

translation :
Gx′ = Bw ⋅ Tx Bð Þ + Bx,
Gy′ = Bh ⋅ Ty Bð Þ + By,

(

ð3Þ

scaling :
Gw′ = Bw ⋅ eTw Bð Þ,
Gh′ = Bh ⋅ e

Th Bð Þ,

(

ð4Þ

where TxðBÞ, TyðBÞ, TwðBÞ, and ThðBÞ are the transforma-

tion coefficients to be trained. Therefore, if we let W =
½TxðBÞ, TyðBÞ, eTwðBÞ, eThðBÞ�T and ΦðBÞ = ½Bx, By, Bw, Bh�,
then

P Bð Þ =W ×Φ Bð Þ: ð5Þ

PðBÞ is the prediction of ground truth coordinates and
ΦðBÞ is the eigenvector composed by the feature maps
from the corresponding proposal. In this paper, we adopt
the smooth L1 loss function to calculate the distance from
the ground truth to the predicted bounding box:

Smooth L1 =
0:5 ⋅ P Bð Þ −Gð Þ2, if P Bð Þ −Gj j < 1,
P Bð Þ −Gj j − 0:5, otherwise:

(

ð6Þ

Therefore, the training optimization objective can be
defined as equation (7); here, N is the number of predicted
bounding box.

Ŵ = arg minW 〠
N

i

Smooth L1ð Þi: ð7Þ

From Figure 6, the upper branch of output provides a
prediction of the crack shape which is characterized by
drawing the predicted mask on the object. More specific,
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the 7 × 7 feature maps will be enlarged to 14 × 14 through a
head network to provide robust features to mask predic-
tion. Mask prediction is actually a binary classification cal-
culated by the average binary cross-entropy function as
follows:

L = 1
N
〠
N

i

− yi log pið Þ + 1 − yið Þ ⋅ log 1 − pið Þ½ �, ð8Þ

where yi is the label of ith proposal with a positive predic-

tion as 1 and a negative prediction as 0. pi is the predicted
probability of cracks of the ith proposal calculated by the
sigmoid function.

After the above fine-tuning, the final anchor box will be
fed to the crack classification and segmentation network for
final outputs.

4.2.4. Loss Function. The detection loss has two parts, which
are the loss of the RPN and the loss of the segmentation out-
put. As for the loss function of RPN, it is adopted from faster
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R-CNN which can be written as

L Cif g, Pif gð Þ = 1
Ncls

〠
N

i

Lcls Ci, C∗
ið Þ + λ

1
Nreg

〠
N

i

C∗
i Lreg Pi,Gð Þ,

ð9Þ

where Ci is the positive softmax probability of cracks and C∗
i

is the IoU of ground truth and Ci, which means only those
proposals with IoU larger than 0.7 are considered in the loss
function. Pi is the predicted bounding box, G is the ground
truth of bounding box, Ncls is the number of positive pre-
dicted proposal on cracks, and Nreg is the number of positive
predicted bounding box. Lcls is the softmax loss to calculate
the predicted loss of cracks on each positive proposal and
Lreg is the regression loss of bounding box calculated by
the smooth L1 loss function. λ is the balancing coefficient
to balance the difference between Ncls and Nreg in case that
these two values vary too much; in this paper, we simply
use λ =Nreg/Ncls to balance the great difference between
Ncls and Nreg if Nreg/Ncls is over 10.

As for the loss function of the segmentation output, it
consists of three parts, namely, the detection class loss, the
regression loss of bounding box, and the instance segmenta-
tion loss.

Lall = 0:1 ⋅ Lcls + 0:6 ⋅ Lreg + 0:3 ⋅ Lmask, ð10Þ

where Lcls and Lreg consist with the loss function in RPN and
Lmask is the average binary cross-entropy function as equa-
tion (8). During training, we found that the Lreg is hard to
train and will have a strong impact on the training results;
thus, we manually set the loss weight of Lreg larger than
the other two components.

4.3. Crack Characterization Method. After successfully seg-
menting rock cracks via multi-CrackNet, this paper proposed
an intelligent quantification method to automatically compute
the length and maximum width of each crack. The proposed
quantification algorithm flowchart is elucidated in Figure 11.
Initially, the segmented cracks are extracted from the back-
ground and isolated into individual images that are converted
into binary images labelled as 1 and 0, where 1 indicates the
crack body and 0 represents the background. Subsequently, a

series of techniques are used to extract the key information
and calculate the length and width of the crack.

To illustrate the quantification process clearly, a local
demonstration with schematic diagram is provided in
Figure 12 to elaborate on 10 steps. To calculate the length
and width of the crack, it is very important to extract the main
skeleton of the crack right located in the middle. Normally,
binarization operation can simplify image data without losing
texture information, which leads to easy operation and analy-
sis of skeleton information. After binarization, as indicated in
the first step in Figure 12, there exist many irregular spurs
around the boundary of the crack, which may significantly
affect the performance of skeleton extraction. As demon-
strated in the schematic below, at each step, those spurs are
denoted as isolated pixels with a value of 1. A simple way to
eliminate these isolated pixels is to carry out a patch labelling
operation by reassigning different pixel values to all separated
pixel patches. As shown in the second step, all isolated pixels
will be labelled in different values and distinguished from the
main body of the crack. Thus, it is easy to eliminate those
non-1 pixels and obtain a spur-free image in the third step.
In the fourth step, a traditional distance transform method
(DTM) [46] is applied to highlight the position and indicate
the distance of the middle line from the edge of the crack.

As demonstrated in the schematic diagram of the fourth
step, the number represents the pixel distance of each non-0
pixel to the nearest 0 pixel. In this step, the maximum width
of the crack can be easily obtained from the maximum pixel
value.

width =max pixel valueð Þ × 2 − 1: ð11Þ

To extract the skeleton of the crack, a thinning operation is
proposed by corroding the DTM image in step 4; the corrosion
operation will keep transforming the edge pixel to 0 until the
non-0 pixels can just remain connected as shown in the sche-
matic diagram in step 5. Subsequently, a skeletonized opera-
tion is applied to the corroded DTM image to obtain the
skeleton of the crack; this can be done by the imbedded
MATLAB function “bwmorph”. The length calculation relies
on the middle line of the crack, so a branch-cut operation is
used to prune unnecessary branches, which can be achieved
by the imbedded function “bwmorph” inMATLAB. However,
this operation will eliminate the branchpoints and divide the
middle line into multiple segments. Thus, the branchpoints

Figure 10: Feature map extraction using RoI align.
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will be added back to maintain the continuity of the main root
with Boolean operations. In this step, the length of the crack
can be calculated by summing all non-0 pixels, but as indi-
cated in Figure 12, corroded-DTM operation may lead to the
loss of pixels at two tips of the crack as shown in step 9. There-
fore, in the final step, this paper proposed a modified method
by expanding the endpoints of the root to the original edges of
the crack along the inclined direction of the crack. The crack
inclination is calculated based on the least square method.
To be specific, if we assume the fitting line of pixels on the

middle root of the crack as

y = ax + b, ð12Þ

thus, the goal to compute the most likely slope a is to solve:

min Z = 〠
N

i=1
yi − a + bxið Þ½ �2, ð13Þ
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Figure 11: Crack quantification algorithm flowchart.
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where ½xi, yi� is the coordinate of pixels on the middle root. By
taking the partial derivative of a and b, the following can be
obtained that

∂
∂a

〠
N

i=1
yi − a + bxið Þ½ �2 = −2〠

N

i=1
yi − a + bxið Þ = 0,

∂
∂b

〠
N

i=1
yi − a + bxið Þ½ �2 = −2〠

N

i=1
yi − a + bxið Þxi = 0:

ð14Þ

Thus, the following equation sets can be derived.

aN + b〠xi = b〠yi,

a〠xi + b〠x2i =〠xiyi:
ð15Þ

By solving (15), the slope of the fitting line can be obtained
as

â = ∑x2i
À Á

∑yið Þ − ∑xið Þ ∑xiyið Þ
N∑x2i − ∑xið Þ2

: ð16Þ

Therefore, the inclination of the crack can be calculated
as follows: the fitting line of the crack is elucidated in

Figure 13.

ϕ = actan âð Þ: ð17Þ

Since now, the actual length, the inclination, and the
maximum width of the crack can be obtained and dis-
played as shown in Figure 4.

1.Binary image 2. Continuity-labelled
image

3. Spur-free image 4. Distance from edges

5. Corroded DTM image

9. Root with edges 10. Root-modified image

6. Skeletonized image 7. Branch-cut image 8. Main-root image

Figure 12: Schematic diagram of the proposed quantification algorithm in details.

𝜙

y = ax + b^ ^

Figure 13: Fitting line of the crack.
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5. Case Study and Discussion

In this study, multi-CrackNet was first used to train with
captured image dataset from Anshan West in Liaoning
Province, China. Images captured in this area contain a
variety of rock types, for instance, sandstone, granite
stone, gneiss, and limestone. 10% of images are randomly
extracted from the datasets to validate and test our train-
ing results. After segmentation, segmented images with
individual cracks are fed to the proposed quantification
algorithm to automatically display the length and width
of the crack at the pixel level. The details are elaborated
as follows.

5.1. Validation of the Multi-CrackNet. The proposed multi-
CrackNet framework is implemented using Python 3.6.3 in
Keras environment with the help of Nvidia GeForce RTX
3080 for training. The algorithm runs on an AMD Ryzen
3900X@3.8GHz 12 core processor with 64GB RAM on a
Windows 10 PC.

In this experiment, we trained the model in three stages
as indicated in Figure 4. Initially, the primary database S0 is
cropped to form the secondary database S1 which is then
divided into 3 subdatabases according to the number of
cracks on the rock. The model training starts with the subda-
tabased S1-1 which contains only a single crack on the rock.
Figure 14 elucidates some examples of the results of the
multi-CrackNet on single-crack detection; the result demon-
strates robust and confident performance of the method on
the segmentation of single crack on different types of
rocks/background.

In the second stage, the well-trained model on single-
crack detection is applied to train the subdatabase S1-2 in
which those images with 2-3 sets of cracks. Figure 15 shows
robust predicted results on some rock images across differ-
ent backgrounds.

At this stage, even though the model has demonstrated
great permanence on crack segmentation to some degree,
the model makes several mistakes when facing complex
backgrounds; Figure 16 depicts several situations when
the model may provide false segmentation results. Situa-

tions in Figures 16(a), 16(b), and 16(d) normally happen
at the edge of the image, especially when an isolated tiny
crack or part of a crack lies at the edge of the image
and is contiguous to other cracks. Situation in
Figure 16(c) normally occurs in high-contrast images with
many tiny and thin cracks that are omitted to be labelled.
Situation in Figure 16(e) occurs in low-contrast images
with many tiny and thin cracks which may be overde-
tected by the model.

To overcome the above problem, we continue to apply
the fine-tuned model from the second stage to the subdata-
base S1-3 and keep improving the performance of the model
on the images with more than 3 sets of cracks. Figure 17
shows the predicted results of some examples. As demon-
strated in Figure 17, after three-stage training, the model
has proved to be relatively reliable and confident for the seg-
mentation of multiple cracks on complex backgrounds.

After three-stage training, the model is capable of han-
dling 1-9 sets of cracks with relatively lower loss, which suc-
ceeds in generalizing to crack detection and segmentation
for more complex situations with multiple sets of cracks.
Figure 18 shows the training and fine-tuning accuracy of
three-stage training, where training accuracy indicates the
accuracy of head network training results based on transfer
learning.

As demonstrated, in the first stage, we train the model
with single-crack images for 50 epochs and spend 190
epochs fine-tuning the model until it converges; the segmen-
tation accuracy finally stabilizes at around 89.3%. In the sec-
ond stage, the model spends 100 epochs on training and 500
epochs on fine-tuning, converging to an accuracy of 83.5%.
In the third stage, we used 491 epochs and 508 epochs to
train and fine-tune the model, respectively, achieving a total
accuracy of 87.1%. It is worth noting that in the first two
stages, fine-tuning can greatly improve the performance of
the model by quickly decreasing the segmentation loss, but
in the third stage, fine-tuning accuracy is pretty close to
the training accuracy. This can be simply explained by that
the model has already learned enough from the former
stages, and the diagram also shows that the two fine-tuning
loss curves of stages 2 and 3 nearly converge together, which

Original
images

Ground
truth

Labeled
crack

Predicted
results

Figure 14: Examples of predicted results of the multi-CrackNet on single-crack detection.
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(a) (b) (c) (d) (e)

Figure 16: Examples of falsely detected situations indicated in red circles. (a) Omitting of crack detection at the edge of the image; (b)
missing part of the crack at the edge of the image; (c) providing potential crack detections that are not labelled in the ground truth; (d)
inaccurate segmentation when overlapping happens at the edge of the images; and (e) providing redundant predictions on the same crack.
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Figure 17: Examples of predicted results of the multi-CrackNet on 3 more sets of crack detections.
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Figure 15: Examples of predicted results of the multi-CrackNet on 2-3 sets of crack detections.
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indicates that the third stage of training is designed to
improve the results of the first two stages. Figures 16 and
17 also reveal the same conclusion that the model is able
to handle multiple-crack segmentation after training on sub-
databases S1-1 and S1-2 to some extent; only some minor
mistakes occur when tackling staggered crack segmentation
at the edge of the images. Training in the third stage aims
at improving the robustness and reliability of the model to
generalize the segmentation ability to more cases.

To compare the performance of the method to that of
the current deep-learning-based method, faster R-CNN
and mask R-CNN are selected. The identical training data-
bases used in this paper are utilized to train Unet++ and
mask R-CNN. Figure 19 shows some examples of the com-
parative results among the methods, Unet++ and mask
R-CNN. It is apparent that current methods can barely
handle such complex segmentation situations when multi-
ple cracks are staggering with each other, but our method
provides robust and accurate predicted results across dif-
ferent types of complex background. It is noticeable that
both Unet++ and mask R-CNN can localize the approxi-
mate location of each crack, but the point is that they can-

not provide precise segmentation for cracks. Specifically,
by replacing FPN with MFFPN, we can see a great
improvement on crack segmentation performance. This
may be explained by the fact that the current model can-
not extract enough hybrid features from FPN to identify
complex layouts of cracks and finally segment them,
respectively.

5.2. Validation of the Quantification Method. The proposed
multi-CrackNet provides robust and accurate segmentation
results of rock cracks on different rock surfaces. These seg-
mented cracks are then processed by a new quantification
method based on DTM to measure the length and width of
each crack. Traditional measuring algorithms such as the
fast march propagation method [48] are applicable for thin
crack only without considering the width of the crack; our
method used hybrid techniques to compute the length and
width of the crack regardless of the shape of the crack. Some
report methods also considered pixel-level quantification of
cracks, but they neglected the general inclined tendency of
the crack in filling the errors between the tips and the edges
of the crack [49]. Our DTM-based method considers the
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Figure 18: Training and fine-tuning process. (a) Training accuracy; (b) fine-tuning accuracy. (Single crack represents the model only trains
on subdatabase S1-1 in the first stage; 2-3 cracks represent the model trains on subdatabases S1-1 and S1-2 in the second stage; 3+ cracks
represent the model trains on subdatabases S1-1, S1-2, and S1-3 in the third stage).
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tendency angle of each crack and applies an extension oper-
ation on the two tips by lengthening the pixels at tips to the
edges in a rational direction.

Figure 20 demonstrates the operating process of the pro-
posed quantification method; as elucidated, the goal of this
quantification algorithm is to precisely extract the central
line of the crack and the distance from the central line to
the edges. Theoretically, this algorithm can accurately attain
the length and width of crack from the segmented images
because the algorithm can eliminate noise pixels and merge
all pixels along the central line from which the geometry
information can be derived.

To verify the performance of the quantification results,
some examples are presented in Figure 21. Results show that
our method can handle different types of crack shape with mul-
tiple scales. It is noticeable that the proposed algorithm can
properly measure the crack length with an accuracy of single
digit but measure the crack width in decimals. This is because
themeasurement for crack length is to simply sum up the pixels
in the central line, while the measurement for crack width is to
compute the distance from the central line to the edges; that is,
the measured distance may not be integer. This means the mea-
surement in width is more accurate than that in length. How-
ever, the quantification method is limited by computing the

Crack
extraction

Binary image Continuity-
labelled image

Spur-free image Distance from
edges

Corroded DTM
image

Skeletonized imageBranch-cut imageMain-root image

Root with edges Root-modified
image

Quantified image

Figure 20: Operating process of the proposed quantification algorithm.

Original images

Ground truth

Unet++

Mask R-CNN

Multi-CrackNet
(Proposed method)

Figure 19: Comparative studies among multi-CrackNet, Unet++ [47], and mask R-CNN.
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geometry information in pixels but not in real-world units, such
as mm. This limitation can be offset by knowing the distance
between the rock face and the camera lens or in other way,
for instance, a reference object with known geometry informa-
tion is also captured in the same images.

5.3. Case Study of a Selective Outcrop. To investigate the per-
formance of our proposed method in macroscale, a selected
outcrop from Anshan West accompanied with a reference
person with 170 cm height and 30 cm shoulder breadth

within the selected sample window is captured by a smart-
phone (iPhone X @1200 megapixel). The multi-CrackNet
initially cropped the original image into 16 subimages and
identified each crack on each subimage. These subimages
with identified cracks were then merged together to form
51 macrolinear discontinuities; it is noticeable that the refer-
ence person is also detected due to transferred learning from
COCO dataset. To understand the relationship of disconti-
nuities in this outcrop, a clustering operation was applied
to indicate the different sets of discontinuities.

Identification and segmentation Quantification in cm

Reference object

Reference object

Clustering

Figure 22: Quantification in cm of discontinuity trace on the selected outcrop with a reference object.

Detected cracks Quantification of cracks

Figure 21: Example results of the proposed method for crack quantification.
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As shown in Figure 22, there are 3 sets of discontinuities
labelled in red (J1), green (J2), and yellow (J3); the reference
person was denoised and labelled in blue. At last, the pro-
posed quantification algorithm was used to compute the
length and width of each linear discontinuity in cm by con-
verting the pixel value to centimeters with the help of the
reference person. As demonstrated, the reference person
was quantified in cm precisely and highlight in a red rectan-

gular box. The rectangular boxes in Figure 22 do not indicate
the length and width of the detected objects; the boxes only
indicate the position of each detected objects.

According to the quantification results, the statistical
parameters of the identified discontinuities are shown in
Figure 23. Based on the dominance dip angle, these linear
discontinuities can be classified into 3 sets denoted as J1,
J2, and J3, which are distinctive in average dip angle
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Figure 23: Statistical parameters of the linear discontinuities. (a) Dip angle contour plot considering length and width. (b) Frequency count
of 3 sets of linear discontinuities. (c) Clustering plot of 3 sets of linear discontinuities. (d) Geometrical size distribution of discontinuities.
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computed in Table 2. The statistical data shows that J1 dom-
inate the majority with an average dip angle of 69.2° which is
align with the site investigation in Section 3. Further infor-
mation can be read from Figure 23(b) that the trace length
of most discontinuities lies in the range of 50 to 200 cm
and the width of most discontinuities does not exceed
15 cm, which can be seen from Figure 23(d) that the trace
length of 3 sets of discontinuities also follow a good lognor-
mal distribution. To validate our method in geometry quan-
tification of discontinuities, Table 2 also shows the statistical
data from manual measurement onsite; the difference
between the manual investigation and the proposed method
are relatively small, which means our hybrid method is con-
vincing to some extent.

6. Conclusions

This paper developed a fine-grained segmentation model
called multi-CrackNet based on the advantages of mask R-
CNN to segment objects at pixel level. To realize the general
segmentation ability of linear discontinuities to various types
of background in different conditions, the following contri-
butions were achieved:

(1) A multiscale feature fusion pyramid network
(MFFPN) was developed based on FPN to capture
more sensitive features of cracks across different
types of rock. Compared with current feature extrac-
tion techniques, the method can extract and fuse
more scales of features across different complex
backgrounds or conditions. Experiments show that
the method can achieve a prediction accuracy of
87.1% for 1-9 sets of cracks over different types of
rock and provide robust and reliable segmentation
results onsite

(2) A novel operation scheme was proposed by dividing
the training tasks into 3 stages to simulate the
human-based learning process, starting with the easy
task (one set of crack) and then enhancing segmen-
tation ability by feeding on advanced tasks (three
more sets of cracks). This training scheme can
greatly contribute to the robust performance of chal-
lenging identification and segmentation tasks, espe-
cially targeting segmentation tasks with extremely
complex layouts or backgrounds

(3) The well-designed algorithm for crack quantification
combines hybrid techniques to compute the length
and width of the crack in pixel level. The method
sees great potential for onsite investigation because

it can automatically identify and quantify each crack
by simply taking a picture of the rock surface, which
reduces a large amount of labor force. A case study
in Anshan West was performed to validate the reli-
ability of our hybrid method in identifying and
quantifying engineering scale linear discontinuities;
result shows that our hybrid method can accurately
identify the trace line of each discontinuity and com-
pute their length, width, and dip angle

However, due to limited information from a single
image, we cannot outperform the current 3D-cloud-point-
based methods that can acquire more geometry information
such as strike and dip;, our method shows great handiness
and portability for those sitework that simply want to know
the very basic parameters of the outcrops.
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