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We investigated the frequency dependence of Poisson’s ratio ν in partially/fully fluid-saturated rocks. Based on one dominant
fluid flow mechanism at each condition, we theoretically summarized that (1) when a rock is partially saturated or transits
from drained state to undrained state at full saturation, ν increases monotonously with frequency, and the associated
attenuation ð1/QνÞ is positive with one peak. (2) When the rock transits from undrained state to unrelaxed state at full
saturation, there are three cases: 1) ν increases monotonously with frequency and has positive 1/Qν with one peak, 2) ν keeps
constant with frequency and has no attenuation, 3) and ν decreases monotonously with frequency and has negative 1/Qν with
one peak. In this condition, the dependence is influenced by the concentrations of stiff and soft pores, the aspect ratio of soft
pores, and the pore fluid bulk modulus. (3) When it comes to the transition from drained state to unrelaxed state at full
saturation, ν can exhibit two shapes with frequency: 1) step shape with two positive attenuation peaks and 2) bell shape with
one positive attenuation peak and one negative attenuation peak. Then, we conducted a numerical example to indicate the
effect of influence factors (the concentrations of stiff and soft pores, the aspect ratio of soft pores, and the pore fluid bulk
modulus) on Poisson’s ratio from undrained state to unrelaxed state, and validated the theoretical analysis by the published
experimental data. In addition, based on 1/Qν, we reanalyzed and validated the relationship between different attenuation
modes (i.e., bulk attenuation 1/QK , P-wave attenuation 1/QP , extensional attenuation 1/QE , and S-wave attenuation 1/QS): (1)
when 1/Qν is positive, the relationship between them is 1/QK > 1/QP > 1/QE > 1/QS; when 1/Qν is 0, the relationship between
them is 1/QK = 1/QP = 1/QE = 1/QS; and when 1/Qν is negative, the relationship between them is 1/QK < 1/QP < 1/QE < 1/QS.
The relationship between different attenuation modes does not depend on saturation state (partial or full saturation) or ν but
on 1/Qν. This research provides the frequency dependence of Poisson’s ratio in partially/fully saturated rocks, which helps
better understand Poisson’s ratio at different frequencies and saturation states and can be used to improve the accuracy of
geophysical data interpretation, such as lithology identification, hydrocarbon characterization in conventional reservoir, and
brittleness evaluation of shale/tight sandstones in unconventional reservoir.

1. Introduction

Poisson’s ratio is a key constraint on the nature and compo-
sition of sedimentary rocks and plays an important role in
geophysical exploration, such as identifying lithology, char-
acterizing hydrocarbon in reservoir,and evaluating the brit-
tleness of shale and tight sandstones [1–3]. When the

sedimentary rocks are partially/fully fluid-saturated, similar
to elastic moduli, Poisson’s ratio can also be frequency-
dependent, which significantly affects the accuracy of lithol-
ogy identification, hydrocarbon characterization, and brittle-
ness evaluation. Thus, it is essential to investigate the
frequency dependence of Poisson’s ratio in partially/fully
fluid-saturated sedimentary rocks. However, scholars in
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seismic rock physics commonly focus their attentions on the
frequency dependence of elastic moduli and associated
attenuations, such as Young’s modulus and extensional
attenuation, bulk modulus, and bulk attenuation [4–19].
When they experimentally investigate the frequency depen-
dence of elastic moduli and associated attenuations, they
measure Poisson’s ratio together but take it as a bridge to
obtain other elastic moduli under assumption that the rock
is isotropic. Few works have been done to specifically focus
on Poisson’s ratio. Recently, Pimienta et al. [20] experimen-
tally investigated the effect of fluids and frequencies on Pois-
son’s ratio of fully fluid-saturated sandstone samples using
dynamic stress-strain method. This brilliant work indicated
the frequency dependence of Poisson’s ratio for fully fluid-
saturated rocks with a lot of soft pores (i.e., grain contacts
and cracks) and revealed relevant internal physical mecha-
nisms. They observed that Poisson’s ratio of the sandstone
sample exhibited frequency-dependent bell-shaped disper-
sion under water and glycerin saturation and correlated with
two positive peaks in its attenuation (they called it phase
shift). Then, they interpreted the observation with fluid flow
mechanism at different scales and effective medium theory:
The first attenuation peak is related to the transition from
drained state to undrained state, which is caused by global
fluid flow mechanism, and the second attenuation peak is
related to the transition from undrained (relaxed) state to
unrelaxed state, which is caused by squirt flow mechanism.
Nevertheless, their work did not (1) investigate the fre-
quency dependence of Poisson’s ratio in rocks with a small
number of soft pores, (2) examine the frequency dependence
of Poisson’s ratio attenuation, and (3) consider the fre-
quency dependence of Poisson’s ratio in partially fluid-
saturated rocks.

To this end, we investigate the frequency dependence of
Poisson’s ratio and its attenuation in fluid-saturated rocks at
both partial and full saturation states. With fluid flow mech-
anism at different scales, we first theoretically summarize the
frequency dependence of Poisson’s ratio and its attenuation
when a rock is partially or fully fluid-saturated. Then, we
conduct a numerical example to examine the factors
influencing the frequency dependence of Poisson’s ratio
and its attenuation when the rock transits from undrained
state to unrelaxed state. In next, we compare our theoretical
analysis with published experimental data. Finally, with the
help of Poisson’s ratio attenuation, we discuss the relation-
ships between different attenuation modes (i.e., bulk attenu-
ation 1/QK , P-wave attenuation 1/QP , extensional
attenuation 1/QE , and S-wave attenuation 1/QS) [21].

2. Theoretical Analysis

Poisson’s ratio ν is defined as the negative of the ratio of
transverse strain to the axial strain in an elastic medium
when a uniaxial stress is applied [22]:

ν = ‐εtransverse/εaxial, ð1Þ

where εtransverse is the transverse strain and εaxial is the axial
strain.

Similar to the definition of elastic moduli’s attenuations
[21, 23], Poisson’s ratio attenuation 1/Qν here is defined as
the ratio of the imaginary part of complex Poisson’s ratio
ν∗ to the real part of complex Poisson’s ratio ν∗:

1
Qν

= Imag ν∗ð Þ
Real ν∗ð Þ : ð2Þ

Under assumption that the medium is isotropic and lin-
ear elastic, Poisson’s ratio ν can also be obtained by using
bulk and shear moduli (K , μ) [24]:

ν = 3K/μ − 2
6K/μ + 2 : ð3Þ

Taking the first-order derivative of v with respect to K/μ
(not shown here) indicates that v increases monotonously
with the increase of K/μ. Thus, we next theoretically investi-
gate the frequency dependence of K/μ to obtain the fre-
quency dependence of Poisson’s ratio in partially/fully
fluid-saturated isotropic rocks. And, in the following each
condition, we assume that only one fluid flow mechanism
plays dominant role in the frequency dependence of Pois-
son’s ratio and its attenuation.

2.1. Partially Fluid-Saturated Condition. For partially fluid-
saturated rock, when seismic wave passes through and
mesoscopic fluid flow mechanism dominates, shear modulus
keeps constant, while bulk modulus increases monotonously
with frequency [18, 19, 25]. Thus, Poisson’s ratio increases
with frequency in the intermediate frequency range. Fur-
thermore, from Kramers-Kronig relations (KKR) [26], the
dispersion and attenuation are correlated for a linear visco-
elastic medium; i.e., positive/negative dispersion corre-
sponds to positive/negative attenuation. Poisson’s ratio
here has positive dispersion with increasing frequency, thus
corresponding to positive Poisson’s ratio attenuation. In
addition, one positive attenuation peak appears [25, 27, 28].

2.2. Fully Fluid-Saturated Condition

2.2.1. Drained State to Undrained State. When fully fluid-
saturated rock transits from drained state to undrained state
and global fluid flow mechanism dominates, similar to the
partially fluid-saturated condition, shear modulus keeps
constant, while bulk modulus increases with frequency [15,
29–31]. The corresponding Poisson’s ratio also increases
monotonously with frequency, and its associated attenuation
is positive with one peak [29, 30].

2.2.2. Undrained State to Unrelaxed State. When fully fluid-
saturated rock transits from undrained state to unrelaxed
state, squirt flow can occur, both the fluid-saturated bulk
and shear moduli can increase with frequency, which
depends on the type of pores in rock. There are three cases:
(1) only stiff/round pores in rock, (2) only soft pores/cracks
in rock, and (3) both stiff and soft pores in rock.

(1) Stiff/round Pores Only. When there are only stiff pores
randomly distributed in the fully fluid-saturated rock, as
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seismic wave passes through, there is no fluid pressure dif-
ference between different stiff pores, resulting in that no
squirt flow occurs between different stiff pores [32, 33].
Thus, there is no dispersion in bulk and shear moduli for
the fluid-saturated rock at different frequencies, so does the
corresponding Poisson’s ratio; i.e., Poisson’s ratio has no fre-
quency dependence from undrained state to unrelaxed state.

(2) Soft Pores/Cracks Only. When there are only soft pores
randomly distributed in the fully fluid-saturated rock, as
seismic wave passes through, bulk modulus has no/negligi-
ble dispersion under isotropic bulk stress, whereas shear
modulus has an obvious dispersion under anisotropic shear
stress [33, 34]. As a result, there is a monotonous decrease
for Poisson’s ratio when the frequency increases. Specially,
the corresponding Poisson’s ratio attenuation is negative
based on KKR. Furthermore, one correlated negative attenu-
ation peak is observed. The monotonous decrease depends
on the aspect ratio and density of soft pores. With the aspect
ratio of soft pores increasing to that of stiff pores, the
decrease trend becomes smaller and disappears finally (Sec-
tion 2.2.2 (1)).

(3) Stiff and Soft Pores. When the fully fluid-saturated rock
contains both stiff and soft pores, the frequency dependence
of Poisson’s ratio becomes complex and has a monotonous
decrease or increase trend or keeps constant (frequency-
independent), which is related to the co-working of stiff
and soft pores.

As shown in Section 2.2.2 (2), when there are only soft
pores in rock, Poisson’s ratio at undrained state is higher
than the one at unrelaxed state. The frequency dependence
of Poisson’s ratio shows a monotonous decrease from
undrained state to unrelaxed state. With stiff pores intro-
duced, different fluid pressure exists between stiff and soft
pores, and squirt flow occurs. Compared to the bulk and
shear moduli at undrained state, squirt flow phenomenon
dramatically increases the ones at unrelaxed state [4–6, 33,
35]. However, whether Poisson’s ratio at unrelaxed state is
larger than that at undrained state (i.e., whether the fre-
quency dependence of Poisson’s ratio has a monotonous
increase) depends on the concentration of stiff and soft
pores, the aspect ratio of soft pores, and the bulk modulus
of pore fluid, which is investigated in the Numerical Model-
ling section.

2.2.3. Drained State to Unrelaxed State. Combining Sections
2.2.1 and 2.2.2, we can predict the frequency dependence of
Poisson’s ratio from drained state to unrelaxed state. The
frequency dependence of Poisson’s ratio has always monot-
onous increase from drained state to undrained state (Sec-
tion 2.2.1). When Poisson’s ratio also increases with
frequency from undrained state to unrelaxed state (Section
2.2.2), the frequency dependence of Poisson’s ratio from
drained state to unrelaxed state exhibits step shape; i.e., Pois-
son’s ratio first increases with frequency, then keeps almost
constant with frequency, and finally increases again with fre-
quency. Poisson’s ratio attenuation is nonnegative with two

positive attenuation peaks. On the other hand, when Pois-
son’s ratio decreases with frequency from undrained state
to unrelaxed state (Section 2.2.2), the frequency dependence
of Poisson’s ratio from drained state to unrelaxed state
exhibits bell shape; i.e., Poisson’s ratio first increases with
frequency, then keeps almost constant with frequency, and
finally decreases with frequency. Correspondingly, Poisson’s
ratio attenuation can be positive or negative with one posi-
tive attenuation peak and one negative attenuation peak.

3. Numerical Modelling

As the frequency dependence of Poisson’s ratio in rock con-
taining both stiff and soft pores from undrained state to
unrelaxed state is more complex than that in other condi-
tions, we conducted a numerical modelling example to
investigate the effect of influence factors (i.e., the concentra-
tion of stiff and soft pores, the aspect ratio of soft pores, and
the bulk modulus of pore fluid) on Poisson’s ratio in this
condition. Furthermore, as Poisson’s ratio has monotonous
frequency dependence, we mainly compared Poisson’s ratio
at undrained and unrelaxed states (i.e., low-frequency and
high-frequency limits). We chose a simple effective medium
model (crack-pore effective medium model, CPEM model,
Appendix A) to indicate the effects. Qualitatively similar
results hold for other models, such as differential effective
medium (DEM) model. Then, we used Zener model
(Appendix B) to show the frequency-dependent Poisson’s
ratio and its attenuation from undrained state to unrelaxed
state [13, 15].

3.1. The Effect of Influence Factors. The CPEM model
expresses drained/unrelaxed elastic moduli explicitly and is
widely used in porous rocks with a small number of soft
pores [33]. The undrained elastic moduli are then obtained
using Gassmann’s formula with the drained elastic moduli.
The physical parameters in the modelling are listed in
Table 1. As the CPEM model is valid at low soft pore den-
sity, we set the maximum value of soft pore density to be
0.5. For the fact that soft pore aspect ratio of 0.0001-
~0.001 causes most of the attenuation and dispersion [36],
we chose the aspect ratio to be 0.0005 and 0.005, respec-
tively. We also chose two typical fluids (water and glycerin)
as the pore fluid.

3.1.1. Stiff Pore Porosity. On the basis that a number of soft
pores is randomly distributed in rock (the soft pore density
here is kept at 0.5), with increasing stiff pore porosity, dry
Poisson’s ratio and Poisson’s ratio at unrelaxed state increase
gradually or almost keep constant, while Poisson’s ratio at
undrained state decreases rapidly (Figures 1(a) and 1(b)).
It indicates that the introduction of stiff pores into rock
has a more important influence on Poisson’s ratio at
undrained state (decreasing it). Furthermore, as stiff pore
porosity increases, Poisson’s ratio at unrelaxed state is first
smaller than, then equal to, and finally larger than that at
undrained state. When Poisson’s ratio at unrelaxed state is
smaller than that at undrained state, it corresponds that
the frequency dependence of Poisson’s ratio has a
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monotonous decrease from undrained state to unrelaxed
state. On the other hand, when Poisson’s ratio at unrelaxed
state is larger than that at undrained state, it corresponds
that the frequency dependence of Poisson’s ratio has a
monotonous increase from undrained state to unrelaxed
state.

3.1.2. Soft Pore Density/Soft Pore Porosity. With increasing
soft pores in rock (the stiff pore porosity is kept at 0.04
and 0.1, respectively), dry Poisson’s ratio decreases, while
both Poisson’s ratio at undrained and unrelaxed states
increases, and Poisson’s ratio at undrained state changes fas-
ter than that at unrelaxed state (Figures 1(c)–1(f)). The Pois-
son’s ratio difference at undrained and unrelaxed states
indicates that the introduction of soft pores into rock also
has a more important influence on Poisson’s ratio at
undrained state (increasing it). Besides, as soft pore density
increases, Poisson’s ratio at unrelaxed state can be always
larger than that at undrained state (Figures 1(e) and 1(f)),
corresponding to a monotonous increase of Poisson’s ratio.
Or, Poisson’s ratio at unrelaxed state is first larger than, then
equal to, and finally smaller than that at undrained state
(Figures 1(c) and 1(d)), corresponding to different frequency
dependence of Poisson’s ratio.

3.1.3. Aspect Ratio of Soft Pores. When the soft pore density
keeps constant (i.e., 0.5), the larger the aspect ratio of soft
pores, the larger the stiff pore porosity where Poisson’s ratio
at undrained and unrelaxed states is equal with each other
(Figures 1(a) and 1(b)). On the other hand, when the stiff
pore porosity keeps constant (i.e., 0.04), the larger the aspect
ratio of soft pores, the smaller the soft pore density where
Poisson’s ratio at undrained and unrelaxed states is equal
with each other (Figures 1(c) and 1(d)).

3.1.4. The Bulk Modulus of Pore Fluid. Similar to the effect of
aspect ratio of soft pores, when the soft pore density keeps con-
stant (i.e., 0.5), the larger the bulk modulus of pore fluid, the
larger the stiff pore porosity where Poisson’s ratio at undrained
and unrelaxed states is equal with each other (Figures 1(a) and
1(b)). When the stiff pore porosity keeps constant (i.e., 0.04),
the larger the bulk modulus of pore fluid, the smaller the soft
pore density where Poisson’s ratio at undrained and unrelaxed
states is equal with each other (Figures 1(c) and 1(d)).

3.2. Frequency-Dependent Poisson’s Ratio and Its Attenuation.
With the viscoelastic Zener model, we extend the glycerin-
saturated Poisson’s ratio in Figure 1(b) at stiff pore porosities

0.04 and 0.1 to show the frequency dependence of Poisson’s
ratio and its attenuation from undrained state to unrelaxed
state (Figure 2). At stiff pore porosity of 0.04 (the aspect ratio
of soft pores is 0.005 and the soft pore density is kept at 0.5), as
Poisson’s ratio at unrelaxed state is smaller than that at
undrained state (Figure 1(b)), Poisson’s ratio decreases
monotonously with frequency (Figure 2(a)), and it corre-
sponds to negative attenuation and one negative attenuation
peak (Figure 2(b)). On the other hand, at stiff pore porosity
of 0.1, Poisson’s ratio at unrelaxed state is larger than that at
undrained state (Figure 1(b)), and Poisson’s ratio thus
increases monotonously with frequency (Figure 2(a)), corre-
sponding to positive attenuation and one positive attenuation
peak (Figure 2(b)).

4. Theoretical Analysis Validation with
Published Experimental Data

Frequency-dependent Poisson’s ratio data sets have been
reported for different saturation states and different types of
reservoir rocks (limestones, sandstones, and tight sandstones)
in a wide frequency range using dynamic stress-strainmethod,
mostly being a bridge to calculate other elastic moduli and
their attenuations. Here, we presented the data sets to validate
the previous theoretical analysis. We also used KKR [26] to
verify the published Poisson’s ratio data sets.

4.1. Partially Fluid-Saturated Condition. Sun et al. [18] quan-
titatively assessed the dispersion and associated attenuation
of elastic properties in partially water-saturated Indiana lime-
stone sample (from 0.004 to 100Hz). They obtained partial
saturation by two methods: drying and imbibition. For high
saturations from drainage method (>80%, i.e., 87%, 89%,
92%, and 99%), Poisson’s ratio is frequency-dependent and
has obvious dispersion and one clear attenuation peak. Fur-
thermore, the corresponding shear modulus shows almost
constant with frequency, saturations and fluid distribution.
With a new developed numerical model, which takes the fluid
distribution obtained from CT as input, they attributed the
observed elastic moduli’s dispersion and attenuation to meso-
scopic fluid flow. We present the frequency-dependent Pois-
son’s ratio and its associated attenuation at the saturation
degree of 89%. In Figure 3, Poisson’s ratio increases with fre-
quency, while Poisson’s ratio attenuation keeps positive with
one obvious peak, corresponding to Section 2.1. The measured
Poisson’s ratio shows good agreement with the one calculated

Table 1: The physical parameters in the modelling.

Bulk modulus of mineral matrix K0 (GPa) 37

Shear modulus of mineral matrix μ0 (GPa) 44

Aspect ratio of soft pores α 0.0005/0.005

Soft pore density ρ 0-0.5

Stiff pore porosity ϕs 0-0.1

Bulk modulus of pore fluid Kf (GPa) 2.2(water)/4.4(glycerin)

Viscosity of pore fluid η (Pa∙s) 0.001(water)/1(glycerin)
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Figure 1: Modelling the effect of influence factors (i.e., the concentration of stiff and soft pores, the aspect ratio of soft pores, and the pore
fluid bulk modulus) on Poisson’s ratio with the CPEM model.
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by KKR (data from other saturation degrees are also consistent
with KKR well, but not shown here).

4.2. Fully Fluid-Saturated Condition: Drained State to
Undrained State. Borgomano et al. [15] measured the dis-
persion and attenuation of elastic moduli and Poisson’s ratio
of a Lavoux limestone sample in the frequency range of
0.001-10Hz. A dispersion appears at ~0.2Hz for the
glycerin-saturated condition, affecting all the elastic moduli
and Poisson’s ratio except the shear modulus. Based on 1-
D poroelastic model [29], they concluded that the dispersion
is related to the drained/undrained transition. In Figure 4,
We present the frequency-dependent Poisson’s ratio and
its associated attenuation for the glycerin-saturated Lavoux
limestone sample. Poisson’s ratio has a monotonous increase
as the frequency increases, and the attenuation is positive
with one peak, validating the theoretical analysis in Section
2.2.1. The measured Poisson’s ratio shows reasonable consis-
tence with the one calculated by KKR.

4.3. Fully Fluid-Saturated Condition: Undrained State to
Unrelaxed State. Sun et al. [17] investigated the impact of

microstructure heterogeneity and local measurements on
the dispersion and attenuation of elastic moduli of fully sat-
urated sandstone rock. Using dynamic stress-strain method
and two pairs of strain gauges at different locations, they
observed the same global flow but different squirt flow at fre-
quencies 1-300Hz. Although the different squirt flow
induces different magnitudes of the dispersion and attenua-
tion of elastic moduli and Poisson’s ratio, both of them indi-
cate the transition from undrained state to unrelaxed state
for the fluid-saturated rock. We chose one data set to show
the frequency dependence of Poisson’s ratio and its attenua-
tion from undrained state to unrelaxed state (oil-saturated,
pair #1 in their paper). For the oil-saturated sandstone sam-
ple, the stiff pore porosity is ~22%, the aspect ratio of soft
pore is 0.00045, and the soft pore density is ~0.11. In
Figure 5, the squirt-flow-related Poisson’s ratio increases
with frequency, and the attenuation has positive values with
one peak, corresponding to Section 2.2.2. The predictions of
KKR deviate slightly from the measured Poisson’s ratio;
however, the trend fits the measured data relatively well.
Considering that the measurement errors of Poisson’s ratio
and its attenuation are ±0.006 and ±0.008, respectively
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Figure 2: Modelling the frequency-dependent Poisson’s ratio and its attenuation from undrained state to unrelaxed state with the
viscoelastic Zener model.
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Figure 3: The frequency dependence of Poisson’s ratio and it associated attenuation of partially water-saturated Indiana limestone sample
(from Sun et al. [18]).
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[17], the KKR calculation is reasonably consistent with the
measured Poisson’s ratio. Furthermore, the frequency depen-
dence of Poisson’s ratio agrees well with that in Figures 1(c)
and 1(e) the Numerical Modelling section (i.e., rock contains
large stiff pore porosity and small soft pore density).

On the other hand, Pimienta et al. [20] conducted low-
frequency experiments (0.005-100Hz) on Fontainebleau
sandstone samples to explore the effect of fluids and fre-
quencies on Poisson’s ratio. When one sandstone sample is
fully saturated with glycerin, the frequency dependence of
Poisson’s ratio and its attenuation at frequencies 0.1-
100Hz is mainly caused by squirt flow, corresponding to
the transition from undrained state to unrelaxed state.
Figures 6(a) and 6(b) show the measured data at effective
pressure of 1MPa (sample Fo7 in their paper) and the calcu-
lated KKR. The total porosity of the sample is ~7.3%, the
aspect ratio of soft pores is ~0.001 or slightly lower, and
the soft pore density is ~1. Poisson’s ratio decreases monot-
onously with frequency; however, Poisson’s ratio attenuation
has positive values. The KKR calculation is not in agreement

with the measured data, inferring that the monotonous
decrease of Poisson’s ratio should correspond to negative
Poisson’s ratio attenuation. When we revised Poisson’s ratio
attenuation to negative values (Figure 6(d)), the new KKR
prediction agrees well with the measured one (Figure 6(c)),
validating the theoretical analysis in Section 2.2.2.

4.4. Fully Fluid-Saturated Condition: Drained State to
Unrelaxed State. Here, we also present the experimental data
from Sun et al. [17] and Pimienta et al. [20] to indicate the
frequency dependence of Poisson’s ratio from drained state
to unrelaxed state (Figure 7). For the sandstone sample with
large stiff pore porosity and small soft pore density
(Figures 7(a) and 7(b)), the transition from drained state to
unrelaxed state exhibits “step” shape, and there are two pos-
itive attenuation peaks corresponding to the drained/
undrained transition and the undrained/unrelaxed transi-
tion, respectively. On the other hand, for the sandstone sam-
ple with small stiff pore porosity and large soft pore density
(Figures 7(c) and 7(d)), the transition from drained state to

10–3 10–2 10–1 100 101 102

Frequency (Hz)

0.24

0.28

0.32

0.36

0.4

Po
iss

on
's 

ra
tio

Measured
KKR

(a)

10–3 10–2 10–1 100 101 102

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

Po
iss

on
's 

ra
tio

 at
te

nu
at

io
n

Measured

(b)

Figure 4: The frequency dependence of Poisson’s ratio and it associated attenuation of the glycerin-saturated Lavoux limestone sample
(from Borgomano et al. [15]).
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Figure 5: The frequency dependence of Poisson’s ratio and it associated attenuation of oil-saturated sandstone sample (from Sun et al. [17]).
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unrelaxed state exhibits “bell” shape, and there are one pos-
itive attenuation peak and one negative attenuation peak.
The positive attenuation peak corresponds to the drained/
undrained transition, whereas the negative attenuation peak
corresponds to the undrained/unrelaxed transition. When
the frequency dependence of Poisson’s ratio exhibits “step”
shape, all of Poisson’s ratio attenuation is nonnegative, and
the negative values can be attributed to the measurement error
[17] (Figure 7(b)). The KKR calculation shows reasonable
consistency with the measured Poisson’s ratio (Figure 7(a)).
On the contrary, when the frequency dependence of Poisson’s
ratio exhibits “bell” shape, Poisson’s ratio attenuation related
to the undrained/unrelaxed transition should be negative
(Figure 7(d)). With the revised Poisson’s ratio attenuation,
the corresponding KKR calculation is in good agreement with
the measured Poisson’s ratio (Figure 7(c)).

5. Discussion

5.1. The Negative Poisson’s Ratio Attenuation from
Undrained State to Unrelaxed State. In the Theoretical Anal-
ysis section, Poisson’s ratio attenuation 1/Qν is defined as the
ratio between the imaginary and real parts of complex Pois-
son’s ratio ν∗. With this definition, Poisson’s ratio attenuation
can be obtained by tan (φ1 − φ2), where (φ1 − φ2) is the phase

of complex Poisson’s ratio ν∗, φ1 is corresponding to the phase
of the transverse strain, and φ2 is corresponding to the phase
of the axial strain [20, 37, 38]. When it comes to the transition
from undrained state to unrelaxed state, as the frequency
increases, squirt flow effect decreases both the transverse and
axial strains, which Poisson’s ratio depends on. Poisson’s ratio
cannot always increase with frequency, which is influenced by
the relative variation between the decreasing transverse and
axial strains. Meanwhile, the phase of the transverse strain
(φ1) can lag behind to that of the axial strain (φ2), thus result-
ing in the negative Poisson’s ratio attenuation. On the con-
trary, when calculating the elastic moduli’s attenuations with
tan (φ1 − φ2), φ1 is the phase of the applied stress, and φ2 is
the phase of the corresponding strain. As a viscoelastic
medium, the phase of the corresponding strain (φ2) cannot
be beyond that of the applied stress (φ1). Therefore, the atten-
uations of elastic moduli are always nonnegative.

5.2. Relationship between Elastic Moduli Attenuation
Inequality and Poisson’s Ratio Attenuation. Using the defini-
tion of 1/Q = ImagðMÞ/RealðMÞ [23], we obtain the elastic
moduli’s attenuations, i.e., extensional attenuation (1/QE),
bulk attenuation (1/QK ), P-wave attenuation (1/QP), and S-
wave attenuation (1/QS). The relationship between the
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Figure 6: The frequency dependence of Poisson’s ratio and it associated attenuation of the glycerin-saturated Fontainebleau sandstone
sample (from Pimienta et al. [20]).
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different attenuation modes is expressed in following [21]:

1 − νð Þ 1 − 2νð Þ
QP

= 1 + ν

QE
−
2ν 2 − νð Þ

QS
,

1 − 2ν
QK

= 3
QE

−
2 1 + νð Þ

QS
,

1 + ν

QK
= 3 1 − νð Þ

QP
−
2 1 − 2νð Þ

QS
:

ð4Þ

Furthermore, the different attenuation modes are con-
strained to follow any one of three inequalities [21]:

1
QK

> 1
QP

> 1
QE

> 1
QS

, ð5Þ

1
QK

= 1
QP

= 1
QE

= 1
QS

, ð6Þ

1
QK

< 1
QP

< 1
QE

< 1
QS

: ð7Þ

Rock physics scholars commonly hold that the inequal-
ity will change depending on the state of fluid saturation

or the value of Poisson’s ratio [38–40]. For the sandstones,
the different attenuation modes mostly follow the first
inequality (Equation (5)) for partial fluid saturation (small
Poisson’s ratio), while the different attenuation modes follow
the third inequality (Equation (7)) for full fluid saturation
(large Poisson’s ratio) [38, 41]. However, for the carbonates,
the different attenuation modes follow the first inequality
(Equation (5)) for full fluid saturation (large Poisson’s ratio)
[39]. Here, we examine the relationship between the inequal-
ities and fluid saturation state/Poisson’s ratio using Poisson’s
ratio attenuation.

Gautam [38] rederived the attenuations 1/QS, 1/QK , and
1/QP using the attenuations 1/QE , 1/Qν, and Poisson’s ratio
v:

1
QS

= 1
QE

−
ν

1 + ν

1
Qν

� �
, ð8Þ

1
QK

= 1
QE

+ 2ν
1 − 2ν

1
Qν

� �
, ð9Þ

1
QE

= 1
QE

+ 2 2 − νð Þν2
1 − 2νð Þ 1 − ν2ð Þ

1
Qν

� �
: ð10Þ
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Figure 7: The frequency dependence of Poisson’s ratio and it associated attenuation of fluid-saturated sandstone samples (from Sun et al.
[17] and Pimienta et al. [20], respectively).
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where the attenuation modes 1/QE, 1/QS, 1/QP, 1/QK , and
Poisson’s ratio v (of sedimentary rocks) cannot be negative;
the inequalities (i.e., Equations (5)–(7)) thus depend on the
value of Poisson’s ratio attenuation 1/Qv. If Poisson’s ratio
attenuation 1/Qv is positive, with Equation (8), 1/QS is
smaller than 1/QE, and the different attenuation modes fol-
low the first inequality (Equation (5)); if Poisson’s ratio
attenuation 1/Qv is zero, 1/QS is equal to 1/QE, and the dif-
ferent attenuation modes follow the second one (Equation
(6)); and if Poisson’s ratio attenuation 1/Qv is negative, 1/
QS is larger than 1/QE, and the different attenuation modes
follow the third one (Equation (7)). We conclude that the
inequality between different attenuation modes does not
depend on fluid saturation state (i.e., partial or full satura-
tion) or Poisson’s ratio but on Poisson’s ratio attenuation.
For partial saturation, when mesoscopic fluid flow mecha-
nism dominates, Poisson ratio attenuation is positive (Sec-
tions 2.1 and 4.1), so the different attenuation modes
always follow the first inequality (Equation (5)). For the
transition from drained state to undrained state at full satu-
ration and global fluid flow mechanism dominates, similar
to partial saturation, Poisson ratio attenuation is also always
positive (Sections 2.2.1 and 4.2) and the different attenua-
tions follow the first inequality (Equation (5)). However,
for the transition from undrained state to unrelaxed state

at full saturation and squirt flow mechanism dominates,
Poisson ratio attenuation can be positive or negative or zero,
and the different attenuation modes can follow any one of
the inequalities (i.e., Equations (5)–(7)), not just follow the
third inequality (Equation (7)).

We compute the different attenuation modes corre-
sponding to Figures 3–6 to show the effect of Poisson’s ratio
attenuation on the inequality which the different attenuation
modes follow (Figure 8). Figure 8(a) corresponds to partial
saturation in Figure 3. As Poisson’s ratio attenuation is pos-
itive, the different attenuation modes follow the first inequal-
ity (Equation (5)). Similar to partial saturation, for the
transition from drained state to undrained state at full satu-
ration, the different attenuation modes follow the first
inequality (Equation (5)) (Figure 8(b) corresponds to
Figure 4). For the transition from undrained state to unre-
laxed state at full saturation, when Poisson’s ratio attenua-
tion is positive, the different attenuation modes follow the
first inequality (Equation (5)) (Figure 8(c) corresponds to
Figure 5). On the other hand, when Poisson’s ratio attenua-
tion is negative, the different attenuation modes follow the
third inequality (Equation (7)) (Figure 8(d) corresponds to
Figure 6). The negative values of the attenuation modes
can be attributed to the measurement error and the accumu-
lation of attenuation calculation error.
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Figure 8: The relationship of different attenuation modes at different saturation state (from Sun et al. [18]; Borgomano et al. [15]; Sun et al.
[17]; and Pimienta et al. [20],, respectively).
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6. Conclusion

In this paper, we investigated the frequency dependence of
Poisson’s ratio in fluid-saturated rock at both partial and full
fluid saturation states. We theoretically summarized the fre-
quency dependence of Poisson’s ratio at different saturation
states: (1) When rock is partially fluid-saturated or transits
from drained state to undrained state at full fluid saturation,
Poisson’s ratio increases monotonously with frequency, and
its attenuation is positive with one peak. (2) When rock tran-
sits from undrained state to unrelaxed state at full fluid satura-
tion, three cases exist: 1) Poisson’s ratio monotonously
increases with frequency and has positive attenuation with
one peak, 2) Poisson’s ratio keeps constant with frequency
and has zero attenuation, and 3) Poisson’s ratio decreases
monotonously with frequency and has negative attenuation
with one peak. It is influenced by the concentrations of stiff
and soft pores, the aspect ratio of soft pores, and the pore fluid
bulk modulus. (3) When rock transits from drained state to
unrelaxed state, the frequency-dependent Poisson’s ratio can
appear in two shapes: 1) step shape with two positive attenua-
tion peaks and 2) bell shape with one positive attenuation peak
and one negative attenuation peak.

A numerical modelling example was conducted to explore
the effect of influence factors (the concentrations of stiff and
soft pores, the aspect ratio of soft pores, and the pore fluid bulk
modulus) on the frequency dependence of Poisson’s ratio. It
shows that the introduction of stiff and soft pores has a more
important influence on the undrained Poisson’s ratio than that
at unrelaxed and dry states, but stiff pores and soft pores have
opposite effect (decreasing or increasing). Then, the theoreti-
cal analysis of the frequency dependence of Poisson’s ratio
was validated by published data sets from literature, and the
published data sets were verified by Kramers-Kronig relations.

Finally, based on the frequency dependence of Poisson’s
ratio attenuation, we reanalyzed and validated the relation-
ship between different attenuation modes (i.e., 1/QK , 1/QP,
1/QE, and 1/QS). When Poisson’s ratio attenuation is posi-
tive, different attenuation modes follow the inequality 1/QK
> 1/QP > 1/QE > 1/QS. When Poisson’s ratio attenuation is
0, different attenuation modes follow the equality 1/QK = 1/
QP = 1/QE = 1/QS. When Poisson’s ratio attenuation is nega-
tive, different attenuation modes follows the inequality 1/
QK < 1/QP < 1/QE < 1/QS. The relationship between different
attenuation modes does not lie on saturation state (partial or
full saturation) or Poisson’s ratio but on Poisson’s ratio
attenuation. Once Poisson’s ratio attenuation is obtained,
the relationship between them can be easily determined.

These results help better understand the variation of
Poisson’s ratio (and different attenuation modes) at different
frequencies and saturation states and can be used to improve
the accuracy of geophysical data interpretation.

Appendix

A. CPEM Model

In the CPEM model, with noninteraction approximation,
stiff and soft pores are simultaneously included into a solid

mineral matrix. The elastic moduli are expressed explicitly
[33]:

K0
KC

sat‐hf
= 1 + ϕs

3 1 − ν0ð Þ
2 1 − 2ν0ð Þ

δs
1 + δs

� �
+ ρ

16 1 − ν20
À Á

9 1 − 2ν0ð Þ
δc

1 + δc

� �
,

μ0
μCsat‐hf

= 1 + ϕs
15 1 − ν0ð Þ
7‐5ν0

+ ρ
16 1 − ν0ð Þ

15 1 − ν0/2ð Þð Þ + 32 1 − ν0ð Þ
45

δc
1 + δc

� �� �
,

ðA:1Þ

where KC
sat‐hf and μCsat‐hf are fluid-saturated bulk and shear

moduli at unrelaxed state, respectively; K0 and v0 are the
bulk modulus and Poisson’s ratio of the solid mineral
matrix, respectively; ϕs is the stiff pore porosity; δs is the
coupling parameter related to stiff pores; δc is the coupling
parameter related to the soft pores; and ρ is the soft pore
density. The coupling parameters δs, δc and the density ρ
are obtained by

δs =
2E0

9 1 − ν0ð Þ
1
Kf

−
1
K0

 !
, ðA:2Þ

δc =
απE0

4 1 − ν20
À Á 1

K f
−

1
K0

 !
, ðA:3Þ

ϕc =
4
3παρ,

ðA:4Þ

where ϕc and α are the porosity and the aspect ratio of soft
pores, respectively; E0 is Young’s modulus of the solid min-
eral matrix; and K f is the pore fluid bulk modulus.

The dry/drained bulk and shear moduli (KC
dry and μCdry)

for the rock is then obtained by taking the pore fluid bulk
modulus as 0 in the coupling parameters δs, δc (i.e., Equa-
tions (A.2) and (A.3)):

K0
KC

dry
= 1 + ϕs

3 1 − ν0ð Þ
2 1 − 2ν0ð Þ + ρ

16 1 − ν20
À Á

9 1 − 2ν0ð Þ ,

μ0
μCdry

= 1 + ϕs
15 1 − ν0ð Þ
7‐5ν0

+ ρ
16 1 − ν0ð Þ

15 1 − ν0/2ð Þð Þ + 32 1 − ν0ð Þ
45

� �
:

ðA:5Þ

B. Zener Model

The viscoelastic Zener model is a combination of a spring in
series with a parallel assemblage with a spring and a dashpot
[20, 37]. In the model, the frequency-dependent modulus
MðωÞ and its attenuation 1/QMðωÞ are expressed as

M ωð Þ =Munrelaxed −
Munrelaxed −Mundrained

1 + ωτð Þ2 , ðB:1Þ

1/QM ωð Þ = ΔM
ωτ

1 + ωτð Þ2 , ðB:2Þ
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ΔM = Munrelaxed −Mundrainedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MundrainedMunrelaxed

p , ðB:3Þ

where Munrelaxed is the unrelaxed modulus, Mundrained is the
undrained modulus, and τ is the relaxation time and
obtained by 1/ð2πf 0Þ, and f0 is the characteristic frequency
where attenuation peak appears. The characteristic fre-
quency f0 is determined by [4]

f0 =
K0α

3

η
, ðB:4Þ

where K0 is the bulk modulus of mineral matrix, α is the
aspect ratio of soft pores in the rock, and η is the viscosity
of pore fluid. The parameters have same definitions in the
Numerical Modelling section.
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