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The soil pressure on the bottom surface of the foot blades is an important monitoring point during the sinking process of large
underwater caissons. Complex soil-structure interactions occur during the sinking process, making it difficult to accurately
predict the soil pressure of foot blades. Accurate construction processes often rely on data from the soil pressure of foot blades
in the field. In this study, a data-driven approach is used to establish the relationship between the amount of sinking of the
caisson and the soil pressure of foot blades. Furthermore, by improving the splitting method of the original Classification and
Regression Tree (CART) algorithm, a single model’s numerical prediction of 80-foot blades soil pressures is realized. The
improved CART model, multilayer perceptron (MLP), long short-term memory (LSTM), and a linear regression model are
compared through a comprehensive multiparameter evaluation method. Finally, this article discusses the deployment scheme
of the model by comparing and analyzing the data in the time period of 10 : 00 on July 29, 2020, and 23 : 00 on August 7, 2020.
The experimental results can satisfy the engineering demands and provide a basis for further data-driven intelligent control of
large caisson sinking.

1. Introduction

As the main bridge engineering deep foundation, a caisson
has the advantages of excellent integrity, high load-bearing
capacity, superior structural stiffness, small floor area, and
good seismic performance [1–3]. By extracting soil from
the well, the caisson uses its gravity and sinking aid to over-
come buoyancy and soil resistance in order to sink. The
sinking process can be analyzed using the soil pressure of
foot blades to calculate the end resistance, thus, providing
a basis for instructions during construction [4]. However,
with the gradual increase in the number of large caissons
being built, the theories developed for small foundations
may not predict the soil pressure of large caissons accu-
rately [5].

At present, some achievements have been made in
studying caisson foot blades. For example, Jiang et al. [6]
found that the sand migration during the sinking of the

Hutong Yangtze River Bridge has a relatively significant
effect on the soil pressure of foot blades through traditional
model experiments. Yan et al. [7] studied the caisson of
the Oujiang River North Estuary Bridge as an example to
demonstrate the effective reduction of the soil pressure of
foot blades by layered excavation during the construction
of the caisson. Zhang et al. [8] and Baogang et al. [9] found
that the sudden sinking of the caisson during construction
was related to the short time decrease of the soil pressure
of foot blades. Yea and Kim [10] investigated the three-
dimensional distribution pattern of the soil pressure of foot
blades during sinking for the caisson of Youngjong Grand
Bridge by field experiments. The characteristics of soil pres-
sure of caisson in different engineering backgrounds have
been well studied. However, due to complex soil-structure
interactions, mechanical properties have significant nonline-
arity and plasticity during the sinking of the caisson [11].
Existing descriptive design approaches do not readily
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capture the accurate prediction of the soil pressure of foot
blades. In recent years, during the construction of a caisson,
a series of sensors are usually installed to obtain information
on the dynamics of the sinking foot blades of the caisson
[12]. However, the data analysis capability is not robust;
therefore, it cannot predict the soil pressure state of the cais-
son’s foot blades, which increases the uncertainty of caissons
construction.

With the development of artificial intelligence and
machine learning technology, data-driven applications are
being researched and applied in many fields. Most of the
current data-driven bridge engineering applications are
focused on bridge health monitoring [13]. For example, a
data-driven and computer vision-based approach to auto-
matically identify pitting corrosion [14], crack recognition
based on a convolutional neural network [15], and a hybrid
artificial neural network-based imperial competitive algo-
rithm used to predict damage of slab-on-girder bridge struc-
tures [16]. However, there are minimal studies on data-
driven methods for bridge construction processes, especially
for large caisson construction. In terms of algorithm analy-
sis, most data-driven bridge engineering-based applications
focus on the output of a single target. Prediction of multi-
class damage [17] and crack width [18] by algorithms such
as convolutional neural networks. Output values such as
these have only one category or a single regression objective,
making it difficult to solve the current problem of the multi-
label regression of the caisson soil pressure of foot blades.
There are two main solutions to the multilabel problem.
One type of processing is through problem transformation,
which focuses on manipulating and processing the dataset
in order to transform the multilabel learning problem into
one or more single-label problems [19–21]. The other is
via algorithmic adaptation methods, by improving existing
methods that are needed to be directly suitable for learning
multilabel datasets [22–24]. In the caisson sinking dataset,
the values of the multiple soil pressures of foot blades are
predicted simultaneously, and this kind of multilabel pro-
cessing during the bridge construction process needs to be
further studied. Regarding model evaluation indexes, regres-
sion problems are generally evaluated by a single index such
as mean square error or a fitting coefficient. However, during
multimodel evaluation, it is easy to have inconsistent index
tendencies of different models, making it difficult for multi-
ple models to conduct comprehensive and accurate quanti-
tative evaluations. Therefore, the comprehensive judgment
of multiple models is conducive to comparing and selecting
models during the experimental process.

An algorithm based on an improved Classification and
Regression Tree (CART) implemented for multilabel predic-
tion will be investigated in detail within this study. Specifi-
cally, the primary contributions of this study are as follows:
(1) the performance of neural network methods and
improved CART models for multilabel foot blades regres-
sion prediction of soil pressure is investigated by compari-
son. Among them, multilayer perceptron (MLP) and long
short-term memory (LSTM) are chosen as typical neural
network representatives. (2) A multilabel comprehensive
evaluation method is improved, and a model comparison

and a parameter optimization are performed through com-
prehensive evaluation indexes. (3) The results of the impact
of the model on different learning approaches during field
tests are discussed. Based on the natural advantages of the
data-driven approach, the present method can be easily
extended to other scenarios of caisson construction after suf-
ficient data is collected.

The framework of this study is shown in Figure 1. The
second section will explain the engineering background as
well as the data acquisition and preprocessing of the GPS
data and the soil pressure of foot blades. The third section
will investigate the improved CART algorithm. The fourth
section focuses on parameter optimization and model com-
parison based on the improved multiparameter integrated
evaluation index. In the fifth part, the deployment scheme
of the model and the field prediction results is discussed.

2. Engineering Background and
Data Preparation

2.1. Engineering Background. The main channel bridge of
the Changtai Yangtze River Bridge is a double-layer cable-
stayed bridge. The upper layer of the bridge is a highway,
and the lower layer is an intercity railway and ordinary high-
way. The two pylons of the main channel bridge adopt a
large-scale steel caisson foundation, as shown in Figure 2.
The foundation plane of the caisson at pier #5 of the main
bridge is round-end, the elevation is stepped, and the width
of the step is 9.0m. The bottom surface of the caisson is
95.0m long, 57.8m wide, and the radius of the round end
is 28.9m. The top surface of the caisson is 77.0m in length,
39.8m in width, and 19.9m in radius at the round end. The
outer wall of the caisson is 1.8m thick and 43m high, the
inner wall thickness is 2.0m, and the height is 64m. The
inner and outer ring partition walls are both 1.4m thick,
the outer ring partition wall is 64m high, and the inner ring
partition wall is 39m high. The standard size of the inner
wellbore is 11m in length and 11m in width. The partition
and inner shaft wall are inverted by 1.5m in length and
1.5m in width. The steel shell structure has 28 compart-
ments. The river section where the steel caisson is located
is a tidal section of the lower reaches of the Yangtze River.
The tidal level is affected by both the Yangtze River runoff
and the tide. The 20-year encounter bridge cross-section
vertical average maximum velocity ranges from 1.93m/s to
2.1m/s. The dry period vertical average maximum velocity
is less than 1.05m/s. The steel caisson is located on the north
side of the main channel area. The topography of the pier is
relatively stable. The surface layer of the riverbed is loose silt,
with an uneven layer thickness that ranges from 11.6 to
4.8m thick and has poor engineering properties. Most of
the sandy soil layers drilled into pier #5 reveals a sandy
gravel cement layer, which is a nonlayered structure and is
distributed sporadically, revealing that the depth primarily
ranges from -35 to -45m under the river bed.

The location hydrology and geological conditions of
Changtai Yangtze River Bridge are complex, the volume of
the caisson is large, and the structure form is particularly
novel. The specific characteristics and construction
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difficulties are mainly concentrated in that the safety risk
and attitude control of initial caisson are difficult. As well
as during construction, the caisson has been in a state of
dynamic balance, requiring many monitoring items and a
large number of measuring points. Traditional monitoring
systems have lagging information feedback, which cannot
predict the soil pressure of foot blades accurately, thus,
increasing the uncertainty of caisson construction.

2.2. Data Preparation. In order to monitor the sinking pos-
ture of the caisson and adjust the construction plan in time,
Beidou GPS sensors are arranged on the top of the caisson,
and the results of the manual high-precision measurement
are checked every day to ensure that the monitoring data is
accurate and reliable. The installation position of the Beidou
control points is shown in Figure 3(a). Figure 3(b) shows the
installation positions of the soil pressure of foot blades
sensors.

In Figure 3(a), h1, h2, h3, h4, and h5 are the measured
GPS values, and h5 is the average value of the four measured
points. The sinking amount (SA) is calculated by the follow-
ing equation:

SAi = hi,t − hi,t−1, ð1Þ

where i is 1-5, representing the sinking amount of 5 loca-
tions, hi,t is the vertical value of the i-th monitoring position
at time t, and hi,t−1 is the monitoring data of the vertical
direction at time t − 1 of the i-th monitoring position.

The sinking data from July 19, 2020, to July 29, 2020,
and the soil pressure of foot blades data for the correspond-
ing times formed the data set, as shown in Tables 1 and 2.

The sinking data is recorded every 10 minutes, and the
soil pressure of foot blades is recorded every 30 minutes.
During the complex construction of the caisson, some of
the foot blades sensors are damaged despite the many pro-
tections made to protect the sensors; therefore, 80 of them
with normal sensors were selected for learning and predic-
tion. Data aggregation of the sinking amount data and the
80 foot blades soil pressure data is based on a 1h period;
thus, the raw dataset was constructed. The raw dataset con-
tains a total of 249 samples and 85 features (5 features for
the sinking amount and 80 features for the soil pressure of
foot blades). The model was tested on 5 out of the 249 sam-
ples from July 29 at 4 : 00 to July 29 at 8 : 00. The remaining
244 were tested for model training and validation. The train-
ing and validation sets were split according to 80% (195
samples) and 20% (49 samples), respectively. The model
was trained via the training set and the validation set evalu-
ated the model. Mean square error (MSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and
the fitted coefficient (R2) were calculated for each model.

MSE = 1
n
〠
n

i=1
yi − ŷið Þ2, ð2Þ

MAE = 1
n
〠
n

i=1
yi − ŷið Þj j, ð3Þ

MAPE = 1
n
〠
n

i=1

ŷi − yi
yi

����
����, ð4Þ

R2 = 1 − ∑n
i=1 yi − ŷið Þ2

∑n
i=1 yi − �yð Þ2 ,

ð5Þ

where yi is the true value, ŷi is the predicted value, �y is the
mean of the true value of the sample, and n is the number
of samples.

3. Improved CART Algorithm

A decision tree is an example-based inductive learning
approach that constructs a tree-like regression model from
the given samples. It is a relatively simple algorithm with
excellent robustness compared to other regressions.

GPS data

Soil pressure
of foot blade

Improved CARTData preprocessing
Model

comparison and
selection

Multi-index
evaluation method

Parameter
optimization

Model
comparison

Discussion
of field

prediction

Figure 1: The flow chart of the soil pressure of foot blades prediction.

Caisson

Figure 2: Caisson under construction.
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Research on the soil pressure of foot blades prediction based
on CART [25] is carried out in this study and introduces
how to use the decision trees in order to solve the regression
problem; lets us define the input matrix x as

x = x 1ð Þ, x 2ð Þ, x 3ð Þ, x 4ð Þ, x 5ð Þ
� �

=

x 1ð Þ
1 x 2ð Þ

1 x 3ð Þ
1 x 4ð Þ

1 x 5ð Þ
1

x 1ð Þ
2 ⋱ ⋮

⋮ ⋱ ⋮

x 1ð Þ
n ⋱ ⋮

⋮ ⋮

x 1ð Þ
N x 2ð Þ

N x 3ð Þ
N x 4ð Þ

N x 5ð Þ
N

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
,

ð6Þ

where xð1Þ, xð2Þ, xð3Þ, xð4Þ, xð5Þ represent the input monitoring
SA1, SA2, SA3, SA4, and SA5 sinking amount data, also called
features, and N represents the number of samples. Each
sample strip corresponds to 80 foot blades soil pressure
points in the following equation.

yn = yn,1,⋯,yn,q,⋯,yn,80
n o

: ð7Þ

It is not possible to directly output 80 foot blades soil
pressure values with conventional CART. For the multiob-
jective regression problem, there are two general solutions:
the first one is to convert the multiple regression problem
into a single-objective regression, such that if 80 foot blades
soil pressure values need to be predicted, then 80 single
regression models are constructed, and the soil pressure
values at different locations are output. However, this
method is too cumbersome, and the training complexity is
large and time consuming. The alternative way is to build
a multiobjective CART regression model [26]:

minp,a minc1 〠
xn∈R1 p,að Þ

yn − c1ð Þ2 + minc2 〠
xn∈R2 p,að Þ

yn − c2ð Þ2
" #

,

ð8Þ

minp,a minc1 〠
xn∈R1 p,að Þ

yn,q − c1,q
� �2

+ minc2 〠
xn∈R2 p,að Þ

yn,q − c2,q
� �2

" #
:

ð9Þ
Equation (8) is the traditional CART regression node

division method, where yn is the target value, c1 and c2 are
the predicted values within the intervals of R1 and R2,
respectively. The minimum point a is chosen as the splitting
point by calculating the mean square error of R1 and R2.
The target values in this method are not multidimensional,
and the splitting process cannot calculate the loss under
the multidimensional data, so the traditional CART cannot
be carried out for multiobjective regression. With the
improved splitting methods of Eq. (8), Eq. (9) integrates

h1

h4h5

h2

h3

(a) (b)

Figure 3: Sensor locations. (a) Beidou GPS sensor locations. (b) Bottom soil pressure of foot blades sensor locations.

Table 1: Sample sinking amount data.

Time SA-1 SA-2 SA-3 SA-4 SA-5

2020-07-19 00 : 00 5.701 5.413 5.554 5.534 5.568

2020-07-19 00 : 10 5.734 5.429 5.582 5.534 5.632

2020-07-19 00 : 20 5.715 5.386 5.553 5.511 5.601

2020-07-19 00 : 30 5.749 5.442 5.582 5.531 5.605

2020-07-19 00 : 40 5.738 5.435 5.577 5.536 5.599

2020-07-19 00 : 50 5.767 5.456 5.604 5.562 5.633

Table 2: Sample soil pressure of foot blades data.

Time RF-1 RF-2 RF-16 RF-124 RF-125

2020-07-19 00 : 00 0.100 0.100 0.775 2.968 2.204

2020-07-19 00 : 30 0.100 0.100 0.806 2.964 2.201

2020-07-19 01 : 00 0.100 0.100 0.929 2.959 2.195

2020-07-19 01 : 30 0.100 0.100 0.796 2.953 2.189

2020-07-19 02 : 00 0.100 0.100 0.638 2.941 2.180

2020-07-19 02 : 30 0.100 0.100 1.008 2.936 2.172

1 2 3 4 5 6 1 2 3 4 5

Time line

7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

1 4 9 7 8 2 3 10 5 6 1 2 3 4 5

(a) Raw data

(b) Training method one

(c) Training method two

Figure 4: Training methods.
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Figure 5: Continued.
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the minimum loss of the q-dimensional output value as the
splitting point when calculating the loss. The leaf nodes of
CART can be written explicitly as

ĉ1 =
1
Nm

〠
xn∈R1 p,að Þ

yn and ĉ2 =
1
Nm

〠
xn∈R2 p,að Þ

yn, ð10Þ

ĉ1,q =
1
Nm

〠
xn∈R1 p,að Þ

yn,q and ĉ2,q =
1
Nm

〠
xn∈R2 p,að Þ

yn,q: ð11Þ

Equation (10) is the output form of the traditional model
that calculates the average value of the R1 and R2 regions as
the output of the target values. Improving the above method
in order to obtain Eq. (11), the average value of the output
target in q dimensions was calculated as the output of mul-
tiple targets within the R1 and R2 regions, respectively.

4. Analysis of the Experimental Results

4.1. Improved CART Training Methods. We split the data
according to the temporal order for the prediction of the soil
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Figure 5: Results of different training methods. (a) Disordered training method MAPE value. (b) Disordered training method MSE value.
(c) Disordered training method R2 value. (d) Disordered training method MAE value. (e) Ordered training method MAPE value. (f)
Ordered training method MSE value. (g) Ordered training method R2 value. (h) Ordered training method MAE value.
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pressure of foot blades, where the training was performed
separately according to whether the data set was shuffled
or not. Examples are shown in Figure 4(a) below, blue 1-
10 are the 10 samples on the timeline, and red 1-5 are the
test samples. We used two training methods, the first one
is shown in Figure 4(b), according to the time order, the first
80% of the data is used as the training set (data samples 1-8
in the yellow area) and 20% as the validation set (samples 9-
10 in the green area). Alternatively, as shown in Figure 4(c)
ignoring, the temporal order, the overall random selection
divides the training and validation sets, i.e., 1-10 in the orig-
inal data are shuffled, 80% of the data is randomly selected as
the training set and 20% as the validation set.

A grid search method is used to select the parameters for
the maximum depth of the decision tree and the minimum
number of leaf node samples, where the maximum depth

is 2, 3, 4, 5, 6, 7, 8, 9, and 10, and the minimum number
of leaf node samples is 1, 2, 3, 5, and 10. There are 45 com-
binations of the maximum depth and the minimum number
of leaf node samples, such as <maximum depth is 2 and the
minimum number of leaf node samples is 1>, and <maxi-
mum depth is 2 and the minimum number of leaf node sam-
ples is 2>. In Figure 5, (a), (b), (c), and (d) are the results of
training method 2 (disordered method) in Figure 5, and (e),
(f), (g), and (h) are the results of training method 1 (ordered
method) in Figure 5, respectively.

As the depth increases, the nonlinear representation of
the tree model is gradually strengthened. The metrics of both
ordered and disordered training on the training set show a
step-up trend. The accuracy of the ordered training, how-
ever, gradually decreases on the validation and test sets.
For the regression coefficient, for example, when the depth
is 2, and the minimum number of leaf node samples 1, the
fitting coefficient of the training set is 0.8900, and when
the depth is 10, and the minimum number of leaf node sam-
ples is 1, the fitting coefficient of the training set is 0.9947.
The accuracy improved by 11.76%; however, the validation
and test sets decreased by 37.16%, and the accuracy of the
test set decreased by 50.17%. In the disordered training,
the fit coefficient of the training set is 0.8768 when the depth
is 2, and the number of minimum leaf samples is 1. It
increased to 0.9973 when the depth is increased to 10, while
the maximum decrease in the fit coefficient of the validation
set and the test set is approximately 16%. As the depth
increases, the performance of the training set gradually
increases, and the performance of both the validation and
test sets decreases, especially within the ordered training.

Increases in the minimum number of leaf node samples
at the same depth show an improvement in the robustness of
the model, in the model at a depth of 10, the number of min-
imum leaf samples in the validation set ranges from 1 to 10
in the disordered training, and the fit coefficient increases
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Figure 6: The average value of the index under different training methods. (a) Ordered training of the mean value of each index. (b)
Disordered training of the mean value of each index.
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Table 3: Cross-validation results.

Validation set Test set
Model MAPE MSE (MPa2) R2 MAE (MPa) MAPE MSE (MPa2) R2 MAE (MPa)

MLP 0.1127 0.0959 0.8545 0.1273 0.1852 0.2186 0.8634 0.2584

LSTM 0.1988 0.1482 0.7754 0.2109 0.6275 0.9932 -4.3973 0.6421

Linear regression 0.0900 0.0868 0.8764 0.0931 0.9598 0.2793 0.8509 0.3126

Improved CART 0.0487 0.0487 0.8862 0.0671 0.1114 0.1516 0.8632 0.1658

Table 4: Multiparameter model evaluation results.

Validation set Test set Integrated evaluation index value Ranking
Model MAPE MSE R2 MAE MAPE MSE R2 MAE
BP 0.2479 0.2669 0.7139 0.3064 0.5492 0.6383 1.0000 0.5169 4.2395 2

LSTM 0.0000 0.0000 0.0000 0.0000 0.0701 0.0000 0.0000 0.0000 0.0701 4

Linear regression 0.3922 0.3462 0.9116 0.5904 0.0000 0.4604 0.9976 0.3669 4.0653 3

Improved CART 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 8.0000 1
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Figure 8: Prediction scheme.
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from 0.8687 to 0.9038. It indicates that in the depth deter-
mined case, the accuracy of the validation model and test
sets can be improved by increasing the number of minimum
leaf samples.

In the ordered training method, since the data set is
split according to the temporal order, the construction
conditions change more significantly over time, and the
data learning in the preceding time period may not be suf-
ficient to support the later predictions. Prediction ability is
significantly reduced in the training, validation, and test
sets in Figure 6(a), realizing that MSE, R2, and MAE indi-
cators show the best results in the training set, followed by
the validation set, and the worst was observed in the test
set. The gap between the training and test set indicators
is relatively large; in terms of the fit coefficient, the test
set is reduced by 36.65% compared to the training set.
In Figure 6(b), the average value of the disorder training
is shown. Because the model learns the data characteristics
of extended time periods and multiple working conditions
during training, the model realizes a better robustness. The
average fitting coefficient decreases from 0.9325 in the
training set to 0.8716, which is 6.53% lower, and the sta-
bility of the model is better compared with the ordered
training method.

In the evaluation metrics, the closer the R2 is to 1, the
closer the MSE, MAE, and MAPE are to 0, the better the
model performance is. Different indicators do not have the
same tendency to evaluate the predictive capability of the
model. Furthermore, in this study, the MSE, MAE, and
MAPE are transformed as follows:

MSE′ = 1
100 ×MSE ,

ð12Þ

MAE′ = 1
100 ×MAE ,

ð13Þ

MAPE′ = 1
100 ×MAPE :

ð14Þ

In the regression models, different evaluation indica-
tors are focused on different aspects. The evaluation of dif-
ferent models via a single indicator lacks
comprehensiveness. Accordingly, a comprehensive evalua-
tion of different models with multiple indicators is needed.
The ranking method proposed by Zorlu et al. [27] in 2008
is a commonly used multi-index comprehensive evaluation
method. Zhang et al. [28] carried out optimization in
terms of the tendency uniformity and normalization based
on Zorlu. However, there is no comprehensive consider-
ation of the different data sets, and the following steps fur-
ther improve the above study.

Step 1. Calculate the evaluation indexes of MSE, MAE,
MAPE, and R2 for the training set and validation set,
respectively.

Step 2.MSE′,MAE′, andMAPE′ by tendency uniform con-
version of MSE, MAE, and MAPE.

Step 3. MSE′, MAE′, MAPE′, and R2 are normalized by the
formula:

�IM = IM −max ðIÞ/max ðIÞ −min ðIÞ to get MSE, MAE,
MAPE, and R2.

Step 4. MSE, MAE, MAPE, and R2 of the training and vali-
dation set are summed to get the comprehensive evaluation
index.

The evaluation metrics for different parameter combina-
tions of the disordered training under the training and vali-
dation sets are calculated according to the above
comprehensive evaluation algorithm to obtain Figure 7,
showing that the model has the highest comprehensive eval-
uation metrics at a depth of 5 and a minimum number of
leaf node samples of 10.

4.2. Comparison of Model Performances. A comparison of
the test results of MLP [29], LSTM [30], and the linear
regression [31] models are analyzed in this study. The 5-
fold cross-validation method is used to divide the sample
into 5 equal parts according to 20%, and 4 parts are taken
for training and the other 1 part for validation. The average
of the five results is used as the evaluation result of the model
validation set. The test set evaluation results are obtained by
the last five hours of data.

Average values of the 5-fold cross-validation of the MLP,
LSTM, linear regression model, and the improved CART
model are shown in Table 3. The linear regression model,
which requires the modeling of each soil pressure of foot
blade feature; thus, constructing 80 linear regression models
to meet the engineering requirements, is more complex and
computationally intensive compared to the improved CART
model. Table 4 is obtained through tendency transforma-
tion, and after normalization, the multiparameter model
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Figure 9: Results of different forecasting schemes.
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evaluation results are shown in Table 3. Various index
results of the validation and the test sets were added to com-
bine and evaluate the robustness of the model simulta-
neously. Finally, the results were ranked. Based on the
evaluation results of the multi-index model in Table 4, it is
clear that the improved CART model performs the best in
all indexes compared with other models in the validation

and test sets in terms of the soil pressure of foot blades pre-
diction it was ranked first overall.

5. Discussion

Previous analytical studies confirm the forecasting schemes
and the forecasting algorithms, but whether the model has
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Figure 10: Real and predicted values of the model at different moments in time. (a) July 30, 2020 20 : 00 real value; (b) August 3, 2020 20 : 00
real value; (c) August 7, 2020 18 : 00 real value; (d) July 30, 2020 20 : 00 predicted value; (e) August 3, 2020 20 : 00 predicted value; (f) August
7, 2020 18 : 00 predicted value.
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sufficient capacity for field forecasting is subject to further
discussion. A total of 230 data points from July 29, 2020,
10 : 00 to August 7, 2020, 23 : 00, are used in the discussion
as the evaluation data set for the long-term prediction of
the model. Due to the differences in the sinking conditions
of the caissons, two schemes were selected for the field pre-
diction. In Figure 8(a) scheme one, forgetting is used for
the first scheme, where the model learns 43 hours of data,
predicts the next five hours of data, and updates the model
every five hours. Figure 8(b) scheme two, continuous accu-
mulation of the data set, each time is predicting the next five
hours of data, and then updating the model once.

The prediction results of schemes 1 and 2 are shown in
Figure 9. It is found that there is no significant difference
between the two schemes with a fitting coefficient of
0.7699 for scheme 1 and 0.7719 for scheme 2, under the
detection of 230 data points. It shows that in the field fore-
casting process, it is only necessary to update the model at
regular intervals in order to achieve a relatively good fore-
casting effect. We extracted the true and predicted values
of the data at 20 : 00 on July 30, 2020, 20 : 00 on August 3,
2020, and 18 : 00 on August 7, 2020, for visualization. The
model’s predicted values for the soil pressure of foot blades
match the real values, as shown in Figure 10.

6. Conclusion

During the sinking of large caissons, monitoring the soil
pressure of foot blades plays a key role during its bridge
engineering-based applications safe and smooth sinking. In
this study, research based on the data-driven prediction of
the soil pressure of foot blades during sinking was developed
using the Changtai Yangtze River Bridge caisson as an exam-
ple, several conclusions were reached as follows:

(1) The multilabel task of a single model for the soil
pressure of foot blades of a caisson was achieved by
improving the splitting rule of CART. A multipa-
rameter model evaluation algorithm was imple-
mented to select parameters for the maximum
depth and a minimum number of samples of the
minimum leaf node of the improved CART. The
optimal combination of parameters with a maxi-
mum depth of 5 and a minimum number of leaf
node samples of 10 was selected. In the test set,
MAPE is 0.1114, MSE is 0.1516MPa2, R2 is 0.8632,
and MAE is 0.1658MPa

(2) The improved multiparameter model evaluation
algorithm compared and analyzed the improved
CART, MLP, LSTM, and the linear regression
models. It is concluded that the CART model is
more suitable for predicting the soil pressure of foot
blades during the sinking of the caisson

(3) A total of 230 samples from July 29, 2020, 10 : 00 to
August 7, 2020, 23 : 00, were used to continue the
evaluation of the improved CART model. Compari-
son of the two prediction schemes for whether the
data were forgotten or not revealed no significant

differences, with the average fit coefficient being
approximately 0.77. The results of the experiments
can be satisfied with the engineering requirements

(4) A shift from empirical decision making to a data-
driven based approach needs to be further investi-
gated. Data-driven predictions of the soil pressure
of foot blades are part of the overall intelligent con-
struction of the caisson
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