
Research Article
Parameter Optimization Study of Gas Hydrate Reservoir
Development Based on a Surrogate Model Assisted Particle
Swarm Algorithm

Le Zhang ,1,2 Xin Huang,1,2 Jiayuan He,1,2 Xueqi Cen,1,2 and Yongge Liu3

1State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Sinopec Petroleum Exploration &
Production Research Institute, Beijing 102206, China
2Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, China
3China University of Petroleum (East China), 266580, China

Correspondence should be addressed to Le Zhang; zhangle2017.syky@sinopec.com

Received 7 November 2021; Accepted 15 December 2021; Published 18 January 2022

Academic Editor: Zhenzhen Wang

Copyright © 2022 Le Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using surrogate model to assist parameter optimization of oil and gas reservoir development can greatly reduce the call times of
numerical simulator and accelerate the optimization process. However, for serial simulators or parallel simulators with low
speedup ratio, the conventional method is still time-consuming. Firstly, an improved surrogate model assisted particle swarm
optimization (PSO) algorithm was proposed in this paper. Then, the performance of the algorithm was analyzed using the
Rastrigin function. Finally, the key operation parameters of a gas hydrate reservoir by depressurization−to−hot−water−flooding
method were optimized with the new method. The results show that the new method only affects the update of the global
optimal particle without interfering with the calculation process of the local optimal particles at the early stage of optimization.
It realizes the rapid addition of the particle samples through the good parallel features of the PSO algorithm, and therefore,
improve the precision of surrogate model in a short time. At the late stage of optimization, it is transformed into a local
surrogate model to achieve rapid convergence, when the training time of the surrogate model exceeds the calculation time of
the simulator. Both the optimization of Rastrigin function and operation parameters of gas hydrate development reveal that
the new algorithm greatly reduces the number of iterations under the same accuracy and thus successfully accelerates the
optimization process.

1. Introduction

Multiparameter optimization is a common problem in oil and
gas industry. At present, the optimization methods that can be
combined with simulators mainly include gradient-based
algorithms, approximate gradient-based algorithms, and intel-
ligent algorithms [1–3]. Gradient-based algorithms need to
accurately obtain the gradient of the objective function, and
therefore, the simulator must be open source so that the code
can be modified to obtain the gradient [4]. Approximate gra-
dient algorithms mainly include Levenberg-Marquardt (LM)
algorithm, simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm, etc. These kinds of algorithms usually

have fast convergence speed, but it is easy to obtain local opti-
mum for nonconvex problems [5, 6]. Intelligent algorithms
include genetic algorithm, simulated annealing algorithm,
particle swarm optimization (PSO) algorithm, etc. Their opti-
mization process does not depend on the gradient of the objec-
tive function, and the differentiability of the objective function
is not necessary [7, 8]. In addition, the global search ability of
these algorithms is very strong, so compared with the approx-
imate gradient algorithms, the probability of obtaining the
global optimum of nonconvex problems is greatly enhanced.
Therefore, intelligent optimization algorithms have been
widely used in multiparameter optimization problems in the
oil and gas industry in recent years [9, 10].
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However, many researchers found that the conventional
intelligent optimization algorithms have a slow convergence
speed. A large number of iterations are required, and the
numerical simulator needs to be called hundreds or even thou-
sands of times. Therefore, the calculation time for complex
models can be up to several weeks or even longer [11, 12]. In
recent years, with the development of machine learning tech-
nology, the surrogate model assisted optimization algorithm
points out a new direction for rapid optimization [13]. Based
on the known information about an objective function, a sur-
rogate model can be trained to obtain the potential location of
optimum, which then are verified by the numerical simulator.
Compared with conventional intelligent optimization algo-
rithms, the surrogate model assisted optimization algorithm
can find the potential positions and accelerate the convergence
quickly [14, 15]. Using radial basis function network to train
the surrogate model, Yu et al. proposed a surrogate-assisted
PSO algorithm and proved the effectiveness of the new
method [16]. Cai et al. also proposed a surrogate-assisted
PSO algorithm which focus on the balance between the pre-
diction ability of surrogates and global search ability of PSO,
and the results show that the new method can handle high-
dimensional expensive problems well [17]. Zhang et al. trained
the surrogate model with random forest algorithm and pre-
dicted the creep index. The results show that the prediction
accuracy of the method is significantly higher than that of
empirical model [18]. Chen et al. proposed a surrogate model
assisted differential evolution method and optimized the oper-
ation parameters in waterflooding production. A higher net
present value and better convergence speed are achieved by
the new algorithm [19].

From the above analysis, it can be seen that many studies
have proposed a variety of computing processes for different
surrogate models and intelligent optimization algorithms.
Meanwhile, the surrogate model shows a good ability to accel-
erate the convergence speed. However, most of these models
focus on reducing the call times of numerical simulators. For
serial simulators or parallel simulators with low speedup ratio,
the computing resources are often idle in the calculation pro-
cess, resulting the low computing efficiency. Making full use
of the good parallel characteristics of intelligent optimization
algorithms and how to design workflow to make rational use
of computing resources have not been fully considered. There-
fore, based on the parallel characteristics of PSO algorithm, this
paper proposed an improved surrogate-assisted particle swarm
optimization algorithm (i-SAPSO) and verified it with Rastri-
gin function. Then, the operation parameters of gas hydrate
reservoir developed by depressurization−to−hot−water−flood-
ing method were optimized by the new method. Finally, the
performance of different algorithms and rationality of optimi-
zation results were analyzed.

2. Surrogate Model Assisted Particle
Swarm Optimization

2.1. PSO Algorithm. PSO algorithm was proposed by James
Kennedy and Russell Eberhart in 1995. Inspired from the
activity behavior of animal clusters, the algorithm combines
the individual information of particles together to make the

movement of the whole group and produces an evolution
process from disorder to order in the problem-solving space
[20–23]. The algorithm randomly selects several particles in
the N-dimensional search space, in which the position of

particle i in the t-th iteration can be expressed as x!
t
i = ðxti1,

xti2,⋯,xtiNÞ. The historical optimal position of the particle i

in the t-th iteration can be recorded as p
!t

i = ðpti1, pti2,⋯,ptiNÞ
, and the optimal position of all particles, that is, the global

optimal position, can be recorded as p
!t

g = ðptg1, ptg2,⋯,ptgNÞ.
According to the PSO algorithm, the particle has the trend
of moving to its historical optimal position and to the global
optimal position. Thus, the update formula of the particle
position can be expressed as follows:

vt+1id = ωvtid + c1 rand1ð Þ ptid − xtid
� �

+ c2 rand2ð Þ ptgd − xtid
� �

,

xt+1id = xtid + vt+1id ,

8<
:

ð1Þ

where ω is the inertia weight, c1 and c2 are the constants,
and rand1ðÞ and rand2ðÞ are the random functions. Inertia
weight ω in this paper is 1.0, and c1 and c2 are both defined
as 2.0 [20].

2.2. Surrogate Model. From the iterative process of PSO, it
can be seen that the PSO algorithm only updates the particle
positions by simply recording the global optimal and histor-
ical optimal, but it does not mine the information of all the
calculated particles. The introduction of surrogate model is
to combine the information of all particles together, so as
to obtain the potential position of the optimal value in a
short time and improve the optimization speed of PSO.
The methods of training surrogate model mainly include
Gaussian process regression, support vector machine, radial
basis function network, regression tree, artificial neural net-
work, etc. [24] Among these methods, Gaussian process
regression is a widely used method, and it has been proved
that it can obtain satisfactory training performance. There-
fore, this paper mainly uses Gaussian process regression to
train the surrogate model [25].

Assume that the training data set is

D = x!i, yi
� ����i = 1,⋯,M
n o

, ð2Þ

where x!is the variable vector and y is the vector of fitness.
Gaussian process regression assumes that y follows the

multivariate normal distribution, that is:

y1

y2

⋯

yM

2
666664

3
777775 ∼N

0
0
⋯

0

2
666664

3
777775,

k11 k12 ⋯ k1M

k21 k22 ⋯ k2M

⋯ ⋯ ⋯ ⋯

kM1 kM2 ⋯ kMM

2
666664

3
777775

0
BBBBB@

1
CCCCCA,

ð3Þ

2 Geofluids



where k is the covariance of the variable vector, and the
matrix composed of the covariance of each vector can be
represented by K .

When there is a new variable vector denoted by x ∗, the
Gaussian process regression assumes that it still satisfies the
multivariate normal distribution, the following equation can
be obtained based on Equation (3):

y

y∗

" #
∼N 0,

K x, xð Þ K x, x∗ð Þ
K x∗, xð Þ K x∗, x∗ð Þ

" # !
: ð4Þ

The corresponding predicted value y ∗can be obtained
from the properties of Gaussian distribution, which can be
expressed as

y∗ = K x∗, xð ÞK x, xð Þ−1y: ð5Þ

From the above analysis, it can be seen that the key point
affecting the regression performance of Gaussian process is
the kernel function generating covariance matrix. In this
paper, rational quadratic kernel is used for model training.

2.3. The Improvement of Yu’s Method. For optimization
problems in oil and gas industry, the fitness calculation of
an objective function often takes a long time because of the
calls of numerical simulators. In order to reduce the calcula-
tion time, many researchers improved the PSO algorithm by
combining it with a surrogate model. Among them, the
model proposed by Yu et al. is a quite typical model, and
therefore, Yu’s method was selected as the comparative
model in this study. For the problem of finding the mini-
mum value of the objective function, Yu’s method mainly
includes the following steps:

(1) Latin hypercube sampling is used to obtain M sam-
ples in the search space [26]. The objective function
is called to calculate the fitness of samples, and the
samples and corresponding fitness form the initial
fitness sample database

(2) The fitness of the samples is arranged in ascending
order, and the first N samples are selected to form
the initial particle swarm. Then, the historical opti-
mal and global optimal of the initial N particles are
obtained according to the principle of PSO algorithm

(3) The first P samples are selected to train the surro-
gate model by a machine learning method

(4) The optimal value and optimal location of the surro-
gate model are obtained by PSO algorithm. After cal-
culating the fitness at the optimal location by using
the objective function, the optimal location of the
surrogate model and its fitness are added into the
sample database. Then, the particles are reordered
in the sample database according to the fitness

(5) If the first P samples of the sample database have
been changed, the surrogate model is retrained by
the machine learning method

(6) Update the global best, and then update the particle
swarm according to Equation (1)

(7) The finesses of the updated particles are estimated
by the surrogate model. If the estimated fitness of
a particle is smaller than the current historical opti-
mal, the particle is selected as the potential particle

(8) Call the objective function to calculate the fitness of
the potential particles, and add the potential parti-
cles and their fitness into the sample database

(9) Update the global best and the historical best posi-
tion of each particle

(10) Judge whether the convergence condition is met. If
not, return to step 3

It can be seen from the above steps that Yu’s method
greatly reduces the evaluation times of fitness by using sur-
rogate model. However, the significant reduction of the eval-
uation times of fitness results in the slow growth of the
sample number in the database. Therefore, the difference
between the surrogate models trained in step 3 and step 5
may be small, and thus, the optimization convergence speed
is slow at the late stage of optimization. In addition, Yu’s
method works well for parallel simulators with high speedup
ratios, but it is prone to idle computing resources for serial
or low speedup ratio simulators. For example, the number
of potential particles screened in step 7 is far less than the
total number of particles. Therefore, the number of cores
called in the fitness calculation in step 8 is usually far less
than the total number of cores of the computer.

Considering the good parallel characteristics of PSO algo-
rithm, an improved surrogate-assisted particle swarm optimi-
zation (i-SAPSO) method which is based on Yu’s method was
proposed to make full use of computing resources and reduce
the total number of iterations. The steps are as follows:

(1) Latin hypercube sampling is used to obtain the initial
samples in the search space, and the fitness of each
sample is calculated according to the objection func-
tion. Due to the independence between samples, par-
allel computing (MPI, CUDA, etc.) can achieve to
make full use of computing resources. Considering
that the number of samples to be calculated in the
subsequent iteration process of i-SAPSO is much
higher than that of Yu’s method, the initial number
of samples in i-SAPSO algorithm can be much less
than that of Yu’s method. The samples and their fit-
ness form the initial sample database

(2) The fitness of the samples is arranged in ascending
order, and the first N samples are selected to form
the initial particle swarm

(3) Update the global best and the historical best of each
particle according to the principle of PSO algorithm.
Generate the new particle swarm according to Equa-
tion (1), and then obtain the fitness of each particle
according to the objective function. Similarly, due
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to the independence between particles, the fitness of
each particle can be calculated in parallel. The new
particle swarm and fitness are added to the database

(4) While performing step 3, appropriate computing
resources are allocated to train the database to obtain
the surrogate model. Then, the optimal value and
location of the surrogate model are obtained by
PSO algorithm

(5) Monitor the consumed time of step 4. In the early
stage of optimization, the number of samples in the
database is small, and the step 4 only takes a short
time. Therefore, after step 4 is completed, use the
computing resources occupied in step 4 to call the
objective function to calculate the fitness of the opti-
mal location screened by the surrogate model, and
put the optimal location and its fitness into the sam-
ple database. However, when the number of samples
is large in the late stage of optimization, the time
spent in step 4 may be close to that of step 3. At this
time, the fitness calculation of the optimal position
of the surrogate model can be postponed to the next
iteration; that is, the surrogate model is trained and
optimized in the current iteration, and the fitness
of potential particles is calculated in the next itera-
tion. Moreover, when the number of samples is too
large, the time spent in step 4 may exceed that of step
3. Then, the computing resources occupied by step 3
may be idle after the calculation is completed. At this
time, the particles in the database shall be sorted, and
the τ particles with the highest fitness are selected. At
the same time, the optimization range is determined
according to the following equation:

lbi =min xi1, xi2 ⋯ , xiτ
� �

,

ubi =max xi1, xi2 ⋯ , xiτ
� �

:

(
ð6Þ

(6) Judge whether the convergence condition is met. If
not, return to step 3

It can be seen from the above steps that the main differ-
ence between the i-SAPSO method and Yu’s method is that
the surrogate model is no longer used to screen the potential
historical optimal position. The good parallel feature of
particle fitness calculation is used to quickly supplement
the sample database, so as to realize the rapid accuracy
improvement of the global surrogate model and accelera-
tion of convergence. In addition, when the number of cal-
culated particles is too large, the particles with high fitness
are selected, and the local surrogate model is constructed.
Due to the consideration of the invocation of computing
resources in each step, the improved algorithm can almost
achieve high availability of computing resources in the
entire optimization process.

3. Performance Analysis and Comparison

Rastrigin function is a widely used function for testing opti-
mization algorithms, and its expression is

f xð Þ = 10n + 〠
n

i=1
x2i − 10 cos 2πxið Þ� �

: ð7Þ

The model is a nonconvex function, and the global mini-
mum value 0 is obtained when xi are all 0. It can be seen from
Equation (7) that changing the n value can construct a Rastri-
gin function of any dimension. In order to more intuitively
compare the differences between the Yu’s method and i-
SAPSO method in terms of surrogate model training, a 2-
dimensional Rastrigin function was first used for testing and
analysis. Figure 1 shows the values of the 2-dimensional
Rastrigin function on the interval [-5 5], from which it can
be seen that the function has a multipeaked distribution, and
there are many extreme value points, which can effectively test
the optimum-seeking ability of global optimization algo-
rithms. The optimization processes of the PSO algorithm,
Yu’s method, and i-SAPSO method are compared, and the
initial Latin hypercube sampling points of the three methods
are the same, and the number is 100. The maximum number
of iteration is 300, and the iteration is stopped when the objec-
tive function value is lower than 1 × 10−10. Figure 2 shows the
comparison of the surrogate model evolution during the iter-
ations of the Yu’s method and i-SAPSOmethod. It can be seen
from the figure that the Yu’s method greatly reduces the calls
of the objective function, and thus, its surrogate model is
updated slowly. The surrogate model of Yu’s method greatly
differs from the Rastrigin function at the 10th iteration, and
only after 40 iterations does the surrogate model show more
local features of the Rastrigin function. Meanwhile, the surro-
gate model updates slowly in the subsequent iterations. The
surrogate model in the i-SAPSO method can already charac-
terize the local features of the Rastrigin function well after 10
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Figure 1: 2D Rastrigin function.
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iterations, and the local features of the function are more accu-
rately characterized by the surrogate model after 40 iterations.

Figure 3(a) shows the comparison of the change of the
objective function value with the number of iterations. From
the results, it can be seen that since both the Yu’s method
and i-SAPSO method use the surrogate model to predict
the potential particle positions; the decrease of the objective
function is obviously faster than that of PSO at the early
stage of optimization. Meanwhile, because the number of
particles in the sample database of the i-SAPSO increases
rapidly and the surrogate model evolution quickly in the
early stage, the probability of obtaining potential particles
is much greater than that of Yu’s method. Correspondingly,
the objective function of i-SAPSO method decreases more
rapidly than that of Yu’s method. The PSO and i-SAPSO
methods reach the preset accuracy after 253 and 109 itera-
tions, respectively, but the Yu’s method cannot further reduce
the objective function value after 131 iterations. Finally, Yu’s
method exits the calculation when it reaches the maximum
number of iterations of 300. From Figure 3(b), it can be seen

that the PSO algorithm has the highest number of objective
function calls, while the Yu’s model has the lowest number
of calls, and the i-SAPSO is in between. From the comparison
results, it can be seen that the Yu’s method is more suitable for
cases where the requirements for optimization results are not
critical and the computational process of the objective func-
tion is highly parallel. On the contrary, if a higher fitness is
expected and the computational process of the objective func-
tion is not parallel, i-SAPSO can reasonably organize the com-
putation steps to achieve fast parallel computation.

The number of unknowns can often reach tens or more
when optimizing actual oil and gas field development
parameters. For this reason, the dimension of the Rastrigin
model is changed, and the comparison of the algorithms is
carried out. The number of iterations is set to 300, and
Table 1 shows the optimized objective function values for
the three algorithms. It can be seen from the table that the
performance of each algorithm in multidimensional case is
basically the same as that in two-dimensional case. That is,
under the same number of iterations, the performance of i-
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Figure 2: Evolution of surrogate model.
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SAPSO is the best, followed by the PSO algorithm, and the
call times of the objective function of Yu’s method is the
least, so the fitness is the worst under the same number of
iterations. In addition, the nonlinearity of the objective func-
tion increases with the increase of dimension, and therefore,
the probability of falling into the local optimum increases for
all three algorithms as the number of dimensions increases.

4. Model Application

China has implemented two trial production tests of hydrate
bearing layers in the Shenhu area, and the average daily gas pro-
duction rate of the second trial production test is 2:87 × 104m3,
which is quite lower than the minimum gas production rate
required for commercial development [27–29]. Moridis et al.
investigated the depressurization performance of the hydrate
bearing layers in Mallik area and Alaska North Slope. The
results show that the dissociation area is mainly located around
the well, and the gas production is low only through depressur-
ization method [29, 30]. Zhang et al. investigated the decompo-
sition conditions of methane hydrate and the effect of hydrate
saturation on the methane hydrate dissociation, and the results
are similar to those of Moridis [32–34]. In order to enhance gas
production, more and more attention has been paid to the
combined method of depressurization and thermal stimulation

[35, 36]. In this paper, the Tough+Hydrate software was used to
establish a numerical simulation model for a Class III hydrate
reservoir at station SH7 in the Shenhu area of the South China
Sea, and the basic geological parameters of themodel are shown
in Table 2 [37].

The model is a five-point well pattern composed of four
vertical wells and one horizontal well (Figure 4(a)). The grid
system is 30 × 21 × 11, and the grid size is 15m × 10m × 2m
. The length of the horizontal well in the center is 300m, and
the distance between the vertical well and the nearest perfora-
tion of the horizontal well is 75m. In order to represent the
heterogeneity of the hydrate reservoir, a nonuniform perme-
ability distribution is generated by sequential Gaussian simu-
lation method which is a widely used in geostatistics, as
shown in Figure 4(b) [38]. The average permeability is
75md, and the coefficient of variation is 0.4 [39]. Neumann
boundary condition is used, and in order to avoid the usage
of well fraction, each vertical well has a distance from the
boundary. Four vertical wells and one horizontal well first pro-
duce at a constant pressure of 4MPa. The gas production rate
continually decreases due to the pressure drawdown and tem-
perature decline. When the gas production rate reaches a crit-
ical value (critical gas production rate), the four vertical wells
are converted to hot water injection well to enhance gas pro-
duction. In order to get a better performance, the injection rate
of each well is adjusted once during the heat injection process,
and thus, the total number of optimized parameters is 11. The
range for each parameter is shown in Table 3, where the sum
of the injection rates of the four injection wells was always
maintained at 300m3/d.

The development of gas hydrate reservoirs needs to con-
sider both productivity and economy. Therefore, the evalua-
tion index is divided into production index and economic
index. The production index is mainly the methane recovery,
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Figure 3: Performance comparison of different methods.

Table 1: Optimized objective function values of different methods.

PSO Yu’s method i-SAPSO

10-dimension 1.98 2.83 0.21

20-dimension 19.84 12.65 1.78

30-dimension 78.63 110.90 4.73
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Table 2: Basic parameters of the hydrate reservoir model.

Parameter Value Parameter Value

Seabed depth 1108m Reservoir thickness 22m

Initial hydrate saturation 0.44 Initial water saturation 0.56

Average permeability 75mD Porosity 0.41

Initial pressure 13.83MPa Initial temperature 11.7°C

(a) Well layout

Horizontal well

Well 1

Well 2 Well 3

Well 4

200

150

100

50

0
Unit: mD

(b) Permeability distribution

Figure 4: Physical model of numerical simulation and permeability distribution.

Table 3: Ranges of optimized parameters.

Parameter Value Parameter Value

Critical gas production rate 4000~20000m3/d Temperature of injected water 20~90°C

Water injection rate of each well 0~ 200m3/d
Gas production rate when water injection

rates are adjusted
4000~20000m3/d

Water injection rate of each well after adjustment 0~ 200m3/d — —
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and the economic index is mainly the ratio of produced energy
to injected energy, that is, energy efficiency ratio. Thus, the
objective function of this paper is

Q = ER + αη,

ER =
ND

NT
,

η = Eout
Ein

,

8>>>>><
>>>>>:

ð8Þ

where Q is the objective function; ER is the methane recovery;
η is energy efficiency ratio; ND is the cumulative volume of
methane produced, m3;NT is the total volume ofmethane that
can be generated from hydrate dissociation, m3; Eout is the
total heat of produced methane, J; Ein is the total heat of
injected hot water, J; and α is the weight coefficient of ER
and η. According to the research results of Liu et al., the value
α of is 0.025 [40].

Three algorithms are compared to optimize the key
parameters. The simulated time of depressurization stage is
800 days, and the maximum number of iterations is 150.
The test platform is XeonSP, which contains a 40-core pro-
cessor, and the memory is 64G. From the perspective of
making full use of computing resources, the number of par-
ticles is set to 35. In parallel computing of i-SAPSO method,
each particle occupies one CPU core based on MPI, and
thus, 35 cores are occupied by the particles. Three CPU cores
are used for surrogate model training, and the remaining
two CPU cores are used to process system applications.
Figure 5 shows the performance comparison of the three
algorithms. It can be seen from the figure that the change
law of the objective function is consistent with that when
Rastrigin function is used as the objective function. The
Yu’s method and i-SAPSO method can quickly find the
potential position through the surrogate model. Therefore,
the fitness quickly increases in the early stage of iteration,
but the fitness increase of Yu’s method becomes slower in
the later stage which means that Yu’s method falls into local
optimum. Comparing the fitness at the end of the iteration,
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Figure 5: Performance comparison of different methods.

Table 4: Optimal parameter values of i-SAPSO method.

Parameter Value Parameter Value

Critical gas production rate 4254m3/d Temperature of injected water 33°C

Water injection rate of well 1 58m3/d Water injection rate of well 2 51m3/d

Water injection rate of well 3 104m3/d Water injection rate of well 4 87m3/d

Gas production rate when water injection rates are adjusted 22518m3/d Water injection rate of well 1 after adjustment 73m3/d

Water injection rate of well 2 after adjustment 64m3/d Water injection rate of well 3 after adjustment 89m3/d

Water injection rate of well 4 after adjustment 74m3/d — —
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it can be concluded that although it is difficult to prove that the
optimization result of i-SAPSOmethod is globally optimal, the
performance of i-SAPSO method is better than that of the
PSOmethod and Yu’s method under the same number of iter-
ations. Figure 5(b) shows the comparison of simulation time,
which indicates that the elapsed time of the PSO method is
close to that of i-SAPSO method, while that of Yu’s method
is the longest. This is mainly due to the good independence
between particles of PSO algorithm, which can easily realize
parallel computing. Therefore, the elapsed time for 100 itera-
tions is theoretically close to the time required to run the sim-
ulator 100 times continuously. Although the surrogate model
training is added to the i-SAPSO method, additional comput-
ing resources are allocated. At the same time, the parallel com-
puting framework between surrogate model training and
particle fitness calculation is considered in the workflow, so
the computing time is close to that of PSO method. Although
Yu’s method greatly reduces the total number of calls to the
simulator, the computation process includes one simulator
call in both step 4 and step 8, and the two calls cannot be com-
puted parallelly. Therefore, the total calculation time is much
higher than the other two algorithms.

Table 4 shows the values of the parameters obtained after
the optimization of the i-SAPSO method. Combined with
Table 3, it can be seen that the critical gas production rate is
4254m3/d, which is only slightly higher than the lower limit
of the allowable range (4000~20000m3/d) which indicates
that the time of depressurization should be long enough. This
is because on one hand, the heat contained in rock and fluid
can be fully used to promote the dissociation of hydrate if
the depressurization period is long, and on the other hand, if
hot water is injected too early, the hot water injected is easy
to enter the production well directly along the dissociation
area, which will lead to a waste of heat energy and reduction
of energy efficiency. The optimized injected water temperature
is 33°C, which is a relatively low injection temperature. Con-
sistent with the conclusions of other researchers, a relatively
low temperature of injected water is conducive to improve
energy efficiency. The water injection rates of wells 1 and 2
located in the low permeability area is significantly lower than
those of wells 3 and 4 located in the high permeability area,
which helps to prevent the excessive pressure rise near the
wellbore and the secondary formation of hydrate.Water injec-
tion rates of wells 3 and 4 after adjustment are lower than
those before the adjustment, which can effectively avoid the
rapid flow of injected hot water from the high permeability
area to the bottom of the production well. Thus, the energy
efficiency ratio can be enhanced.

Figures 6 and 7 show the gas and water production curves
and hydrate saturation distributions of the optimal case,
respectively. It can be seen that the gas production rate
increases significantly after hot water injection. During depres-
surization development stage, the hydrate dissociation areas
around wells 3 and 4 which are located in the high permeability
area are significantly larger than those of wells 1 and 2, which
indicates that higher permeability can achieve faster reservoir
depressurization and hydrate dissociation. There is little differ-
ence in the shapes of the dissociation areas formed by the four
wells after hot water injection, which means that balanced

exploitation of hydrate reservoir can be realized through injec-
tion rate adjustment.

In conclusion, i-SAPSO method can effectively accelerate
the optimization process, and the optimization results are
satisfactory. Therefore, it can be used for parameter optimi-
zation of oil and gas reservoir development.

5. Conclusions

Based on the parallel computing framework, this paper pro-
posed an improved surrogate model assisted particle swarm
optimization method. Then, the effectiveness of the method
was verified by Rastrigin function. Finally, the key parame-
ters of depressurization−to−hot−water−flooding develop-
ment of natural gas hydrate reservoir are optimized. The
main conclusions are as follows:

(1) In a single iteration, the fitness calculation of each
particle of PSO algorithm is independent. Therefore,
parallel computing can be used to realize the rapid
improvement of accuracy of global surrogate model.
When the particle and fitness database is large, local
surrogate model helps to achieve a quick conver-
gence. The new method fully considers the parallel
features of the calculation process and thus can get
a better performance

(2) Yu’s method greatly reduces the number of calls to
the objective function. However, the accuracy of
the surrogate model increases slowly with the itera-
tion. Due to the independence of particles in an iter-
ation, the purpose of the new model is to reduce the
number of iterations rather than the number of calls
to the objective function. The accuracy of the surro-
gate model increases significantly with the increase
of iterations, and therefore, the iteration is expected
to quickly converge for the new method

(3) The key parameters of a gas hydrate reservoir by
depressurization−to−hot−water−flooding method
are optimized. The results show that the fitness of
the optimal case of the new method is significantly
higher than those of Yu’s method and PSO method
under the same number of iterations. Meanwhile,
the optimization results are satisfactory and consis-
tent with the conclusions of other researchers.
Therefore, the effectiveness of the new method is
verified
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