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The main purpose of this research is to apply the logistic regression (LR) model, the support vector machine (SVM) model based
on radial basis function, the random forest (RF) model, and the coupled model of the whale optimization algorithm (WOA) and
genetic algorithm (GA) with RF, to make landslide susceptibility mapping for the Ankang City of Shaanxi Province, China. To this
end, a landslide inventory map consisting of 4278 identified landslides is randomly divided into training and test landslides in a
ratio of 7 : 3. The 15 landslide influencing factors are selected as follows: slope aspect, slope degree, elevation, terrain curvature,
plane curvature, profile curvature, surface roughness, distance to faults, distance to roads, landform, lithology, distance to
rivers, rainfall, stream power index (SPI), and normalized difference vegetation index (NDVI), and the potential
multicollinearity problem among these factors is detected by Pearson correlation coefficient (PCC), variance inflation factor
(VIF), and tolerance (TOL). We evaluate the performance of the model separately by statistical training and test dataset
metrics, including sensitivity, specificity, accuracy, kappa, mean absolute error (MSE), root mean square error (RMSE), and
area under the receiver operating characteristic curve. The training success rates of LR, SVM, RF, WOA-RF, and GA-RF
models are 0.7546, 0.8317, 0.8561, 0.8804, and 0.8957; the testing success rates are 0.7551, 0.8375, 0.8395, 0.8348, and 0.85007.
The results show that the GA significantly improves the predictive power of the RF model. This study provides a scientific
reference for disaster prevention and control in this area and its surrounding areas.

1. Introduction

Landslide disaster is a common and highly destructive
adverse geological phenomenon. Because of the complex
and diverse terrain conditions, climate conditions, and fre-
quent engineering geological activities in China, many kinds
of adverse geological phenomena occur frequently every
year. According to a public report released by the Ministry
of Natural Resources in China, there were 7840 geological
disasters in 2020. Landslides accounted for about 61.35%,
lost $ 161 million, and killed 139 people. The landslide disas-
ters are mainly concentrated in the central and western
regions in our country, which is the most concentrated in
southwest China. Ankang City is located in southern
Shaanxi and is the most severely affected area by landslides.

According to the statistics of the local government, the land-
slide disaster in Ankang City has caused more than 500 dead
or missing, and the direct economic loss amounted to 1.07
billion US dollars since 1983. The prevention and control
of such frequent and destructive landslides are one of the
important issues of disaster prevention and mitigation, and
the key step is the evaluation of landslide susceptibility.
Although there are many kinds of research results, the anal-
ysis methods and evaluation criteria are quite different
[1–3].

Due to the powerful data processing and mapping capa-
bilities of geographic information system, it has been widely
applied to draw landslide susceptibility mapping over the
past decades [4]. Currently, the widely used models for pre-
dicting landslide susceptibility mainly include qualitative,
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quantitative, and artificial intelligence attribution analysis [5,
6]. The use of quantitative attribution analysis model
accounted for the main research model. Qualitative attribu-
tion analysis is highly correlated with researchers with
knowledge reserves and subjectivity, resulting in a large dif-
ference in their effects [7], such as analytic hierachy proces-
s(AHP) and Entropy weight method [8]; other statistical
models and the coupling models are also widely applied,
such as frequency ratio model [9–11], information value
model [12, 13], and evidence weight model [14–16]. How-
ever, the results of these models are not ideal.

In recent years, with the innovation of artificial intelligence
algorithms and the improvement of data processing capabili-
ties, machine learning methods have been widely studied in
the field of landslide susceptibility. The machine learning
model can handle the geological, hydrological, and other
information datasets of high-latitude and large datasets and
has higher prediction success rate [17–19]. Common models
include random forest (RF), gradient boosting machine
(GBM), support vector machine (SVM), artificial neural net-
work (ANN), and logistic regression (LR) [20–24]. Among
them, RF, which is widely employed, has achieved remarkable
results in model classification and accuracy. For example, Yu
and Chen used information model, AHP, and RF method to
predict Helong City landslide susceptibility; the effect of RF
is obvious [25]. Compared with other common machine
learning models, some scholars selected the most suitable
algorithm for the prediction results of their respective research
areas [26, 27]. The comparison shows that the accuracy of RF
training and testing is relatively high. It is proved that the
accuracy of the model can be improved by coupling RF with
other models. Other traditional machine learning algorithms
have been widely applied, such as logistic regression model.
Accuracy is widely used in landslide susceptibility evaluation
because it can directly generate decision boundaries from orig-
inal datasets [28]. The advantage of SVM lies in the ability to
eliminate overfitting and noise problems in the modeling pro-
cess, and it has a wide range of practicability [29]. With the
introduction of deep learning model, it uses more hidden
layers to model the complex relationship between data, and
depth replaces breadth, improves fitting degree, and achieves
higher precision. Compared with the three baseline models
(SVM, NBTree, and REPTree), the GA-optimized deep learn-
ing model based on ELM, DBN, and BP exhibits better predic-
tion performance by performing hierarchical analysis on the
original dataset to extract the most relevant features [30, 31].
Additionally, the comparison and coupling between models
can also further improve the accuracy [32, 33]. However, a
large number of research results show that which model is
the most suitable for landslide sensitivity evaluation has not
been determined.

According to the current research situation of landslide
sensitivity analysis, statistical analysis of the temporal and
spatial distribution of factors such as rainfall, geomorphol-
ogy, and earthquake in historical landslide events shows that
there is a great correlation between the occurrence of land-
slides and rainfall [34, 35]. Furthermore, some scholars have
also analyzed and compared landslide susceptibility through
qualitative and quantitative aspects in Shaanxi Province,

such as FR-AHP [36], certainty factor (CF), and index of
entropy (IOE) [37] model. In addition, compared with other
models, SVM model shows better prediction results [38].
However, there is no further study on quantitative analysis.

Firstly, this paper screened the influencing factors of
landslide by two methods—Pearson correlation coefficient
and multicollinearity. The purpose of the study is to investi-
gate the potential application of the optimized RF model by
whale optimization algorithm (WOA) and genetic algorithm
(GA) in landslide susceptibility analysis in Ankang City and
compare and analyze with LR, SVM, and RF algorithm. In
the study area, the optimization of RF models with genetic
algorithm and whale optimization algorithm is relatively
novel. Analyzing various statistical indicators (sensitivity,
specificity, accuracy, kappa index, mean absolute error, and
root mean squared error), each model is evaluated and ana-
lyzed, and GA-RF is the optimal model.

2. Study Area

The study area is located in the southeast of Shaanxi Prov-
ince, China, with a range of 31°42′N~33°49′N and 108°01′
E~110°01′E, belonging to the humid monsoon climate of
northern subtropical continent. Generally, Ankang basin is
in the middle of two mountains and one river. The north
is on Qinling Mountains, and the south is on Bashan Moun-
tains. Hanshui-Chihe-Yuehe-Hanshui are the boundary
between Qinling Mountains and Bashan Mountains.

The resident population of the city is more than 24.9mil-
lion; the city is composed of nine counties and one district,
including Hanbin District, Hanyin County, Shiquan County,
Ningshan County, Ziyang County, Langao County, Pingli
County, Zhenping County, Xunyang County, and Baihe
County. The width of city is about 200 km from east to west,
and the length is about 240 km from north to south; the total
area is about 23529 km2. The elevation of the study area is
97~2897m, the terrain is undulating, the central terrain is
low, and the northern and southern terrain is high.

Ankang City is a subtropical continental monsoon cli-
mate with annual average temperature of 15~17°C and
annual precipitation of about 1050mm. As the longest trib-
utary of the Yangtze River, the Hanshui River is about 20 km
across Ankang City, and the average annual runoff is 2:01
× 1011m3. The flow of river from July to October accounts
for about 72.2% of total annual flows.

Landslide event refers to the phenomenon that the
mechanical balance of rock or soil disappears and falls down
the connected shear surface due to factors such as rainfall,
slope overflow erosion, and earthquake. The tectonic struc-
ture of the study area is composed of the Qinling Indo-
China fold belt and the Caledonian fold belt of the Daba
Mountain. Sedimentary environment varies greatly; the area
of sedimentary rocks is 60.3% of the total area in Ankang
City. Besides, a great number of folds and faults are devel-
oped in the area, which are the material basis of geological
disasters such as landslides and collapses. Therefore, land-
slides occur frequently in Ankang City, and the disaster
points are up to 4278, of which the central region is densely
distributed, as shown in Figure 1.
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Figure 1: The location of the research area and landslide points.
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3. Datasets

3.1. Landslide Inventory Map. The landslide inventory map
is used to determine the number, location, and type of land-
slides, the accuracy of which affects the results of the land-
slide susceptibility analysis [39]. The landslide distribution
data are from the Chinese Academy of Sciences’ Data Center
for Resource and Environmental Sciences, and the landslides
are individually screened and studied through historical
records analysis and satellite images. The 4278 landslide
points are distributed in Ankang City. The landslide points
are randomly divided into two types of datasets for training
(70%) and verification (30%).

3.2. Landslide Conditioning Factors. Different factors and
data classification standards in the same region will affect
the output results of the model to varying degrees. The
selection of landslide factors directly affects the success
rate of landslide sensitivity model, because the number of
landslide factors and the collinearity between factors will
affect the prediction ability of the model. On the premise
of collecting 4278 landslide events, according to the
human geography and environmental characteristics of
Ankang City and the previous research results, 15 land-
slide factors are collected as follows: slope aspect, slope
degree, elevation, terrain curvature, plane curvature, profile
curvature, surface roughness, distance to faults, distance to
roads, landform, lithology, distance to rivers, rainfall,
stream power index (SPI), and normalized difference veg-
etation index (NDVI).

The digital elevation model (DEM) with 30 × 30m cell
size in the study area is obtained from the 30-m resolution
ASTER GDEM (http://www.gscloud.cn). Elevation, slope
aspect, slope degree, surface roughness, terrain curvature,
SPI, plan curvature, profile curvature, and distance to rivers
are essentially extracted from the study area DEM data.
NDVI is obtained from Landsat 8 OLI image with a resolu-
tion of 30 × 30m. It is processed in ENVI through data read-
ing, radiometric calibration, image clipping, atmospheric
correction, and image mosaic. The meteorological data are
collected from Shaanxi Meteorological Service. Furthermore,
other factors based on the data collected are described and
further vectorized by topographic map and geological map.

Combined with the results of previous studies on topogra-
phy, hydrogeological conditions and human engineering
activities. The specific influencing factors include (1) topogra-
phy factors: elevation, slope aspect, slope degree, terrain curva-

ture, plan curvature, profile curvature, distance to faults,
surface roughness, landform, and lithology; (2) geological
and hydrogeological factors: distance to rivers, rainfall, and
SPI; and (3) human engineering activities factors: NDVI and
distance to roads. After preprocessing factors data, the basic
unit of data in the study area is set to 30m × 30m. The sources
of the various factors are shown in Table 1.

3.2.1. Topographic Factors. Elevation is a classical landslide
factor extracted directly from DEM data. Ankang City is a
mountainous area, which is between the Daba Mountains
and Qinling Mountains as a whole, and the central part is
low. According to the geographical characteristics of the
study area, it is divided into four categories: <600m,
600~1000m, 1000~1400m, 1400~1800m, and >1800m
(Figure 2(a)).

The different slope aspects show that the azimuth angles
of different slopes are different in horizontal direction. The
solar radiation, illumination time, temperature, rainfall,
and wind speed will also be different in different slope
aspects. The difference of slope weathering and erosion is
reflected in the change of rock and soil structure and
groundwater occurrence conditions and the interaction
between sand and mudstone in different degrees [40, 41].
According to the ground slope aspects of the study area, it
is divided into flat, north, north-east, east, south-east, south,
south-west, west, and north-west (Figure 2(b)).

The slope degree reflects the degree of surface unit, and
the stress distribution in rock and soil is different with differ-
ent slope degree [42]. According to the research slope, the
slope degree in the study area is divided into five categories:
0~10°, 10~20°, 20~30°, 30~40°, and>40° (Figure 2(c)).

Terrain curvature is a function of slope point, including
profile curvature and plane curvature. It shows the structure
andmorphology of the terrain, not only reflects the aggregation
and dispersion of surface flow, but also affects the acceleration
of water flow, thereby affecting surface erosion and deposition
[43]. Terrain curvature was extracted from DEM data in the
study area using GIS surface tools such as curvature as shown
in Figure 2(d). The distribution of topographic curvature in
the study area is analyzed according to the classification stan-
dard of curvature value which are <0 (concave), =0 (flat), and
>0 (convex), and then the distribution map of profile curvature
and plane curvature is finally obtained (Figures 2(e) and 2(f)).
In addition, three different classes of plane curvature values
were defined as follows: <-0.5, -0.5~0.5, and >0.5.

Table 1: Data and data sources.

Data name Data sources Scale or resolution Type

DEM Geospatial data cloud platform 30m × 30m Grid

Landsat8 oli image Geospatial data cloud platform 30m × 30m Grid

Rivers DEM 30m × 30m Grid

Roads Shaanxi Provincial Ministry of Transportation 1 : 100000 Vector

Lithology and faults China Geological Survey (2002) 1 : 200000 Grid

Annual rainfall Ankang Meteorological Bureau 30m × 30m Datasheet
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Following surface roughness is the ratio between the
slope section area and horizontal projection area in a certain
area, which reflects the degree of surface fluctuation and ero-
sion caused by solar radiation [44]. The roughness of the
study area is divided into <1.05, 1.05~1.15, 1.15~1.25, and
>1.25 (Figure 2(g)). Surface roughness of the study area is
calculated using the “Raster Calculator” of

S =
1

cos α
, ð1Þ

where α is the slope degree (unit: radian).

The study area is mostly high mountains in the north
and south direction, and the valley basin is in the middle.
Different landforms lead to large morphological differences,
and steep terrain affects slope stability [45]. The topography
in the study area fluctuated greatly, mainly in middle and
high altitude mountains, accounting for about 93.86%. Low
mountains, plains, and hills accounted for 6.14%. Through
investigation and analysis (Figure 2(h)), the landforms of
the study area can be divided into I (plain), II (hills), III-1
(small undulating low mountains), III-2 (medium undulat-
ing low mountains), IV-1 (small undulating high moun-
tains), IV-2 (medium undulating high mountains), and V
(large undulating high mountains).
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Figure 2: Topographic factors mapping of the study area: (a) elevation; (b) slope aspect; (c) slope degree; (d) terrain curvature; (e) plane
curvature; (f) profile curvature; (g) surface roughness; (h) landform; (i) lithology.

Table 2: Classification of lithologic genesis.

Group Origin and lithology

1 Sedimentary rock: sandstone, mudstone, and greywacke

2 Carbonate rock: limestone, dolomite, and marl

3 Pyroclastic rock: tuff, volcanic breccias, or ash

4 Metamorphic rock: shales, gneiss, amphibolite, quartzite

5 Intrusive rock: granites, quartz diorites, quartz monzonites, syenite, gabbro, and peridotite

6 Volcanic rock: trachytes or dacite, rhyolites, and basalts
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Lithology is one of the most essential factors for land-
slide occurrence. The rock components and structures in
different parts of the same region are different, and the phys-
ical and mechanical properties of rocks are different [46].
Influenced by the same external force, the deformation of
rock with different mechanical properties is also different
and vice versa. Because the coverage area of sedimentary
rock in the study area is about 60%, the rock strength of sed-
imentary rock is low, it is easy to be eroded by heavy rainfall
and rivers, and it is unstable. Therefore, there are more land-
slides in the sedimentary rock area, accounting for about
69.65% of the total landslide events. According to the genetic
classification of rock, it is divided into six categories: sedi-
mentary rocks, carbonate rocks, igneous clastic rocks, meta-
morphic rock, intrusive rock, and volcanic rocks, as shown
in Table 2 and Figure 2(i).

3.2.2. Geological and Hydrogeological Factors. The flow of
rivers is mainly erosion and abrasion, which destroys the
stress balance of dams and mountains along the rivers. Espe-
cially in areas where rivers and precipitation affect soluble
rocks such as carbonate rocks, dissolution changes topogra-
phy [47, 48]. The study area is divided into <1500m,
1500~3000m, 3000~4500m, 4500~6000m, and >6000m
by distance to rivers (Figure 3(a)).

The research area belongs to the northern subtropical con-
tinental monsoon climate, the average annual rainfall is
900~1000mm, and the largest rainfall occurs in May, July,
and September. Due to the large and sudden rainfall in a short
time, the shear strength of the rock-soil interface on the slope
is significantly reduced. Melillo et al. established an indepen-
dent algorithm to determine the rainfall threshold and
improve the accuracy of landslide prediction through rainfall
by analyzing historical rainfall and landslide information and
conducting practical verification [49]. According to the spatial
distribution of rainfall in Ankang City, the regional rainfall is
divided into <800mm, 800~900mm, 900~1000mm,
1000~1100mm, and>1100mm (Figure 3(b)).

The stream power index (SPI) is related to rock lithology,
particle size, and permeability. Slope surface often produces
rill erosion and sediment accumulation, and when slope shear
stress exceeds the shear strength of the surface, it may appear
instability [50, 51]. SPI in Ankang City can be divided into
three categories: <2.5, 2.5~5, and >5 (Figure 3(c)).

The study area is located in the border area between
Qinling geosyncline fold system and Bashan orogenic belt,
where fold and fault structures are relatively developed. Fold
structural belt may produce a large number of interlayer
fractures, transverse, and longitudinal tensile fractures. The
developed cracks lead to rock and soil breakage, increase
the water richness of rock layers, and accelerate rock erosion.
In addition, a large number of secondary small faults are
often developed near the large fault structural belt [52, 53].
Regional tectonics leads to the complexity of geological con-
ditions in the study area and aggravates the probability of
landslide disasters. The distance to faults as a classification
reference are divided into four kinds that are <1500m,
1500~3000m, 3000~4500m, 4500~6000m, and>6000m
(Figure 3(d)).

3.2.3. Human Engineering Activities Factors. NDVI is
obtained through ENVI remote sensing image data prepro-
cessing, including radiometric calibration, atmospheric cor-
rection, and removal of outliers. Generally, the higher
vegetation coverage, the greater shear strength of rock-soil
interface. In areas where human activities are frequent or
where rock lithology is hard, the smaller NDVI creates con-
ditions for landslides [54]. NDVI in Ankang City is divided
into five classes by natural discontinuity method: <0.18,
0.18~0.48, 0.48~0.63, 0.63~0.72, and>0.72 (Figure 4(a)).

Road is one of the indirect factors inducing landslide [55,
56]. The total highway mileage in the study area is 24500 km,
the railway mileage is 900 km, and the traffic is very devel-
oped. Mountain roads may change the original diversion
channel, and the continuity of rock and soil is destroyed,
and some remote areas may set up less protective measures,
or not timely repair, which will affect the stability of the
landslide. GIS is used to make multiple buffers for roads,
and the study area is classified into <1500m, 1500~3000m,
3000~4500m, 4500~6000m, and>6000m by the distance
to roads (Figure 4(b)).

4. Methodology

4.1. Modeling Process. (1) The random area safety points are
created by GIS, the number of which is roughly the same as
the number of landslide points, and the safety points and
random points are combined together. The collected factor
data are normalized, and the variables are classified using
the Multipoint Extraction tool. (2) We analyzed and com-
pared 15 landslide factors using Pearson’s correlation coeffi-
cient method and multicollinearity method and finally
eliminated curvature, roughness, and SPI. The remaining
12 factors (slope aspect, slope degree, elevation, plane curva-
ture, profile curvature, distance to faults, distance to roads,
landform, lithology, distance to rivers, rainfall, and NDVI)
are used. The Scikit-learn library in Python is used to ran-
domly select 2994 points (70%) and 1284 points (30%) for
training and model validation of landslide points and safe
points [57]. The RF, LR, and SVM models are determined
after evaluating the AUC values. (3) After the coupling opti-
mization of the GA and WOA and the RF model, each
model is evaluated by comparing the values of RMSE,
MSE, and AUC, and the optimal parameter combination is
selected. (4) Convert the grid data of the study area into
more than 30million vector points through grid-to-point
and predict the information value of each factor to obtain
the output probability value of the landslide in the study
area. Using the machine learning algorithm in python, the
probability values are rearranged into the grid size, and the
probability grid data of landslide occurrence in this area is
obtained. (5) Draw landslide susceptibility mapping, and
analyze and discuss the performance of each model and
the main control disaster factors.

4.2. Selection of Landslide Conditioning Factors. In the area
of landslide sensitivity evaluation, the selection of landslide
condition factors is not based on the quantity. Unnecessary
factors will cause excessive spatial data and increase the
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Figure 3: Continued.

11Geofluids



110°0´E109°0´E108°0´E

0 10 20 30 405 Miles

108°0´E 109°0´E 110°0´E

32
°0

´N
33

°0
´N

34
°0

´N

32
°0

´N
33

°0
´N

34
°0

´N

<2.5
2.5-5

>5
Landslide

(c)

110°0´E109°0´E108°0´E

108°0´E 109°0´E 110°0´E

32
°0

´N
33

°0
´N

34
°0

´N

32
°0

´N
33

°0
´N

34
°0

´N

<1500
1500-3000
3000-4500

4500-6000
>6000
Landslide

0 10 20 30 405 Miles

(d)

Figure 3: Geological and hydrogeological factors mapping of the study area: (a) rainfall; (b) distance to rivers; (c) stream power index; (d)
distance to faults.
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Figure 4: Human engineering activities factors mapping of the study area: (a) normalized difference vegetation index; (b) distance to roads.
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meaningless workload, which will often have an adverse
impact on the evaluation accuracy [58]. There is no fixed ref-
erence for the selection of the number of influencing factors.
According to the relevant literature and the geographical
characteristics of the study area, 15 factors are selected in
this study. It is also necessary to ensure that each index fac-
tor in the evaluation system is independent of each other, so
as to avoid mutual interference between factors with strong
correlation, which will affect the accuracy of prediction
results. In order to remove the factors with large correlation
and unimportant factors, two most commonly used tests,
namely, multicollinearity analysis and Pearson correlation
coefficient method, are used [59].

4.3. Logistic Regression. On the basis of linear regression,
logistic regression adds a sigmoid function (logic equation)
to realize the division of decision boundary of classification
problems. The principle is to map the range (-∞, +∞) of
linear regression to the range (0, 1) of Sigmoid function by
logical function [60]. The expression of Sigmoid function is
as follows:

f yð Þ = 1
1 + e−y

, ð2Þ

where y = β0 + α0 ∗ x0 + α1 ∗ x1 +⋯ + αm ∗ xm; xm repre-
sents 14 landslide factors; αm is the regression coefficient
through variables; y is the intermediate variable. f ðyÞ repre-
sents the probability of landslide; 1 − f ðyÞ indicates the
probability of no landslide.

4.4. Support Vector Machine. Support vector machine
(SVM) classifies 12 landslide factor data in a linear way rel-
ative to the optimal boundary [61]. The sample of the study
area is the support vector that determines the boundary line.
The best boundary (hyperplane) is two lines of maximum
distance between different vectors. It ensures the correctness
and difference of classification (Figure 5). The formula is as

follows:

y = a + 〠
m

i=1
βixi = a + βTX, ð3Þ

where m is the number of landslide impact factors, xi is the
landslide influencing factor in the study area, and y is the
objective function.

When the accurate optimal boundary cannot be found
by using soft interval, the support vector is generally mapped
to high-dimensional space to solve this problem. However,
the calculation of feature space is generally difficult. In order
to optimize the problem, the Kernel function KðxÞ is intro-
duced to avoid the specific form of feature space γðxÞ [62].
It is only necessary to determine that the Kernel function
is the inner product of two infinite dimensional vectors.
The function formula is expressed as

K xi, xð Þ = γ xið Þγ xð Þ,

y =wTγ xið Þ + b = 〠
m

i=1
αiyiK xi, xð Þ,

ð4Þ

where yi is the training output of 12 factors and y is the
training target.

By comparing the performance of the five kernel classi-
fiers through various statistical indicators, it is concluded
that RBF-SVM is relatively excellent [63], and then RBF-
SVM is selected as one of the prediction models in this
paper.

Radial basis function is kðxi, xÞ = ð−γðxi − xjÞÞ, γ > 0,
where b and γ are parameters of the kernel functions.

4.5. Random Forest. The random forest based on decision
tree principle is mainly modeled by bagging algorithm.
Bootstrap method is used for K times of random sampling
of n training set samples, and n times are repeated to obtain
K decision trees. Then d ðd <DÞ features are randomly
selected from the D features of the training subset, and the
best features are selected from d features as the classification
basis, and n times are repeated. Count the mode of the deci-
sion tree results as the final classification results [64]. The
classification result of RF is more accurate, simple, and easy
to understand, which is suitable for the big dataset process-
ing and analysis (Figure 6). Based on the law of probability
and statistics, the probability of each sample being drawn
to a bootstrap set is P, and the formula of P is as follows:

P = 1 − 1 − 1
n

� �n

, ð5Þ

where n is large enough in this study, p is about 63%, and the
remaining 37% data are not involved in the modeling, called
out-of-bag.

Compared with the bagging algorithm, the random for-
est has more feature restrictions. The parameter d is too
small or too large, and the final fitting effect is relatively
poor, so the optimal feature number is the biggest problem

Support vector

Optional hyperplane

y

Maximum
margin

x

Figure 5: Support vector machine.
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Figure 6: Random forest.

Table 3: Statistical metrics and their descriptions.

No Metric Formula Description

1 TP True positive TP refers to the number of landslides that are accurately described as landslides [71]

2 TN True negative
TN refers to the number of nonlandslides that are accurately classified as nonlandslide

[72]

3 FP False positive FP refers to the number of nonlandslides that are wrong predicted as landslides [73]

4 FN False negative FN refers to the number of landslides that are accurately described as nonlandslide [74]

5 SST SST =
TP

TP + FN
The proportion of landslides that are correctly classified as landslide. This shows how

good the model is [75]

6 SPF SPF =
TN

TN + FP

The proportion of nonlandslides that are correctly classified as nonlandslide. This
shows how good the model is. It describes how well the landslide model used to classify

nonlandslides can predict [76]

7 ACC ACC = TP + TN/TP + TN + FP + FN The proportion of landslides and nonlandslides correctly predicted in the total. The
higher the accuracy value, the better the performance of the landslide model [77]

8 K K =
Pp − Pexp

1 − Pexp

The kappa value is between -1 and 1. The closer the value is to 1, the better the
prediction effect of the model is [78]

9

MSE MSE =
1
N
〠
N

i=1
xm − xPð Þ2

MSE and RMSE values are calculated from measurements (xm) and predictions (xp),
the lower the performance of the landslide model, the better [79]

RMSE RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xm − xPð Þ2

vuut

Table 4: Analysis result table based on multicollinearity diagnosis method.

Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VIF 1.28 1.08 1.72 1.02 1.52 1.27 1.83 8.57 2.54 1.01 1.27 8.29 1.84 1.44 24.91

TOL 0.78 0.93 0.58 0.98 0.66 0.79 0.68 0.12 0.77 0.99 0.79 0.12 0.55 0.69 0.00

Note: 1: NDVI; 2: distance to faults; 3: distance to rivers; 4: lithology; 5: rainfall; 6: distance to roads; 7: stream power index; 8: plane curvature; 9: slope degree;
10: slope aspect; 11: profile curvature; 12: surface roughness; 13: elevation; 14: landform; 15: terrain curvature.
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[65]. In the model, Gini coefficient is used to continuously
test all the segmentation points of the feature subset of the
same tree, and the branch corresponding to the smallest fea-
ture is selected. Then the model is verified by comparing dif-
ferent out-of-bag errors [66].

4.6. Genetic Algorithm. Genetic algorithm is a stochastic
global search optimization method that simulates the phe-
nomena of duplication, crossover, and mutation that occur
in natural selection and inheritance [67]. The solution of
the solution space is represented as the genotype string (that
is, chromosome) structural data of the genetic algorithm,
and different combinations of these string structural data
constitute different points. Starting from any initial popula-
tion (Population), through random selection of chromo-
somes with higher fitness, crossover, and mutation
operations, a group of individuals more suitable for the envi-
ronment is generated, so that the group evolves into a better
and better area in the search space [68]. Such generations
continue to multiply and evolve and finally converge to a
group of individuals that are most adapted to the environ-
ment, so as to obtain a high-quality solution to the problem.

The main steps of the genetic algorithm are as follows:

Step 1. Generation of the initial population, random genera-
tion of hyperparameter combinations within the approxi-
mate hyperparameter range after grid search.

Step 2. Individual fitness value evaluation and detection,
based on the score of each individual’s random forest train-
ing results, evaluate the fitness of each individual.

Step 3. Breeding selection, establishing criteria to select indi-
viduals from the parent to participate in breeding. While
selecting elite individuals as much as possible, the diversity

Table 5: Correlation matrix of evaluation factors based on Pearson coefficient method.

Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00

2 0.16 1.00

3 0.13 -0.05 1.00

4 0.41 0.14 0.11 1.00

5 -0.05 0.05 0.01 -0.02 1.00

6 0.03 0.02 -0.03 0.4 0.02 1.00

7 0.01 0.29 -0.20 0.05 0.02 0.21 1.00

8 -0.05 0.04 0.01 -0.04 0.08 0.13 -0.01 1.00

9 0.03 0.32 0.01 -0.01 -0.04 -0.23 0.16 0.04 1.00

10 0.02 0.01 0.02 0.001 -0.02 0.01 -0.03 -0.04 0.01 1.00

11 0.01 -0.07 -0.01 0.01 -0.03 0.06 0.02 -0.46 -0.01 0.05 1.00

12 -0.03 0.07 0.01 -0.03 0.02 0.02 -0.02 0.80 0.03 -0.05 -0.89 1.00

13 0.007 0.27 -0.01 -0.03 -0.03 0.03 0.16 0.03 0.94 0.02 -0.01 0.02 1.00

14 0.225 0.32 -0.01 0.30 0.09 0.11 0.49 -0.01 0.19 -0.01 -0.01 0.01 0.17 1.00

15 -0.07 0.14 -0.13 -0.06 0.09 0.04 0.40 0.001 0.13 -0.02 0.01 -0.01 0.12 0.47 1.00

Note: 1: distance to roads; 2: NDVI; 3: distance to faults; 4: distance to rivers; 5: lithology; 6: stream power index; 7: rainfall; 8: plane curvature; 9: slope degree;
10: slope aspect; 11: profile curvature; 12: terrain curvature; 13: surface roughness; 14: elevation; 15: landform.

Table 6: Model performance on the test dataset.

Metric LR SVM RF WOA-RF GA-RF

TP 1003 1076 1039 1051 1068

TN 936 896 924 914 917

FP 331 371 343 353 350

FN 297 261 309 249 232

Sensitivity 0.772 0.805 0.799 0.808 0.822

Specificity 0.739 0.707 0.729 0.721 0.724

Accuracy 0.755 0.768 0.765 0.765 0.773

AUC 0.755 0.837 0.839 0.835 0.851

Kappa 0.51 0.505 0.529 0.53 0.546

RMSE 0.495 0.481 0.485 0.484 0.476

MAE 0.245 0.232 0.235 0.235 0.227

Table 7: Model performance on the training dataset.

Metric LR SVM RF WOA-RF GA-RF

TP 2353 2641 2661 2700 2768

TN 2165 2338 2465 2572 2595

FP 846 673 546 439 416

FN 625 337 317 278 210

Sensitivity 0.79 0.887 0.894 0.907 0.929

Specificity 0.719 0.776 0.819 0.854 0.862

Accuracy 0.754 0.831 0.856 0.88 0.895

AUC 0.755 0.832 0.856 0.88 0.896

Kappa 0.509 0.663 0.712 0.761 0.791

RMSE 0.496 0.411 0.38 0.346 0.323

MAE 0.246 0.169 0.144 0.12 0.105
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of the population should also be maintained to prevent the
algorithm from falling into local optimum prematurely.

Step 4. Mutation, the mutation process includes a series of
biologically inspired operations, such as recombination and
mutation. Through the mutation operation, the individual
codes of the parent are inherited and recombined in a cer-
tain way to form a descendant group.

Step 5. Environmental selection to regroup parents and off-
spring into new groups. The offspring bred in this process
are reinserted into the parent population, replacing part or
all of the parent population, forming a new population with
a similar size to the previous generation.

Step 6. The stopping criterion determines when the algo-
rithm stops. There are usually two situations: the algorithm
has found the optimal solution, or the algorithm has been
selected into the local optimum and cannot continue to
search in the solution space.

4.7. Whale Optimization Algorithm. The whale optimization
algorithm (WOA) is a swarm intelligence optimization algo-
rithm that imitates the whale’s predation behavior in nature,
and the whale’s predation behavior is mainly divided into
three categories: surround prey, foam net attack, and search
and prey [69]. Therefore, before using WOA algorithm to
solve the problem, the above three types of predation behav-
iors are expressed mathematically [70]. The purpose of
whales’ predation is to capture prey. When a group of whales
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Figure 7: Landslide susceptibility maps based on different models: (a) LSM by LR; (b) LSM by SVM; (c) LSM by RF; (d) LSM by WOA-RF;
(e) LSM by GA-RF.
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are looking for prey together, there must be a whale that
finds the prey first. At this time, other whales will definitely
swim to the whale that found the prey to compete for the
prey. In this paper, the number of whale populations is 10,
and in the termination condition, the maximum number of
iterations is 100. The main steps of the WOA algorithm
are as follows:

4.7.1. Encircling Prey. The next position of individual whale
(Xj) under the influence of the best individual whale (Xj+1)
is calculated as

Xj+1
k = X∗

k − A ·Dk,

Dk = C · X∗
k − Xj

k

��� ���,
C = 2r,

A = 2a · r − a,

a = 2 −
2i

i max
,

ð6Þ

where a is linearly decreasing from 2 to 0 as the number of
iterations i increases, A is the distance adjustment factor, C
is a random number, and Dk is the distance difference
between the best whale and the current individual whale.

4.7.2. Search for Prey. In the mathematical model of hunting
behavior surrounded by search,the value of A is restricted to
(-1,1), individual whale is best .However,when the value of A
is not at (-1,1), the current individual whale may not have
reached the current maximum. The best whale individuals
approach but randomly select a whale individual from the
current whale individuals to approach, which is the idea of
search and prey. Search and predation may make the current
whale individual deviate from the target prey, but it will
increase the global search ability of the individual whale.

target whale =
best whale, Aj j < 1,

randomwhale, Aj j ≥ 1:

(
ð7Þ

4.7.3. Spiral Position Update. The current whale approaches
the current best individual whale in a spiral fashion. The
whale location update is formulated as follows:

Xj+1
k = X∗

k +Dk · ebl · cos 2πlð Þ,
Dk = X∗

k − Xj
k

��� ���: ð8Þ

When whales hunt their prey, they will not only shrink
the encircling circle, but also swim to the prey in a spiral
form, so they choose to shrink the encircling circle or swim
toward the prey in a spiral fashion with a 50% probability.

Xj+1
k =

X∗
k − A ·Dk, p < 0:5,

X∗
k +Dk · ebl · cos 2πlð Þ, p ≥ 0:5,

(
ð9Þ

where b is a constant defining the shape of the logarithmic
spiral and l is a random number in [-1,1].
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Figure 8: Raster distributions of landslides of different classification: (a) LR; (b) SVM; (c) RF; (d) WOA-RF; (e) GA-RF.

Table 8: Landslide densities in each zone of landslide susceptibility.

Classes LR SVM RF WOA-RF GA-RF

Low 0.04 0.08 0.04 0.04 0.03

Moderate 0.49 0.45 0.29 0.38 0.32

High 1.33 1.04 0.85 1.12 0.96

Very high 2.82 3.08 3.32 3.33 3.39
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4.8. Evaluation and Comparison Methods

4.8.1. Statistical Metrics. Through the quantitative analysis of
training samples and test samples, the effect of the model on
data fitting and prediction ability is evaluated. In this paper,
several commonly used statistical indicators are selected for
quantitative analysis and comparison of different model
training sample sets and test sample sets (Table 3), such as
the true positive value (TP), true negative value (TN), false
positive value (FP), false negative value (FN), sensitivity

(SST), specificity (SPF), accuracy (ACC), kappa index (K),
mean absolute error (MSE), and root mean squared error
(RMSE).

4.8.2. Receiver Operating Characteristic Curve. Scholars at
home and abroad often use ROC test model to predict
the accuracy of landslide sensitivity and measure the
matching effect of the model on the data, and landslide
prediction results are divided into positive and negative
categories [80]. x-axis is the false positive rate, indicating
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Figure 9: ROC curves of five landslide susceptibility models using (a) training and (b) testing.
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the proportion of nonlandslide points divided into positive
categories in all nonlandslide points; y-axis representative
is divided into the positive class and is divided into the
number of landslide points accounted for the proportion
of all landslide points. The farther the ROC is away from
the 45° diagonal line, the more accurate the model is [81].
The area under ROC, namely AUC value, is referred to
deep study on the quantitative comparative analysis of
prediction success rate accuracy [82]. The closer the
AUC value is to 1.0, the more accurate the discrimination
model is.

5. Results and Discussion

5.1. Elimination and Selection of Landslide Affecting Factors.
The results of Pearson correlation coefficient and multicol-
linearity analysis [83] show that the tolerance of surface
roughness (TOL), terrain curvature, and SPI is less than
0.5, and their variance inflation coefficient (VIF) is more
than 5 in Table 4. In addition, in terms of relevance, curva-
ture is strongly correlated with plan curvature, curvature
with profile, surface roughness, and slope. The comprehen-
sive results show that it is best to eliminate these three fac-
tors (terrain curvature, surface roughness, and SPI) before
importing the model in Table 5. Therefore, in this paper,
12 factors including slope aspect, slope degree, elevation,
plane curvature, profile curvature, distance to faults, distance
to roads, landform, lithology, distance to rivers, rainfall, and
normalized difference vegetation index (NDVI) are finally
selected as the evaluation indicators to participate in this
landslide sensitivity study.

5.2. Modeling Process and Evaluations. After removing the
factors with high correlation and strong collinearity, we
combined the landslide pixels and nonlandslide pixels to
extract the values of 12 factors. In this paper, the modeling

and comparison analysis of the test and training datasets
are carried out, respectively. GA and WOA heuristic algo-
rithms are proposed to optimize the RF model and find
the optimal parameter combination. Then, the values of sta-
tistical indicators such as RMSE, MSE, and accuracy are used
to verify the success rate and performance superiority of the
model. The optimal parameter combination has the
maximum evolutionary generation number ðNGENÞ = 40,
the population size ðpop sizeÞ = 300, the number of
individuals selected for the next generation ðMUÞ =5, the
number of children to be produced in each generation ð
LAMBDAÞ = 10, the crossover probability ðCXPBÞ = 0:7,
and the mutation probability ðMUTPBÞ = 0:2.

After selecting the optimal parameter values for each
model, several metrics after training and test sets are run
separately, including sensitivity, specificity, accuracy, kappa
index, mean absolute error, and root mean square error.
The following table compares and analyzes the index values
of each model statistics and shows that the prediction effect
of the GA-RF model is significantly higher than that of the
LR, SVM, RF, and WOA-RF models.

For each model, the statistical measures of the test data-
set are shown in Table 6. In summary, The GA-RF ensemble
model had the highest sensitivity (0.822), followed by the
WOA-RF (0.808), SVM (0.805), RF (0.799), and LR (0.772)
models. The highest specificity (0.739) was achieved by the
LR model, followed by the RF (0.729) and GA-RF (0.724),
WOA-RF (0.721), and SVM (0.707) models. The GA-RF
model also achieved the highest accuracy (0.773) and the
LR model (0.755) the lowest. Accuracies of the SVM,
WOA-RF, and RF models are, respectively, 0.768, 0.765,
and 0.765. The highest kappa value (0.546) was obtained
by the GA-RF model, followed by the WOA-RF (0.53), RF
(0.529), LR (0.510), and SVM (0.505) models. The GA-RF
model has the lowest RMSE and MSE values, 0.476 and
0.227, respectively.
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Figure 10: Distribution of factors with GA-RF model.
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On the other hand, the indicators of the training set sta-
tistics clearly show that the GA-RF model has the best per-
formance. The statistical indicators values obtained by the
GA-RF model are divided into sensitivity (0.929), specificity
(0.862), accuracy (0.895), kappa index (0.791), mean abso-

lute error (0.323), and root mean squared error (0.105).
Comparing the optimized GA-RF model with the RF model,
the improvement degrees of each index of the GA-RF model
are sensitivity (0.073), specificity (0.043), accuracy (0.039),
RMSE (-0.009), MSE (-0.008), and kappa index (0.017).
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Figure 11: Distribution with high and very high landslide sensitivity based on GA-RF model on (a) elevation thematic map, (b) NDVI
thematic map, (c) distance to roads thematic map, (d) rainfall thematic map, and (e) distance to rivers thematic map.
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The value of each index intuitively reflects the optimization
improvement of the GA-RF model compared with the per-
formance before optimization (Table 7).

5.3. Landslide Susceptibility Map of Multiple Models. This
paper uses GA and WOA algorithm to optimize the RF
model after successful testing and obtain the best parameter
combination and then together with the LR and SVM
models to predict the probability of each pixel in the study
area. In order to realize the visualization of landslide suscep-
tibility mapping, this paper employs Jenks natural break-
point method to divide the grid data output from the
model into four categories: low sensitivity (LS), moderate
sensitivity (MS), high sensitivity (HS), and very high sensi-
tivity (VHS), as shown in Figure 7. The GA-RF model are
classified as follows: low sensitivity (LS), probability range
of ≤0.0001–0.1929; moderate sensitivity (MS), probability
range of 0.1929–0.4240; high sensitivity (HS), probability
range of 0.4240~0.6436; and very high sensitivity (VHS),
probability range of 0.6436~0.9826; these classes in WOA-
RF model map for the LS, MS, HS, and VHS are
≤0.0001~0.1922, 0.1922~0.4275, 0.4275~0.6627, and
0.6627~1.0. For RF model map, these classes are LS
(≤0.0001~0.2000), MS (0.2000~0.4471), HS
(0.4471~0.6471), and VHS (0.6471~ 1). Consequently, in
SVM the classes were LS (0.0009~0.1891), MS
(0.1891~0.4157), HS (0.4157~ 0.6615), and VHS
(0.6615~0.9802). For LR model map, these classes are LS
(0.0004~0.1921), MS (0.1921~0.4269), HS
(0.4269~0.26695), and VHS (0.6695~0.9981).

The results show that, according to the SVM model, the
low sensitivity area is 38.40%, medium class is 21.21%, high
class is 18.25%, and extremely high class is 22.14%. In the
GA-RF model, the low sensitivity area is the largest
(33.64%), followed by the medium class (23.40%), the high
class (22.34%), and the very high class (20.62%). The
extremely high sensitivity area in the WOA-RF model is
the smallest among all models (18.85%), and the medium
class is 23.81%, and high class is 23.83%. Low class is
31.53%, medium class is 25.07%, high class is 24.18%, and
very high class is 19.22% in the LR model. Low class is
33.34%, middle class is 24.67%, high class is 19.40%, and
very high class is 22.62% in the RF model (Figure 8). Gener-
ally, the five models have the same trend of change.

The models in the study area intuitively reflect that the
landslide sensitivity between Daba Mountain and Qinling
Mountains are higher than that in the southern and north-
ern regions. High and very high sensitivity areas have large
terrain fluctuations. Overall, the sensitivity map visualizes
the landslide susceptibility distribution.

5.4. Model Prediction Evaluation. In order to quantify each
category, this study draws the proportion of the sensitive
area of four levels in the total area and the proportion of his-
torical landslide events in the total number of landslides.
Green represents the proportion of each level of landslide
sensitivity mapping, and red represents the proportion of
historical landslide events. The sensitivity area of high and
very high risks is less than 50% in the models, but the pro-

portion of historical landslides is more than 90%. Landslide
densities (LD) is the ratio of the percentage of the number of
landslide events to the percentage of all pixel areas for each
category on the sensitivity mapping. Comparing the values
of LD of several models, the higher the value corresponding
to the high and the extremely high sensitivity, the better the
prediction effect of the model. The higher the red column is,
the better the prediction effect of the model is. Meanwhile,
the landslide density values corresponding to the very high
sensitive areas in the five models LR, SVM, RF, WOA-RF,
and GA-RF are calculated, and the results are 2.82, 3.08,
3.32, 3.33, and 3.39, respectively. That is to say, GA-
RF>WOA-RF>RF> SVM>LR as shown in Table 8 and
Figure 8.

This research analyzes the prediction accuracy of RF,
SVM, RF, WOA-RF, and GA-RF models using under the
ROC curve based on the training dataset and validation
dataset. The training success rates of LR, SVM, RF,
WOA-RF, and GA-RF models are 0.7546, 0.8317, 0.8561,
0.8804, and 0.8957; the testing success rates are 0.7551,
0.8375, 0.8395, 0.8348, and 0.85007 (Figure 9). Combined
with the analysis of the above raster histogram results,
LR is the worst of the five models, and the success rate
of GA-RF prediction is the highest, followed by RF,
SVM, and WOA-RF are relatively low. And combined
with the value of accuracy of the training set and the test
set in Section 5.2, the comprehensive results show that the
GA-RF model has the best effect.

5.5. Contribution Value of Disaster-Causing Factors. The
main controlling factors of landslide susceptibility still have
no deterministic specification, and the contribution degree
of evaluation factors is of great significance to the predictors
of landslide susceptibility. Some landslide factors are elimi-
nated through Pearson correlation coefficient and multicol-
linearity analysis. The results show that the various models
of landslides significantly improve the index values of AUC
and accuracy. Due to the different contribution rate of differ-
ent features to the output results, the factor contribution rate
sorting has a certain effect on the interpretability and visual-
ization of the model. After landslide susceptibility prediction
and evaluation, Python is used to rank feature importance of
GA-RF model. The greater the decrease in the accuracy out-
side the bag is, the greater the impact of this feature on the
prediction classification results is. After the GA-RF model
is classified, the feature importance is calculated based on
the Gini coefficient, in which the overall importance of fea-
ture j is measured by the average importance of feature j
in a tree.

The contribution rates of each feature of GA-RF model
with high success rates to landslide prediction results are
plotted. We consider that these factors all contribute posi-
tively to the simulation of debris flow sensitivity
(Figure 10). The five factors of elevation, NDVI, distance
to roads, rainfall, and distance to rivers have the highest con-
tribution rate. Previous studies in the area and surrounding
areas have also shown that there is also a strong correlation
between elevation, rainfall, and roads through the occur-
rence of landslide events.
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The distribution of landslides with high and very high
sensitivity classes on five most important factor thematic
maps (elevation, NDVI, distance to roads, rainfall, and dis-
tance to rivers) is shown in Figure 11. Most have high and
very high landslide susceptibility closely related to the fol-
lowing conditions: the average elevation is below 1000m,
the NDVI is between 0.63 and 0.72, the distance to roads
is below 1500m, the rainfall is between 900mm and
1000mm, and the distance to rivers is also below 1500m.
Therefore, in these types of highly coupled areas, strengthen
the early warning of heavy rainfall and increase prevention
and control measures to protect people’s property and per-
sonal safety.

5.6. Discussion. Compared with traditional qualitative analy-
sis, some classical machine learning methods are more effec-
tive in predicting landslide susceptibility, such as LR and
SVM models [84]. The LR model is directly based on the
original dataset; multicollinearity is not a problem, and it
has good prediction performances. SVM outperforms logis-
tic regression in landslide susceptibility evaluation. SVM and
RF models are widely used in landslide prediction with good
results [85–87]. Because RF and SVM models will be over-
fitted, landslide factors need to be controlled within a certain
range to ensure the performance of the landslide prediction
model; 8-12 landslide factors are the best [88]. This study
analyzes and compares 15 landslide influencing factors and
excludes curvature, roughness, and SPI by Pearson correla-
tion coefficient, variance expansion coefficient, and toler-
ance. We find that each model has a certain improvement
in AUC value.

Then we counted the specific parameters of the training
and testing sets, and the results show that all models have
achieved good results. With the coupling of heuristic algo-
rithms and machine learning, the accuracy of landslide pre-
diction models can be effectively improved [89]. The GA
and WOA can quickly and efficiently acquire hyperpara-
meter combinations [90]. The WOA and GA in this study
are actually looking for the best parameter combination of
the RF model to improve the prediction ability of the RF
model. We evaluate the performance of the model separately
by statistical training and test dataset metrics, including sen-
sitivity, specificity, accuracy, kappa, mean absolute error
root mean square error, and area under the receiver operat-
ing characteristic curve in the case of training dataset and
test set, and the results show that the GA-RF model has
the best performance. The weight of each factor based on
the Gini index of the GA-RF model has been obtained.
The distribution of landslides with high and very high sensi-
tivity classes is on five most important factor thematic maps
(elevation, NDVI, distance to roads, rainfall, and distance to
rivers). According to the results obtained, relevant preven-
tive measures are formulated to achieve early prevention
and control of landslides.

6. Conclusion

The selection of landslide factors is a key step in landslide
mapping. Since the main control factors of landslides have

not been determined, the choice of the number of landslides
has to be solved. Choosing too many numbers may lead to
overfitting of the model, while too small numbers may lead
to insufficient accuracy. A large number of scholars have
studied the coupled optimization model. Among them, the
GA and WOA in this study are applied. The research mainly
studies the optimization of the RF model by GA and WOA,
that is, to find the best parameter combination of the RF
model.

In this study, we use the GA and WOA not to be sepa-
rate models but to optimize the RF model to find its optimal
parameter combination. First, a landslide inventory map
consisting of 4278 identified landslides is randomly divided
into training and test landslides in a ratio of 7 : 3. The 15
landslide impact factors detected potential multicollinearity
among the factors using PCC, VIF, and TOL. The perfor-
mance of the model separately by statistical training and test
dataset metrics are evaluated, including sensitivity, specific-
ity, accuracy, kappa, MSE, RMSE, and AUC.

The training success rates of LR, SVM, RF, WOA-RF,
and GA-RF models are 0.7546, 0.8317, 0.8561, 0.8804, and
0.8957; the testing success rates are 0.7551, 0.8375, 0.8395,
0.8348, and 0.85007. The results also show that the GA algo-
rithm significantly improves the predictive power of the RF
model. The training success rates of LR, SVM, RF, WOA-
RF, and GA-RF models are 0.7546, 0.8317, 0.8561, 0.8804,
and 0.8957; the testing success rates are 0.7551, 0.8375,
0.8395, 0.8348, and 0.85007. The landslide density values
corresponding to the very high sensitive areas in the five
models of LR, SVM, RF, WOA-RF, and GA-RF are calcu-
lated, and the results are 2.82, 3.08, 3.32, 3.33, and 3.39,
respectively. Comparing the optimized GA-RF model with
the RF model, the improvement degrees of each index of
the GA-RF model are sensitivity (0.073), specificity (0.043),
accuracy (0.039), RMSE (-0.009), MSE (-0.008), and Kappa
index (0.017). It shows that genetic algorithm is better than
other algorithms in optimizing RF performance. The land-
slide susceptibility map produced can be used for correct
decision-making and risk management of landslides. After
comprehensive evaluation, GA-RF model is the most suit-
able prediction model in the five models, which has great
reference significance in disaster prevention and control in
Ankang City and its surrounding areas.

In terms of preventing overfitting and improving perfor-
mance, it may be possible to further optimize and compare
more deep learning and whether factor features need to be
reduced in dimension to improve accuracy, which requires
further research and analysis.
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