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Aiming at solving the problem that it is difficult to recognize the quiet period of acoustic emission in rocks, four machine learning
algorithms were adopted to develop and improve the recognition method of the quiet period of acoustic emission. In the process
of establishing the model, the time domain data of acoustic emission were standardized and processed by box diagram method, so
as to clean the abnormal data and reduce the dimension, and the frequency domain data were denoised by wavelet four-layer
transform and wavelet packet three-layer energy decomposition, and a group of 8 wavelet packet energy parameters were
established as frequency domain characteristic parameters. Based on AE time domain data, frequency domain data, and
composite data (time-frequency domain data sets), the grid search traversal parameter technique was used to obtain the
optimal parameters of four machine learning models. The accuracy, precision, recall, and F1 score were used to verify and
evaluate the recognition performance of the models. The study results show that the recognition effects of the models are good,
the model accuracy of the frequency domain data set is the lowest, and the model accuracy of the composite data set is the
highest, with an accuracy of more than 90%. The kernel support vector machine model has the best performance, and its
average precision is 0.87. The random forest (RF) model is the best model for recognizing quiet period of acoustic emission.

1. Introduction

A physical phenomenon in which strain energy is released in
the form of stress wave during deformation and failure of
rock is called acoustic emission (AE) of rock. The quiet
period of acoustic emission refers to the phenomenon that
the acoustic emission of rock materials is rare or difficult
to be observed during a certain period of time, especially
before the peak stress [1], and it can be used as a precursor
of rock failure and instability. Therefore, people use com-
pression, tension, shear, and other means to study the char-
acteristics of acoustic emission quiet period of different
rocks and seek their common characteristics. Wang et al.
[2] divided the evolution characteristics of acoustic emission
signals into five stages by uniaxial compression experiments
of layered cemented tailings backfill: quiet period, slow ris-
ing period, rapid rising period, rapid descending period,
and slow descending period. The characteristic of the quiet

period was that only a small amount of acoustic emission
signals are distributed in the specimens at this stage. Wang
et al. [3] carried out triaxial compression tests on granite
samples under real-time AE monitoring. It was found that
the AE signals of granite samples under triaxial compression
can be divided into four stages: quiet period 1, active stage 1,
quiet period 2, and active stage 2. Li et al. [4] found that
granite will also enter a relatively quiet period of acoustic
emission before the peak stress. Zhang et al. [5] found that
saturated granite will enter the quiet period of acoustic emis-
sion later. Song et al. [6] observed that there is a quiet period
of acoustic emission in red sandstone from the aspects of
acoustic emission ringing count and energy, and Qiang
et al. [7] found the quasi-quiet period of sandstone. Wang
et al. [8] carried out an experimental study on the failure
of limestone under uniaxial compression and monitored
the acoustic emission characteristics of the whole limestone
failure process. It was found that the relative quiet period
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can be used as a precursor information of rock failure. Xu
et al. [9] found that the quiet period of acoustic emission
becomes more obvious with the increase of confining pres-
sure. Shu-lin and Hai-yan [10] analyzed the quiet period of
acoustic emission of a large number of rocks and found that
there is no quiet period of acoustic emission in copper mine
and tungsten-molybdenum deposit [11]. However, the rock
samples with medium pressure sudden increase in acoustic
emission have the characteristics of relative quiet period of
acoustic emission before the peak stress. The above studies
show that the phenomena of AE quiet period have great
commonness, but it is difficult to identify AE quiet period
accurately and timely.

Machine learning is a cross-discipline based on statistics,
mathematics, and computer science. Various machine learn-
ing models are gradually popularized and applied in the rock
field. Deng et al. [12] used support vector machine (SVM),
random forest (RF), and XGBoost (extreme gradient
enhancement) machine learning algorithms to automatically
classify slope behaviour according to the standard landslide
velocity scale. Zhao and Glaser [13] verified that the
machine learning algorithms including artificial neural net-
work (ANN) and support vector machine (SVM) have
higher accuracy and repeatability in relocating the source
in complex media where the velocity model is unknown.
Meylan et al. [14] put forward a method of real-time mon-
itoring of gold mine weakened by electric pulse by combin-
ing acoustic emission with machine learning algorithm. Pu
et al. [15] investigated the performance of 10 commonly
used machine learning models for microseismic/blasting
event identification. The fuzzy evaluation model compre-
hensively considers the performance of the model, which
provides geological engineers with reliable a priori knowl-
edge of model selection. Xinjin [16] used Gaussian classifi-
cation machine learning algorithm to analyze the acoustic
emission and sound signals produced by rockburst, so as
to identify the role of rockburst. Zhili and Xu [17] estab-
lished several sets of data to analyze, evaluate, and improve
the prediction of rockburst types by introducing 9 classical
machine learning algorithms. Zhaofu [18] used variational
mode decomposition and sample entropy to decompose
the rock fracture type and identify whether the rock failure
type is split failure or tension-shear failure. He [19]
designed and developed an acoustic emission detection sys-
tem based on wavelet decomposition of rock fracture
signals.

The occurrence of acoustic emission in engineering does
not mean that disasters must occur, but disasters must be
accompanied by acoustic emission, and the loss of any infor-
mation may lead to inaccurate prediction. At present, the
research on the quiet period of acoustic emission is mainly
focused on the single category parameters in time domain
or frequency domain, but due to the lack of information
caused by a single data set, the recognition method of acous-
tic emission quiet period is not accurate enough. Therefore,
in this paper, the composite (time-frequency domain) data
sets are used, and the sandstone acoustic emission quiet rec-
ognition models were established based on four machine
learning algorithms, and then accuracy, precision, recall,

and F1 value were used to evaluate the generalization ability
of the four machine learning models.

2. Acoustic Emission Characteristics of Rock
Failure Process

2.1. Introduction to the Experiment. The experimental rock
samples were sandstone, showing a light yellow, fine-
grained block structure, and the samples were compact and
crack-free. The specification was 50mm × 50mm × 100
mm (length × width × height). The samples were numbered
into two groups (A and B), with 5 in each group. Group A
was composed of complete rock samples, and there was a
20mm deep and 3mm high prefabricated crack in the mid-
dle of the rock sample in group B. The nonparallelism of the
two ends of the rock samples was less than 0.05mm, which
met the requirements of the Standard for Test Methods of
Engineering Rock Mass GB/T 50266-2013. The acoustic
emission system adopted the multichannel DISP acoustic
emission system produced by American Physical Acoustics
Corporation (PAC). The sensor type is NANO30, its reso-
nant frequency is 140 kHz, and the dominant frequency
band is 12-750 kHz. Six sensors are arranged in the upper,
middle, and lower parts of the rock sample surface, as shown
in Figure 1. The press is a microcomputer-controlled elec-
trohydraulic servo pressure testing machine system, the
model is YAW-1000 kN, and the maximum test force is
1000 kN. Uniaxial loading, displacement control, and load-
ing rate of 0.002mm/s are adopted. During the experiment,
the load, stress, and strain of rock samples were recorded,
and the acoustic emission ring count and energy were
recorded by acoustic emission system. Acoustic emission
parameter information mainly includes time, channel, rise
time, ring count, energy, duration, amplitude, average fre-
quency, effective voltage (RMS), ASL, peak frequency,
inverse frequency, initial frequency, signal strength, absolute
energy, center frequency, peak frequency, and waveform file.

2.2. Characteristics and Quiet Period of Acoustic Emission.
As shown in Figure 2, based on the stress of rock failure, rock
failure process can be divided into several stages according to
different stress and strain. Compared with AE ring count and
AE cumulative ring count, the whole rock failure process is
divided into five stages on the basis of ring count.

Stage I is the compaction stage of pores and fractures. In
the initial loading stage, the sandstone is in a low stress state.
The original open structural plane or microfractures of the
sample are gradually closed, and the rock is compacted.
The early nonlinear deformation is formed, and the acoustic
emission activity is weak. The AE event information is
mainly generated by the friction between the original frac-
tures in the rock sample, the compaction of the pore, and
the fracture interface. Stage II is the later stage of pore and
fracture compaction and the linear elastic stage. The AE
event signal is mainly derived from the rearrangement distri-
bution of grains in the rock sample after compression and
the formation of new fractures after initial fracture compac-
tion. Stage III is the stage of stable development of fractures.
With the increase of load, the primary microcracks and new
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cracks in the rock sample expand steadily, and the cumula-
tive ring count of AE increases steadily, but the amplitude
is not large. Stage IV is the stage of unstable development
of fractures. The axial and volumetric strain rates increase
rapidly, and the expansion of microfractures changes quali-
tatively. The fracture expansion is fast and uncontrollable
until the rock sample is completely destroyed. When the
peak stress is close to about 85%, the AE events decrease sig-
nificantly and enter the quiet period of acoustic emission.
Stage V is the postfracture stage. After reaching the peak
strength, massive fractures in the rock sample rapidly
expand, connect, and penetrate, and large crack failure zones
occur, resulting in a large number of AE phenomena.

It can be seen that it is difficult to recognize the quiet
period of AE in real time in the experiment. Therefore, in

this paper, the AE time domain data set, frequency domain
data set, and the composite data set combined with time
domain and frequency domain data set were corresponding
to the rock failure stage. The data sets were used as the sam-
ples of machine learning, and the five stages of rock failure
are used as the labels of the samples, and the labels were
the target values in supervised learning. 80% of the samples
were taken as the training sets and the remaining 20% sam-
ples as the test sets.

3. Acoustic Emission Data Processing

3.1. Time Domain Data Processing of Acoustic Emission
Signal. Firstly, Python was used to sort the AE data in time
domain by a traversal method. The outliers of acoustic
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Figure 1: Samples, experimental results, experimental equipment, and acoustic emission sensor arrangement.
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emission are inevitable in the process of signal acquisition,
and substituting the abnormal values into the process of
data calculation and analysis will have unpredictable conse-
quences to the final result. In this paper, the method of box
diagram was used to remove the outliers, and the ring
count of sample no. 2 was taken as an example to calculate
the box diagram. The distribution of the original data of
ring count is shown in Figure 3(a). A total of 172328 ring
counts are produced, most of them are distributed between
0 and 10, and the outliers are greater than 11. After remov-
ing the outliers, the histogram is redrawn as shown in
Figure 3(b).

The normalization of AE data is the basis of data pro-
cessing, because there are many time domain parameters
of acoustic emission, but different parameters have different
dimensions. If not processed, it will increase the difficulty of
the computer in machine learning and may affect the final
results. In order to eliminate the difference in dimension
and value range among the parameters, Python was used
to normalize the AE data. There are two common methods
of normalization: deviation standardization and standard
deviation standardization. The deviation normalization does
not change the relationship between the data and is the sim-
plest way to eliminate the dimension and reduce the influ-
ence of the data range. The results of some AE data before
and after deviation standardization are shown in Table 1(a)
and Table 1(b).

3.2. Frequency Domain Data Processing of Acoustic Emission
Signal. In the process of the experiment, it is necessary to
reduce the noise of the acoustic emission signal due to the
influence of environmental factors and the vibration of
experimental equipment. Wavelet transform has a good
noise reduction effect on acoustic emission signals. Consid-
ering the sudden occurrence of rock acoustic emission sig-
nals and the dense occurrence of acoustic emission signals
in a short time of rock failure, db3 wavelet basis was used
to decompose the acoustic emission original signal into four
layers. db3 wavelet basis can remove the noise signal to the
maximum extent, and the wavelet decomposition coefficient

is processed by soft threshold. The decomposed signal is
reconstructed by threshold and finally restored.

Wavelet packet decomposition is a further optimization
of wavelet transform. The number of wavelet packet decom-
position layers is determined according to the signal acquisi-
tion frequency. The acquisition frequency was set to 1MHz.
The Nyquist frequency was calculated to be 500 kHz. The
signals were decomposed into three layers of wavelet
packets, then the frequency band range is divided into 23
= 8 stages, and the corresponding bandwidth of each node
after decomposition is 500/8 = 62:5 kHz.

After the acoustic emission signals were decomposed by
wavelet packet, the frequency bands obtained by the last
layer decomposition are sorted according by Gray code, so
it is necessary to reorder them according to the natural
increasing order, and the results are shown in Table 2.

In order to convert the wavelet packet energy into exper-
imental data that could be used for machine learning, and to
make the wavelet packet energy as the characteristic infor-
mation that could represent the acoustic emission frequency
domain, in order to ensure the integrity of each waveform
signal without splitting its eigenvector, it was necessary to
convert the acoustic emission signal waveform into the
energy ratio of the frequency band. The integrity of the fre-
quency domain eigenvector was guaranteed according to the
ratio of 8 frequency bands to the total frequency band
energy. The ratio of the wavelet packet energy of each fre-
quency band of the denoised signal to the signal after wave-
let packet transform is shown in Table 3, and each row in the
table corresponds to the AE frequency domain signal of one
time node. The ratio of each subband in the total energy is
calculated in turn, as shown in Table 4.

According to Tables 3 and 4, the band of acoustic emis-
sion energy produced by uniaxial compression of sandstone
is mainly concentrated between 62.5 kHz and 375 kHz,
accounting for 96% of all energy, frequency band which is
less than 62.5 kHz accounting for 1%, which is greater than
375 kHz accounting for 0.71%, 62.5 kHz~125 kHz account-
ing for 8.9%, 62.5 kHz~125 kHz accounting for 8.9%,
125 kHz~187 kHz accounting for 21.5%, 187.5 kHz~250 kHz
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Figure 3: (a) Histogram of ring count distribution. (b) Histogram of ring count distribution after removing outliers.
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accounting for 25.5%, 250 kHz~312.5 kHz accounting for
10.4%, and 312.5 kHz~375 kHz accounting for 29.7%. The
above analysis shows that although the acoustic emission
signals of sandstone are widely distributed, most of them
are concentrated in the low- and medium-frequency bands.

4. Accuracy Analysis and Recognition Ability
Evaluation of Machine Learning Models

Based on the basic algorithm package of scikit-learn
machine learning, according to the characteristics of AE
data, four supervised learning algorithms were used to learn
AE data sets, including K-nearest neighbor (KNN), random
forest (RF), gradient boosting decision tree (GBDT), and
kernel support vector machine (KSVM). Although there
are many machine learning algorithms suitable for binary
classification, in view of the large amount and variety of
acoustic emission data, the four machine learning algo-
rithms used in this paper are the most commonly used clas-
sification algorithms, and the parameter adjustment in the

modelling process is relatively easy, which is more suitable
for acoustic emission data.

In order to evaluate the generalization performance of
the four models, it was necessary to use the evaluation index
to measure the generalization ability of the models. Accu-
racy, precision, recall, and F1 score (the harmonic mean of
precision and recall) are commonly used model perfor-
mance evaluation indexes in classification problems. Among
them, the accuracy reflects the overall classification perfor-
mance of the model, and the other indexes reflect the classi-
fication ability of the classifier for different types of samples.
Accuracy is the most common evaluation index. Generally
speaking, the higher the accuracy, the better the classifier.
The accuracy can only reflect the overall prediction degree
of the model; therefore, it is necessary to use the accuracy,
recall, and F1 score to evaluate the recognition ability of
the model in the quiet period of rock failure AE after evalu-
ating the accuracy.

4.1. Analysis of the Accuracy of Machine Learning Models.
Firstly, the accuracy of the K-nearest neighbor machine
learning models using acoustic emission time domain, fre-
quency domain, and time-frequency domain composite data
sets was evaluated. The n_neighbors interval is 1-20. The
results are shown in Figure 4(a). As can be seen from
Figure 4(a), for the k-nearest neighbor model, the accuracy
of the model using frequency domain data set is the lowest,
and the accuracy of the model using composite data set is the
highest, and the accuracy is the highest around the parame-
ter n neighbors = 15. The maximum accuracy of the model
of the composite data set is 0.89, indicating that nearly
90% of the data can be correctly recognized by the K-near-
est neighbor model.

When applying the random forest model, the n_esti-
mators interval is 10-200. The results are shown in
Figure 4(b). As can be seen from Figure 4(b), the accuracy
of the model using frequency domain data set is the lowest,
the model using composite data set is the highest, and the

Table 1

(a) Data before processing

Time
Amplitude

value
Average
frequency

RMS ASL
Inverse calculation

frequency
Initial

frequency
Center

frequency
Peak

frequency

1927.6154 46 333 0.0024 30 0 500 224 244

1927.6155 43 30 0.0024 31 1000 22 224 264

1928.6247 50 208 0.0018 28 190 333 217 244

1928.6247 44 429 0.0024 30 400 500 261 295

(b) Preprocessed data

Time
Amplitude

value
Average
frequency

RMS ASL
Inverse calculation

frequency
Initial

frequency
Center

frequency
Peak

frequency

1927.6154 0.12 0.333 0.037 0.45283 0 0.49750 0.7320 0.6893

1927.6155 0.06 0.03 0.037 0.4717 1 0.01710 0.7320 0.7457

1928.6247 0.2 0.208 0.027 0.4151 0.19 0.3296 0.7091 0.6893

1928.6219 0.08 0.429 0.037 0.4528 0.4 0.49750 0.85294 0.8333

Table 2: Corresponding serial numbers of different frequency
bands.

Serial number Third-level serial number Frequency band range

1 3, 0ð Þ 0~62.5 kHz

2 3, 1ð Þ 62.5 kHz~125 kHz

3 3, 3ð Þ 187.5 kHz~250 kHz

4 3, 2ð Þ 125 kHz~187.5 kHz

5 3, 6ð Þ 375 kHz~437.5 kHz

6 3, 7ð Þ 437.5 kHz~500 kHz

7 3, 5ð Þ 312.5 kHz~375 kHz

8 3, 4ð Þ 250 kHz~312.5 kHz
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Table 3: The ratio of energy coefficients of wavelet packets in each frequency band.

Ratio of energy
coefficient of
wavelet packet
1

Ratio of energy
coefficient of
wavelet packet

2

Ratio of energy
coefficient of
wavelet packet

3

Ratio of energy
coefficient of
wavelet packet

4

Ratio of energy
coefficient of
wavelet packet

5

Ratio of energy
coefficient of
wavelet packet

6

Ratio of energy
coefficient of
wavelet packet

7

Ratio of energy
coefficient of
wavelet packet

8

8.589199 13.090636 21.074831 37.721808 0.3832724 2.1183415 6.6037274 10.41818

1.038535 3.2668099 21.921492 29.630774 0.0343893 0.1808155 29.007755 14.91942

3.20980 1.4333071 17.064262 9.0767267 0.2504116 1.4821539 26.031356 41.45197

4.33816 5.13641826 25.69094226 16.439378 0.147846606 0.4297466 43.6422293 4.175268

Table 4: Energy ratio of each subband.

Subband (kHz) 0~62.5 62.5~125 187.5~250 125~187.5 375~437.5 437.5~500 312.5~375 250~312.5
Ratio (%) 1 8.9 25.5 21.5 0.1 0.61 29.7 10.4
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accuracy is the highest around the parameter n estimators
= 150. The maximum accuracy of the model of the compos-
ite data set is 0.91, indicating that more than 90% of the data
can be correctly recognized by the random forest model.

When using the gradient boosting decision tree model,
the n_estimators interval is 10-200. The results are shown
in Figure 4(c). As can be seen from Figure 4(c), the accuracy
of the model using frequency domain data set is the lowest,
the accuracy of the model using composite data set is the
highest, and the accuracy is the highest around the parame-
ter n estimators = 50. The maximum accuracy of the model
of the composite data set is 0.90, indicating that 90% of the
data can be correctly recognized by the gradient boosting
decision tree model.

When using the kernel support vector machine model,
the adjustment parameter gamma interval is 0.001-10, and
the regularization parameter C is 1. The results are shown
in Figure 4(d). As can be seen from Figure 4(d), the accuracy
of the model using frequency domain data set is the lowest,
the model using compound data set is the highest, and the
accuracy is the highest around the parameter gamma =
0:01. The maximum accuracy of the model of the composite
data set is 0.91, indicating that more than 90% of the data
can be correctly recognized by the kernel support vector
machine model.

The accuracy of 12 sets of data with 4 machine learning
algorithms and 3 data sets is shown in Table 5. From the
point of view of the data set, the accuracy of the model using
composite data set is the highest, between 0.89 and 0.91,
with a mean of 0.90. The accuracy of the model using fre-
quency domain data set is the lowest, between 0.7 and
0.82, with a mean of 0.77. The accuracy of time domain data
sets ranges from 0.81 to 0.88, with a mean of 0.84. From the
perspective of machine learning algorithm, the accuracy of
kernel support vector machine is the highest, with a mean
of 0.87, followed by gradient boosting decision tree, whose
average accuracy is 0.84. The average accuracy of K-nearest
neighbor is 0.83, and that of random forest is 0.81. Thus, it
can be seen that no matter from the algorithm or from the
data set, the four machine learning models can accurately
recognize the AE quiet period.

4.2. Evaluation of the Ability to Recognize the Quiet Period of
Acoustic Emission in Rock Failure. In a sense, we can judge
whether a model is effective by accuracy, but for unbalanced
data sets or data sets with unbalanced categories, if a special
sample occupies the majority of the whole, it will affect the
judgment of the model on the integrity. The accuracy can
only reflect the overall prediction degree of the model; there-
fore, it is necessary to use the accuracy, recall, and F1 score
to evaluate the recognition ability of the model in the AE
quiet period of rock failure after evaluating the accuracy.
Firstly, the grid search method was used to select the optimal
parameters of the machine learning models, and then, the
acoustic emission quiet period recognition ability of four
machine learning models was evaluated.

The KNN model needs to select the appropriate number
of neighbors n, and there will be different decision bound-
aries according to the different values of n. The data set

was divided into training set and test set, and different n
-value models were established. The best model was selected
to evaluate the accuracy, recall, and F1 score of AE time
domain, frequency domain, and composite data set. The
results are shown in Figure 5(a).

With the increase of number of neighbors, the changes
of the accuracy of the model using time domain, frequency
domain, and composite domain are similar, the precision
decreases when the number of neighbors is 2 and then
slowly increases to the highest value when number of neigh-
bors is 14, and the highest precision using composite data is
0.7, and the recall and F1 score of the composite data model
are higher than those of the time domain model and the fre-
quency domain model, the precision of the time domain
model can reach 0.5, and the recall and F1 score of the com-
posite data model are higher than those of the frequency
domain model. The three indexes of the frequency domain
model are the lowest, and the precision is only about 0.5. If
the K-nearest neighbor model chooses the composite data
set, it can ensure that there is a 70% probability to correctly
recognize the acoustic emission quiet period. According to
the characteristics of acoustic emission, a higher recall
should be selected in the case of ensuring the precision of
classification, and after comprehensive consideration, the
KNN model using composite data is selected when the num-
ber of neighbors is 14.

The machine learning models of acoustic emission data
in time domain, frequency domain, and composite data are
established by using RF, and the machine learning models
with n_estimators from 10 to 200 are established, respec-
tively, and the performance indexes are shown in
Figure 5(b). The precision of the composite data model is
the highest, about 0.7, and the recall of the composite data
model can reach 0.5. The precision of the time domain
model is about 0.55, and the recall rate of the time domain
model is 0.35. The accuracy of the frequency domain model
is about 0.45, and the recall rate of the frequency domain
model is only about 0.15. The composite data model has
the highest precision, followed by the time domain model,
and finally the frequency domain model. The most suitable
random forest model was selected by comprehensively con-
sidering the precision rate and recall rate. Therefore, when n
_estimators is 140, the random forest model using the com-
posite data was established.

Table 5: The accuracy of different algorithms and different data
sets.

Machine
learning
algorithm

Data set
Algorithm
mean

Frequency
domain data

set

Time
domain
data set

Composite
data set

KNN 0.78 0.81 0.89 0.83

KSVM 0.82 0.88 0.91 0.87

GBDT 0.8 0.82 0.90 0.84

RF 0.69 0.85 0.91 0.81

Data set
mean

0.77 0.84 0.90 0.84
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In order to select the most suitable parameters of the
gradient boosting decision tree, the composite data set was
used to control the parameters n_estimators, learning_rate,
and max_depth, respectively, and then, the appropriate
parameters were selected.

Through Figure 5(c), it can be found that the precision of
the composite data model can be stable at about 0.7. When n
_estimators is 50, the precision can reach 0.7, and the recall
can reach 0.52. However, in the same case, the performance
of the time domain and frequency domain model is not as
good as that of the composite data model. The precision
and recall of the composite data model are better than those
of the time domain model and the frequency domain model,
indicating that the combination of time domain data and

frequency domain data plays an important role in the con-
struction of the model. Therefore, the performance of the
composite data model when n_estimators is 50 is the best,
and when n_estimators is 50, learning_rate is 0.1, and
max_depth is 8, the GBDT model using composite data
was established.

As shown in Figure 5(d), the kernel function of kernel
support vector machine is radial basis function (RBF). After
setting C to 1, the proper gamma is found between 0.001 and
10, and the best model is selected by combining with several
data sets. On the whole, with the increase of gamma value,
the precision of the three models using different data sets
shows a trend of rising at first and then decreasing, and
the precision of the time domain model is similar to that
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with max depth = 8 and learning rate = 0:1
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KSVM model with C = 1

Figure 5: Precision, recall, and F1 scores of four models.
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of the composite data model. However, it is better than the
frequency domain model, in which the highest precision of
the time domain model is 0.76. But compared with the recall
and F1 score of the composite data model, it is not a good
choice. Therefore, the parameter gamma was set as 0.1,
and C was set as 1, and the composite data set was used as
a sample to establish the KSVM model.

Combined with four machine learning algorithms, the
machine learning models of three kinds of data sets were
built, and the classification performance of the models was
evaluated based on accuracy, precision, recall, and F1 score.
The accuracy reflected the overall accurate degree of the
classification of the five stages of rock failure process. For
the study of the quiet period of AE, through comprehensive
comparison, it was found that the model based on composite
data set had the best recognition effect, followed by the
model based on time domain data set, and finally the model
based on frequency domain data set. The generalization per-
formance indexes of the models based on the four machine
learning algorithms using composite data sets are compared,
as shown in Table 6.

It can be seen from Table 6 that the precision of the four
machine learning models is between 0.68 and 0.71, with little
difference. Among them, the precision of the KSVM model
is the lowest, only 0.68. The precision of the KNN model is
the same as that of the GBDT model, both of which are
0.7. The precision of the RF model is the highest, which is
0.71. In terms of recall, the recall of the four models are
between 0.37 and 0.52. The recall of the KNN model is the
lowest, which is 0.37. The recall of the GBDT model is the
highest, which is 0.52. The recall of the RF model is 0.5. In
terms of F1 score, the F1 score of the four models is between
0.48 and 0.6, and the F1 value of the KNN model is the low-
est, which is 0.48. The F1 score of the KSVM model is
slightly higher than that of the KNN model, and there is lit-
tle difference between the RF model and GBDT model.

The purpose of this paper was that as long as the quiet
period of acoustic emission occurs, the machine learning
models need to recognize it. Therefore, the final evaluation
criterion of the model was to compare its indexes under
the condition of ensuring precision. In terms of precision,
recall rate, and F1 score, the best model is the RF model,
followed by the GBDT model and KNN model, and finally,
the KSVM model.

5. Conclusions

Acoustic emission is an important means to monitor and
predict rock dynamic disasters such as rockburst and under-

ground impact pressure, and the quiet period of acoustic
emission is an important precursor for prediction. In order
to accurately recognize the quiet period of acoustic emission,
this paper took sandstone as the research object and studied
the quiet period recognition of sandstone acoustic emission
based on four machine learning algorithms. The conclusions
are as follows:

(1) Acoustic emission time domain data set and fre-
quency domain data set can be used alone or com-
bined into a composite data set to establish the
acoustic emission quiet period recognition model

(2) The model accuracy of the acoustic emission quiet
period recognition established in this paper is high,
the model accuracy using the frequency domain data
set is the lowest, and the model accuracy of the com-
posite data set is the highest, and the accuracy is
more than 90%. From the point of view of machine
learning algorithm, the KSVM model performs best,
and its average accuracy is 0.87

(3) The precision of the four machine learning models is
between 0.68 and 0.71. Among them, the precision
of the KSVM model is the lowest, only 0.68. The pre-
cision of the KNN model and the GBDT model is the
same, both of which are 0.7; the RF model has the
highest precision of 0.71. Considering the precision,
recall, and F1 score, the best model for acoustic
emission quiet period recognition is the RF model,
followed by the KNN model, the GBDT model, and
finally the KSVM model
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