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The fabric anisotropy and anisotropic parameters have great effect on the mechanical property of sand. Based on the existing
anisotropic model, a modified anisotropic hypoplastic model is developed by incorporating the relation between fabric tensor
and anisotropic parameters into the nonlinear part of the constitutive model. The applicability of the improved anisotropic
hypoplastic model is validated by comparing with the existing model and experimental data. As a result, it is found that the
modified model can well predict the mechanical response of anisotropic sand.

1. Introduction

Natural sands are affected by gravity and other factors dur-
ing deposition, which form a certain spatial arrangement
among the particles. This progress causes the anisotropy of
sand. The study on the anisotropic sand has always been
an important research topic in the field of mechanics, which
is of great significance for the analysis of deformation,
mechanical properties, and stability of engineering rock
and soil.

Numerous anisotropic plastic models and damage
models have been used to predict the mechanical response
of anisotropic soil and rock [1–6]. Based on the framework
of critical state soil mechanics (CSSM) for the triaxial space,
Dafalias et al. [1] have presented an anisotropic clay plastic-
ity constitutive model. This new model was extended to
include a non-associative flow rule and used to simulate
the response under undrained loading for some normally
consolidated sensitive clays, including possible softening
response. An anisotropic elastoplastic model for soft clays
has been established by Sivasithamparam and Castro [4]
based on an existing model called S-CLAY1S, which is a

Cam clay type model that accounts for anisotropy and
destructuration. Rong et al. [6] have developed a statistical
damage constitutive model for anisotropic rock and accu-
rately predicted the mechanical state and deformation of
rock for geotechnical, coal mining, shale gas exploitation,
etc. However, these models are described by complex formu-
lation and parameters. Meanwhile, traditional elastoplastic
theories such as flow rule, destruction rule, and hardening
rule have to be taken into account, and many assumptions
must be selected.

Therefore, many researchers have paid special attention
to develop hypoplastic models [7–27]. The hypoplastic
models do not need to consider the traditional plastic theory
and are developed without separating the deformation into
the elastic and plastic parts, and only a simple formula can
describe the complex constitutive relationship. A hypoplas-
tic constitutive model has been first developed by Kolymbas
[7], who used a simple nonlinear tensor equation to simulate
the mechanical responses of sand. The equation is mainly
divided into two parts: the first part is a linear function of
the strain rate, the second part is a nonlinear function of
the strain rate, and the stress rate tensor is represented by
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these two parts. A four-parameter hypoplastic model (called
Wu-Bauer hypoplastic model) has been presented by Wu
and Bauer [8] in 1994, and this constitutive relation was
used to predict nonlinear stress-strain relationship and vol-
ume change in dilation of sand. The model requires four
material parameters, which are simple to identify from triax-
ial compression tests. Since the model does not consider the
concept of critical state, so it cannot reflect the descending
part after the peak in the stress-strain relationship and
describe the strain softening characteristics of dense sand.
These limitations have been addressed in the later versions
of models presented by previous studies [9–12], in which
the void ratio was considered as an additional state variable
to solve the above shortcomings. A hypoplastic damage
model was developed from the fundamental concepts of

hypoplastic theory and the damage state function by Zhang
et al. [13]. Comparison of the predictions with the experi-
mental results shows that the model can describe the main
behavior of coarse grained soils, including the nonlinear
relationship between the strength and the confining pressure
and the volumetric strain behavior which dilates with low
confining pressures but contracts with higher confining
pressures. Recently, a new hypoplastic constitutive model
has been presented by adopting a so-called intergranular
strain and used to eliminate ratcheting under cyclic load
[14, 15]. Liu et al. [19] have established a simple hypoplastic
model to represent the mechanical responses of methane
hydrate-bearing sands (MHBS). This new model was intro-
duced with a new state parameter that considers the coupled
effects of temperature and pore pressure on the mechanical
behaviors of MHBS. Based on a basic hypoplastic model
developed recently for sand, Wang et al. [26] have presented
a new rate-dependent hypoplastic constitutive model for
overconsolidated clays. The improved model was introduced
with new density and stiffness factors adopted by consider-
ing history dependence. In addition, the new model was
established by incorporating the Matsuoka-Nakai failure
surface for the limit stress criterion. The model can properly
predict the hardening/softening, shear dilation/contraction,
and asymptotic state for overconsolidated clays.

Further, many researchers have developed anisotropic
hypoplastic models to simulate the mechanical response of
anisotropic soil based on the above hypoplastic models
[28–44]. On the basis of the consideration of the principle
of objectivity and the condition of material symmetry, Wu
[28] has developed a new hypoplastic model for inherently
anisotropic sand by incorporating a vector normal to the
bedding plane into the explicitly granular hypoplastic
models, which reproduces the mechanical behaviors of
anisotropic sand. Bauer et al. [30] considered the evolution
of anisotropy with the relative density of sand and assumed
that the influence of the initial anisotropy diminished grad-
ually, and it was completely gone at the critical state. An
inherently isotropic hypoplastic constitutive model has been
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Figure 1: Coordinate system (a) and isotropic plane (b) of transverse isotropic sand.
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Figure 2: Stress ratio-anisotropy index curve (θ=0°) (∗N1/N2 is an
anisotropy index related to the distribution of contact normal. N1
and N2 are the maximum and minimum densities of contact
normal, respectively.)
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extended to the anisotropic hypoplastic model [32]. The
modified model was developed by applying an anisotropy
operator to the nonlinear part and the whole part of the
existing hypoplastic model. The anisotropy operator
includes two factors: vector a and anisotropic coefficients
(α, β, γ). Vector a defines the orientation of the bedding
plane, while the parameters (α, β, γ) show the degree of
anisotropy. A new anisotropic hypoplastic model with fabric
anisotropy has been presented by Herrera and Lizcano [35].
Because fabric tensors can affect the constitutive equations
of sands by describing different granular material responses
when subjected to different stress paths, so the new model
is capable of predicting the mechanical behavior of the
anisotropic sand. Mašín [36] has extended an anisotropic
hypoplastic model to clay. The new model was developed
by incorporating an anisotropic form of the stiffness tensor
into the existing hypoplastic model with the asymptotic state
boundary surface. By comparing simulation results with hol-
low cylinder apparatus experimental data, it has been proven
that the model can be used for modeling the anisotropy
influence on undrained stress paths. Recently, the aniso-
tropic critical state theory (ACST) has been introduced into
the hypoplastic model and used to simulate the anisotropic
response of the soil. Yang et al. [39] have proposed a modi-
fied hypoplastic model for granular soils within the newly
developed ACST. A deviatoric fabric tensor and a scalar-

valued anisotropic state variable were incorporated into the
modified model to simulate the effect of anisotropic fabric
on the mechanical property of the anisotropic soil. Based
on the ACST, Liao and Yang [41] have developed a unified
hypoplastic model to reproduce the fabric effect in sand
under both cyclic and monotonic loading conditions. The
new model was introduced with the intergranular strain
concept and an evolving deviatoric fabric tensor. A scalar-
valued fabric anisotropic variable indicated the interaction
between the fabric and the loading direction and was used
to represent the effect of fabric anisotropy on both the dilat-
ancy and shear strength of sand. Meanwhile, Liao and Yang
[42] have adopted the ACST framework and presented an
extended hypoplastic model to predict the noncoaxial and
anisotropic response of sand subjected to both rotation of
principal stress axis and monotonic loading. Based on the
fabric change effect and a new unloading criterion, Liao
and Yang [43] have developed an enhanced hypoplastic
model to realistically predict soil behaviors under multidi-
rectional shearing conditions. By comparing the simulation
results of four models, including anisotropic hypoplastic
model, with experimental results, Duque et al. [44] have
investigated the advantages and disadvantages of these con-
stitutive models for anisotropic fine-grained soils.

Based on the existing anisotropic hypoplastic model, in
this paper, a new improved model has been proposed by
considering evolution of the fabric and anisotropic parame-
ters under the external loading. Previous works assumed that
the coefficients of anisotropy are constant, and the evolution
of anisotropy depends on the relative density. The modified
model is introduced by incorporating the relation between
the fabric tensor and anisotropic parameters into the nonlin-
ear part of the constitutive model. According to one view-
point (the relation between fabric tensor and anisotropic
parameters) described above, this paper has the originality
that is different from the previous papers.

2. A New Improved Model

2.1. Existing Anisotropic Hypoplastic Model. Based on the
anisotropic hypoplastic model proposed by Wu [28], and
Osinov and Wu [32], a new improved model has been devel-
oped. It uses a constitutive formulation expressed as

_T = L Tð Þ: D +M A,Nð Þ Dk k, ð1Þ

where _T is the material time derivative of the stress tensor
T, and D is the rate of deformation tensor. LðTÞ and N are
the fourth-order tensor and the second-order tensor, respec-
tively. kDk = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðDDÞp
stands for a norm. M is the function

of the tensors A and N. The tensor A can be written as fol-
lows:

A = a ⊗ a =
+cos θ cos θ −sin θ cos θ 0
−sin θ cos θ +sin θ sin θ 0
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Figure 3: Stress ratio-anisotropy index curve (θ=60°) (∗N1/N2 is
an anisotropy index related to the distribution of contact normal.
N1 and N2 are the maximum and minimum densities of contact
normal, respectively.)

Table 1: Parameters for the evaluation of anisotropic hypoplastic
model (Karlsruhe sand) [8, 47].

Parameters Value Parameters Value

c1 -101.2 α 1 (initial value)

c2 -962.1 β 1 (initial value)

c3 -877.3 γ 1 (initial value)

c4 1229.2 χ 0.01, 0.02, 0.03
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where a is a vector, and θ is the bedding angle. Figure 1
shows the coordinate system and isotropic plane of trans-
verse isotropic sand. Based on a Cartesian coordinate system
(x1, x2) in which the axis x1 is aligned with the major princi-
pal stress, assuming a new rotated system (x1′ , x2′) in which
the axis x1′ coincides with the direction of the transverse isot-
ropy determined by the vector a. θ is the angle between x1
and x1′.

Based on Euler’s theorem for homogeneous functions,
they assumed that the definition of M is as follows:

M A,Nð Þ = B Að ÞN, ð3Þ

where the fourth-order tensor BðAÞ is a function of A and is
independent of N. Since both M and N are symmetric ten-
sors of the second-order, B and N are represented with
matrices of 6 × 6 and 6 × 1, respectively, and Equation (3)

can be rewritten as follows:

Mf g = B½ � Nf g =

b11 b12 b12 0 0 0
b12 b22 b23 0 0 0
b12 b23 b22 0 0 0
0 0 0 b44 0 0
0 0 0 0 b44 0
0 0 0 0 0 b22 − b23

2
666666666664

3
777777777775

N11

N22

N33

N23

N13

N12

2
666666666664

3
777777777775

:

ð4Þ

The elements in matrix ½B� are the so-called anisotropic
parameters to be determined. For the purpose of simplifica-
tion, the off-diagonal elements in Equation (4) were elimi-
nated, and three coefficients (b11 = α, b22 = β, and b44 = γ)
were retained. Thus, Equation (4) can be redefined as

Start calculating

Input material constant

c1, c2, c3, c4

Initial condition
𝜃 = 0° (change), 𝜒 = 0.01 (change), 𝜎2 = 𝜎3 = 0

𝜎1, 𝜎2, 𝜎3 (experimental condition-𝜎1: change; 𝜎2, 𝜎3 : constant), 𝛼, 𝛽, 𝛾 = 1 (change)

External force condition

Axial strain increment: 𝜀1 

Auxiliary functions

Calculating strain increments 𝜀2, 𝜀3, 𝜀12, 𝜀13, 𝜀23

Main function

Calculating the axial stress increment 𝛥 𝜎1 and anisotropy factor increments 𝛥𝛼, 𝛥𝛽, 𝛥𝛾
modify the axial stress and anisotropy factor

Result analysis
NoYes The total axial strain meets

the requirements.Deviatoric stress-axial strain
Volumetric strain-axial strain

End calculating

. .

.

.

.

. . . .

Figure 4: Operation flow of the MATLAB code.
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follows:

Mf g = B½ � Nf g =

α 0 0 0 0 0
0 β 0 0 0 0
0 0 β 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ 0
0 0 0 0 0 β

2
666666666664

3
777777777775

N11

N22

N33

N23

N13

N12

2
666666666664

3
777777777775

: ð5Þ

Referring to the tensorial function [45], Equation (5) can
be rewritten as

M A,Nð Þ = α + γ − 2βð Þtr ANð ÞA + γN + β − γð Þ AN +NAð Þ:
ð6Þ

2.2. A Modified Model Considering the Relation between
Fabric Tensor and Anisotropic Parameters. For sand and
other typical granular materials in civil engineering, the
influence of anisotropic microstructure (i.e., fabric) on
mechanical characteristics, such as strength and deforma-
tion, is evident. Oda et al. [46] have performed a biaxial
compression test on two kinds of sand to analyze the change
of the fabric during deformation.

Figures 2 and 3 show the relation between stress ratio
and anisotropy index as a function of θ =0° and θ =60°,
respectively. As shown in Figures 2 and 3, the measured
stress ratios vary with the bedding angle, resulting in
strength anisotropy (stress-induced anisotropy). Further-
more, from Figures 2 and 3, it is easily seen that the ratio
N1/N2 is approximately proportional to the stress ratio.
Therefore, they found that as the sample is loaded, the fabric

evolves under the effect of external forces, resulting in stress-
induced anisotropy.

Based on the above experimental results, Guo [47] con-
sidered that the fabric tensor component is proportional to
the stress tensor component, by definition at

dFij = χ
dσij
p

, ð7Þ

where σij and p are a stress tensor and mean principal stress,
respectively. According to the condition of the triaxial com-
pression test, the mean principal stress p can be defined as
follows:

p = σ1 + 2σ3
3 : ð8Þ

χ is evolution constant of the fabric that describes the
stress-fabric relationship.

Osinov and Wu [32] assumed that the anisotropy is
described using the vector a and the parameters (α, β, γ);
the vector a gives the orientation of the bedding plane, while
the parameters (α, β, γ) determine the degree of anisotropy.
They proposed an anisotropic hypoplastic model by incor-
porating above two factors to predict the mechanical
response of the anisotropic sand assuming the parameters
(α, β, γ) are constant. But the assumption does not match
the actual condition of the sand. This is the reason why the
corresponding components of the stress rate vary during
deformation, resulting in a change of the parameters
(α, β, γ).

Therefore, we considered that the variation of parame-
ters (α, β, γ) depends on the external loads in such a way
that fabric evolution is occurred with external loading and
assumed that the fabric tensor components are equivalent
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Figure 5: Simulation of triaxial tests for various material constant: (a) deviatoric stress vs. axial strain; (b) volumetric strain vs. axial strain.
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to the evolutions of anisotropic parameters.

dF1 = dα, dF2 = dβ, dF3 = dγ: ð9Þ

Referring to Equation (9), three anisotropic parameters
are defined as follows:

α = α0 + dα, β = β0 + dβ, γ = γ0 + dγ, ð10Þ

where α0, β0, and γ0 are initial values of three parameters.
Following Equations (1), (6), (7), (9), and (10), the mod-

ified model is established by considering the relation
between the evolution of the fabric and anisotropic parame-
ters under the external loading.

Table 1 shows the parameters of the modified aniso-
tropic hypoplastic model for Karlsruhe sand.

As shown in Table 1, there are altogether eight parame-
ters in the modified anisotropic hypoplastic model. Four
parameters ci (i = 1,⋯, 4) are dimensionless material
parameters and these parameters can be obtained from tri-
axial compression test [8]. Three parameters α, β, and γ
are anisotropic parameters, and these parameters determine
the degree of anisotropy for the corresponding components
of the stress rate, and the initial values of these parameters
are all equal to 1, because the first stage of loading is isotro-
pic consolidation of triaxial test. The second stage is com-
pression of triaxial test, and the anisotropic parameters in
this stage can be calculated from Equations (7), (9), and
(10). The parameter χ is evolution constant of the fabric,
and the parameter can be defined from Guo [47].
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Figure 6: Changes of anisotropic parameters for various material constant: (a) α vs. axial strain; (b) β vs. axial strain; (c) γ vs. axial strain.
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3. Simulation Scheme

The improved model is used to simulate the triaxial com-
pression test for Karlsruhe sand. The parameters for the
Karlsruhe sand used in the simulation are listed in Table 1.
The initial void ratio is e0 = 0:52, and confining pressures
σ3 are 100, 200, and 300KPa. Based on the following hypo-
plastic model proposed by Wu and Bauer [8], we proceed to
consider anisotropic hypoplastic model.

_T = c1 trTð ÞD + c2
tr TDð ÞT

trT + c3
T2

trT + c4
T2
d

trT

� �
Dk k: ð11Þ

The deviatoric stress tensor in Equation (11) is given by
Td = T − 1/3ðtrTÞ1 (1 is the second-order unity tensor). In a
triaxial compression test for anisotropic sand, the governing
differential equations are defined as follows:

_σ1 = c1 σ1 + 2σ3ð Þ_ε1 + c2
σ1 _ε1 + σ3 _ε2 + _ε3ð Þ

σ1 + 2σ3
σ1

+ α + γ − 2βð Þ c3 σ21 cos2θ + σ22 sin2θ
À Á

+ 1
9 c4 σ1 − σ3ð Þ2 1 + 3 cos2θ

À ÁÀ Á� �
cos2θ

�

+γ c3σ
2
1 +

4
9 c4 σ1 − σ3ð Þ2

� �
+ β − γð Þ 2c3σ21 cos2θ +

8
9 c4 cos

2θ σ1 − σ3ð Þ2
� ��

B,

ð12Þ

_σ2 = c1 σ1 + 2σ3ð Þ_ε2 + c2
σ1 _ε1 + σ3 _ε2 + _ε3ð Þ

σ1 + 2σ3
σ2

+ α + γ − 2βð Þ c3 σ2
1 cos2θ + σ22 sin2θ

À Á
+ 1
9 c4 σ1 − σ3ð Þ2 1 + 3 cos2θ

À ÁÀ Á� �
sin2θ

�

+γ c3σ
2
2 +

1
9 c4 σ1 − σ3ð Þ2

� �
+ β − γð Þ 2c3σ2

2 sin2θ +
2
9 c4 sin

2θ σ1 − σ3ð Þ2
� ��

B,

ð13Þ

_σ3 = c1 σ1 + 2σ3ð Þ_ε3 + c2
σ1 _ε1 + σ3 _ε2 + _ε3ð Þ

σ1 + 2σ3
σ3

+ γ c3σ
2
3 +

1
9 c4 σ1 − σ3ð Þ2

� �� �
B,

ð14Þ

_σ12 = c1 σ1 + 2σ3ð Þ_ε12+ 2β − α − γð Þ c3 σ2
1 cos2θ + σ22 sin2θ

À ÁÂÈ
+ 1
9 c4 σ1 − σ3ð Þ2 1 + 3 cos2θ

À ÁÀ Á�
sin θ cos θ

+ γ − βð Þ c3 σ21 + σ23
À Á

sin θ cos θ + 5
9 c4 σ1 − σ3ð Þ2 sin θ cos θ

� ��
B,

ð15Þ
_σ13 = c1 σ1 + 2σ3ð Þ_ε13, ð16Þ
_σ23 = c1 σ1 + 2σ3ð Þ_ε23, ð17Þ

where

B =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ε21 + _ε22 + _ε23 + 2_ε212 + 2_ε213 + 2_ε223

q
σ1 + 2σ3

: ð18Þ

A MATLAB code was created to simulate the triaxial test
using a four parameter-anisotropic hypoplastic model.
Using Equations ((12)–(17)), the code computes the cor-
responding stress-strain and volume change for every
time step. Figure 4 shows the MATLAB code’s operation
flow. The four material parameters c1, c2, c3, and c4 are
input in the (input material constant) step. In a triaxial
compression test (σ1 > σ2 = σ3), the confining pressure is
constant, so _σ2 = _σ3 = 0. The bedding angles θ are 0°,
30°, 60°, and 90°. Initial values of three anisotropic
parameters are given by α = 1, β = 1, and γ = 1, respec-
tively. Even more, the initial conditions are entered in
the (initial condition) step. The axial strain increment _ε1
is entered in the (external force condition) step. All
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Figure 7: Simulation of triaxial tests for various confining pressure: (a) deviatoric stress vs. axial strain; (b) volumetric strain vs. axial strain.
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calculations are performed by six functions mentioned
above (Equations ((12)–(17))): five auxiliary functions
and one main function. In each time step, the strain
increments (_ε2, _ε3, _ε12, _ε13, _ε23) are calculated from the
(auxiliary functions) step. The obtained strain rates are
fed into the (main function) step to get the axial stress
rate and the anisotropic factor rates. The auxiliary func-
tions are Equations ((13)–(17)), and the main function
is Equation (12). Following this, the axial stress and
anisotropic factors are changed. This process is iterated
until the total axial strain meets the requirements. When
the total axial strain satisfies the requirements, it is gone
to the (result analysis) step, and the mechanical responses
are analyzed.

4. Simulation Results

The improved model is used to simulate the influences of the
material constant χ, confining pressure σ3, and bedding
angle θ on the mechanical response of anisotropic soil.

4.1. Effect of Material Constant χ on the Mechanical
Response of Anisotropic Soil. The modified model is used to
simulate the numerical triaxial test for Karlsruhe sand.
Figure 5 shows the relations between the deviatoric stress
and axial strain and volumetric strain and axial strain
according to the change of material constant χ. The confin-
ing pressure σ3 is equal to 100KPa, and bedding angle θ is
equal to 0°. As shown in Figure 5, an increase in material
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Figure 8: Changes of anisotropic parameters for various confining pressure: (a) α vs. axial strain; (b) β vs. axial strain; (c) γ vs. axial strain.

8 Geofluids



0
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
𝜀1, (%)

𝜎
1-

 𝜎
3, 

(K
Pa

)

0 = 90º
0 = 60º

0 = 30º
0 = 0º

(a)

0

0

2

4

6

1 2 3 4 5 6 7 8
𝜀1, (%)

𝜀 V
, (

%
)

0 = 90º
0 = 60º

0 = 30º
0 = 0º

(b)

Figure 9: Simulation of triaxial tests for various bedding angle: (a) deviatoric stress vs. axial strain; (b) volumetric strain vs. axial strain.
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Figure 10: Changes of anisotropic parameters for various bedding angle: (a) α vs. axial strain; (b) β vs. axial strain; (c) γ vs. axial strain.
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constant χ relatively causes increase in deviatoric stress. This
is the reason why the material constant affected the aniso-
tropic parameters, which results in the difference of response
of deviatoric stress. Figure 6 shows the change of anisotropic
parameters according to the material parameters.

From Figure 6, it is found that, with the augmentation of
material constant χ, the change of parameter α increases,
and the variations of parameters β and γ decrease. With
the material parameter constant, α increases initially until
to reach a constant value, and then keep a constant. But
comparing with α, parameters β and γ firstly decrease to
reach a constant value, and then keep the same. This reflects
the mechanical response of anisotropic soil.

4.2. Effect of Confining Pressure σ3 on the Mechanical
Response of Anisotropic Soil. The simulation results of triax-

ial tests according to various confining pressure are shown in
Figure 7. The bedding angle θ and the material constant χ
are equal to 0° and 0.01, respectively. As shown in
Figure 7, it is found that the new improved model can well
predict the response of confining pressure on the mechanical
property of anisotropic soil.

The changes of parameters α, β, and γ are presented
in Figure 8. The variation of the anisotropic parameters
was similar to that of material constant χ under constant
confining pressure. But as noted in Figure 8, for all cases
of various confining pressure, changes of anisotropic
parameters were all same, that is, there is no effects of
confining pressure on the variation of anisotropic parame-
ters. As a result, it can be seen that external force has
greater effect on the changes of anisotropic parameters
than confining pressure.
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Figure 11: Principal strains during triaxial compression (χ=0.03, σ3 =200KPa): (a) θ=30
°; (b) θ=60°.
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Figure 12: Principal strains during triaxial compression (χ=0.02, σ3 =300KPa): (a) θ=30
°; (b) θ=60°.
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4.3. Effect of Bedding Angle θ on the Mechanical Response of
Anisotropic Soil. Figure 9 shows the response of bedding
angle on the mechanical property of anisotropic soil, and it
can be noticed that the deviatoric stress increases as the bed-
ding angle rises. The confining pressure σ3 and the material
constant χ are equal to 100KPa and 0.03, respectively. For
all the values of bedding angles, the volumetric strain-axial
strain curve exhibits the same trend; volumetric strains
firstly contract and then dilatate. The changes of anisotropic
parameters are shown in Figure 10. With increase in bedding
angles, changes of anisotropic parameter α rises, while β and
γ decrease. Under the condition of constant bedding angle,
the anisotropic parameter α firstly increases to reach maxi-
mum value, and then keeps that value. It is found that the
change of anisotropic parameter α reflects the mechanical
response of bedding angle on the anisotropic soil. In contrast

of parameter α, anisotropic parameters β and γ initially
decrease to minimum value, and subsequently do not
change.

In general, anisotropic soil exhibits the nonaxisymmetric
deformation to the loading axes according to the bedding
angles [48]. Therefore, the modified model is used to verify
the nonaxisymmetric deformation. Figures 11 and 12 show
the relations between the axial strain and radial strains
according to the bedding angles in two cases (first case: χ
=0.03, σ3 =200KPa; second case: χ =0.02, σ3 =300KPa),
respectively.

As shown in Figures 11 and 12, in two cases, the values
for the radial strains all differ from each other, that is, the
mechanical response of bedding angles on the anisotropic
soil exhibits the nonaxisymmetric deformation about the
loading axes.
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Figure 13: Comparison of two models with the experimental data by Oda [49]: (a) θ=0°; (b) θ=30°; (c) θ=60°; (d) θ=90°.
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4.4. Comparison with the Existing Model and Experimental
Data. Wu [28] proposed the anisotropic hypoplastic model
by incorporating anisotropic operator into the nonlinear
part of constitutive model. But this model was used to sim-
ulate the mechanical property of anisotropic soil under the
condition of constant anisotropic parameters. The new
improved model was based on the same model from Wu
[28] but was developed considering the change of aniso-
tropic parameters. Therefore, the improved model was vali-
dated by comparing simulation results with existing model
proposed from Wu [28].

The first verification is done by the experimental data
conducted from Oda [49]. Wu [28] used the following con-
stants for numerical simulations: α=0.9, β=1.0, and γ=1.1.
Oda [49] has conducted a drained triaxial compression test

with confining pressure of 100KPa and strain rate of 0.2%/
min and analyzed the mechanical property of anisotropic
soil. The bedding angles were 0°, 30°, 60°, and 90°.
Figure 13 shows the comparison of two models with exper-
imental data.

As shown in Figures 13(a–d), in all cases, by comparing
simulation results with the experimental data of the drained
triaxial compression test, it is found that the new improved
model shows a significantly better agreement with experi-
mental data than the existing model. That is the reason
why the modified model can be used for modeling the
mechanical property of anisotropic soil by considering the
change of anisotropic parameters according to external load-
ing, while the existing model was based on the condition of
constant anisotropic parameters. It is then proven that the
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Figure 14: Comparison of two models and the experimental results by Uthayakumar and Vaid [50] for undrained triaxial tests (stress path
response): (a) θ=0°; (b) θ=30°; (c) θ=60°.
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improved model provides good predictions for the response
of anisotropic soil.

The last verification is done by using experimental
results from Uthayakumar and Vaid [50]. They have con-
ducted the undrained triaxial tests on Fraser River sand in
a hollow cylinder torsional shear device. Fraser River sand
was dry-deposited according to the bedding angles. The con-
fining pressure was 200KPa, and the bedding angles were 0°,
30°, and 60°. All the samples have the same relative density
of Dr = 30%.

Figures 14 and 15 show the simulation results of stress
path and deviator stress-shear strain relation for undrained
triaxial tests with the bedding angles, respectively. From

Figures 14 and 15, it can be found that the two models can
adequately predict the undrained behavior of anisotropic
sand. In particular, the simulation result of the improved
model agrees better with the experimental data than that of
the existing model.

5. Conclusions

The hallmark of the improved model lies in considering the
relation between the fabric tensor and anisotropic parame-
ters. The new improved model is extended by a new aniso-
tropic parameters. The anisotropic parameters are defined
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Figure 15: Comparison of two models and the experimental results by Uthayakumar and Vaid [50] for undrained triaxial tests (deviator
stress-shear strain): (a) θ=0°; (b) θ=30°; (c) θ=60°.
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in such a way that fabric tensor was changed according to
external loading.

The modified model has been evaluated by analyzing the
effects of the material constant, bedding angle, and confining
pressure on the mechanical property of anisotropic soil. The
results show that the improved model can well predict the
response of anisotropic soil. In addition, the new improved
model reflects the nonaxisymmetric deformation to the
loading axes in the anisotropic soil, according to the bedding
angles.

The modified model was compared to existing model
proposed by Wu [28] and experimental data conducted by
Oda [49] and Uthayakumar and Vaid [50]. The simulation
results of the improved model are closer to the experimental
data than existing model. The modified model has advantage
to predict the actual response of anisotropic soil. In the
future, it is paid special attention to use the improved model
for modeling boundary value problems under cyclic loading
and develop the anisotropic hypoplastic model within the
anisotropic critical state framework.
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