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Microseismic monitoring is a rock breakdown monitoring technology, and it has become a major technical tool for underground
disaster warning and prevention. However, the massive amount of data involved in multipoint monitoring raises the difficulty for
microseismic research when the research object involves underground large-scale complex engineering on time and space scales.
The risk predictions of rockburst based on microseismic parameters rely only on the experience of researchers and subjective
factors by the human factor. The dependent variable cannot be related to the acoustic and energy signals in the form of a
functional equation. Therefore, we collected a large amount of microseismic data obtained from the working faces of Shoushan
Mine of Pingdingshan Coal Group in China and filtered the data, then we constructed a prediction model of microseismic data
based on underground spatial three-dimensional coordinates using genetic programming (GP), which can realize real-time
monitoring and disaster warning of microseismic signals. We established the magnitude and energy prediction formulas by GP
and obtained the real-time evolution of each parameter of the optimal individual. The results showed that the actual seismic
and energy data of the working faces exhibited good agreement with those predicted by the prediction formulas. The high
energy and seismic distribution were caused by the mining stress at the edge of working faces due to the excavation and
unloading effect of the surface, and the energy and seismic evolution predicted by GP could also show this phenomenon well.

1. Introduction

In the China’s 14™ Five-Year Plan, the science and technol-
ogy development will focus on frontier areas, i.e., deep earth,
deep sea, aviation, and space technology [1]. Deep under-
ground space is rich in coal, oil, and unconventional natural
gas resources, but it is also under complex geological condi-
tion of high in situ stress, fluid pressure, and temperature
with strong mining disturbance [2-4]. Therefore, the energy
extraction is highly susceptible to rock burst and other
dynamic hazards, which become a challenge to the efficient
development of deep earth resources [5-9].

Microseismic monitoring technology is a rock fracture
monitoring technology and has become a major technical

tool for early warning and prevention of subsurface hazards
[10-12]. Based on the acoustic and energy signals transmit-
ted by rock mass during breakdown, it analyzes the source
characteristics and assesses the damage of rock mass, thus
provides a theoretical basis for controlling rock dynamic
hazards [13, 14]. Many scholars have evaluated the reservoir
stability and production status based on microseismic mon-
itoring [15-17]. Tang et al. [18] analyzed the distribution of
rock burst in multipanel and multistope areas with simulta-
neous mining and designed sensor network spatial arrange-
ment schemes with the optimized multiple microseismic
monitoring systems. Maxwell et al. [19] monitored the
deformation in Yibal oil field and other fields by identifying
the microseismic signal characteristics and located the
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microseismic sources accordingly. Tang et al. [20] analyzed
the rockburst mechanism in tunnel by microseismic moni-
toring and pointed out that the rockburst was induced by
the interaction between rock and surrounding rock and
deformation localization. Zhang et al. [21] used a microseis-
mic monitoring system to obtain microseismic energy
during mining and defined new rockburst prediction
parameters. They established the relationship between
microseismic energy and rock damage to effectively assess
the stability of coal and rock mass.

The acoustic and energy data obtained from microseis-
mic monitoring provide an effective database for early
warning and prevention and control of dynamic hazards.
However, the large amount of data involved in multipoint
monitoring raises the difficulty of microseismic research
because the research objects generally involve the complex
engineering on large temporal and spatial scales under-
ground. Moreover, the risk prediction of rockburst based
on microseismic parameters relies only on the experience
of researchers and is greatly influenced by human subjective
factors [22]. Therefore, using machine learning algorithm to
process the microseismic data has become a research hotspot
[23-25]. It can also ensure the accuracy and precision of the
data. Wang et al. [26] proposed a self-optimization mecha-
nism and introduced a machine learning algorithm called
automatic detection network, which could monitor micro-
seismic signals in real time. Tang et al. [27] proposed a
new end-to-end training network architecture to automati-
cally identify microseismic signals. The accuracy of intelli-
gent microseismic monitoring was greatly improved by
autonomously adjusting the weights of dependent variables
without increasing the computational cost. Ma et al. [28] used
a numerical method to simulate the progressive damage of
coal seam floor during mining and constructed a microseismic
monitoring system. They used virtual reality to realize 3D
visualization of microseismic monitoring and analyzed the
damage characteristics of the floor more accurately.

Current scholars have used machine learning for effec-
tive processing of microseismic data. However, most of the
studies often require much time to find the optimal or
near-optimal network structure for microseismic signal
monitoring and tuning, and they cannot relate the depen-
dent variable to the acoustic and energy signals in the form
of a functional equation [29, 30]. Genetic programming
(GP), as an extension of genetic algorithm (GA), provides
a new soft computing approach to solve this method
[31-33]. It does not require users to adjust the weights and
can automatically evolve the type, structure, and parameter
of the required model. It explicitly derives predictive equa-
tion to describe the relationship between variables. Effective
prediction of GP in geomechanics has been demonstrated
[34-36]. Therefore, we collected a large amount of micro-
seismic data obtained from the working faces of Shoushan
Mine of Pingdingshan Coal Group in China and filtered
the data, then we constructed a prediction model of
microseismic data based on underground spatial three-
dimensional coordinates using GP. The prediction formulas
for microseismic data were obtained, which can realize real-
time monitoring and disaster warning of microseismic data.
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No. Histogram | .0y Lithology | Remark
1:200 thickness
198 10.20 | Siltstone
199 14.49 Neutral
sandstone
200 3.85 | Mudstone
201 935 | Fine
sandstone
202 2.79 | Siltstone
203 5.52 | Mudstone Roof
204 5.13 Coal Coal seam
205 2t :EE_E 2.72 | Mudstone Floor

Ficure 1: Comprehensive histogram of roof and floor slate of coal
seam in 12070 working face.

2. Geological Information

In this study, the microseismic data were taken from the
12070 and 12090 working faces of Shoushan Mine of
Pingdingshan Coal Group in China. Shoushan Mine is
located in the northeast of Pingdingshan City, with a shaft
field of 6.1km long in east-west direction and 4.4km wide
in north-south inclination. The average depth of the coal
seam in the well field is 750 m, with an inclination angle of
8°~12°. The coal seams H,; and H,, ,, are both coal seams
with outburst risk. The working face of 12070 is located in
the east of Shoushan Mine’s hexagonal mining area, with a
strike length of 1 580m and a design mining length of
240 m. The coal seam of H,, ;, was mined with a mining
height of 4.0m. The comprehensive histogram of roof and
floor slate of coal seam in 12070 working face is shown in
Figure 1. The average burial depth of 12090 working face
is 455m, and the average coal thickness is 4.5m. The
surrounding rock is generally monoclinic structure with a
slightly westward inclination to the north. The dip angle is
around 10°. The original gas content is 4.32m’/t, and the
Protodyakonov coefficient of the coal seam is 0.17. The gas
pressure was measured as 0.21 MPa. According to the avail-
able geological data, there is no obvious structure in this
working face, but the top and bottom plates are undulating.
It has a certain impact on the excavation. The lithology of
roof and floor slate of coal seam in 12090 working face is
shown in Table 1. In this study, 7851 microseismic data near
12070 and 12090 working faces are selected for this study,
and their magnitude distribution is from 0.41 to 6.86. The
depth distribution of microseismic data is from 0 to
-1400m. The rule of sensor recording data is that when
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TasLE 1: Lithology of roof and floor slate of coal seam in 12090 working face.

Title Rock Thickness/m

Lithology

Main roof Dazhan sandstone 3~12.1

Roof Immediate roof Sandy mudstone 4~10.9; average 7.4

Mud or sandy

Deep gray, gray black, quartz mainly argillaceous cementation thick

layer; local microsandy mudstone.

Deep gray, gray black, medium-thick stratiform mica flakes, and

carbonaceous local sandy mudstones containing fossil plants.

Soft, broken, and easy to fall.

False roof mudstone 0.5~3; average 1.7
Immediate floor Mud or sandy 0~2.6
mudstone
Floor Sand d
Main floor andy mudstone 3.1~8.3

or fine sandstone

Black ash, black, thin-layer carbonaceous, and plant fossils, undulating.

It may have an impact on recovery.

Gray black, gray, pyrite-bearing nodules and argillaceous bands visible

in large quantities of pyrite nodules and siderite nodules.

any sensor received a signal exceeding the set threshold, the
data from 500 ms before to 1000 ms after the reception of
this signal was intercepted by all sensors as a microseismic
data. The next step is to filter the energy and magnitude data
obtained from the field microseismic data monitoring to
exclude the interference of noise.

3. Filtering of Sample Data

The original microseismic waveform obtained from the sen-
sor contained large background noise, so the original wave-
form needed to be filtered. Filtering is an operation that
filters out specific wave frequencies (high or low-frequency)
from the signal to extract the desired signal [37]. Generally,
high-frequency signals in images are the points in the image
that have significant grayscale changes and present contours
or noise, while low-frequency signals show flat and insignif-
icant grayscale changes in the image. According to the high
and low frequencies of the image, corresponding high and
low pass filters can be designed. High pass filtering detects
sharp and obvious changes in the image, while low pass fil-
tering makes the image smooth and filters out the noise in
the image. The filter is often designed as a discrete-time sys-
tem. So the system input is a time series of x(¢), and the out-
put is y(#). y(t) versus x(t) can be expressed as follows [38]:

y(t) =h(t) @ x(t) + n(t), (1)

where h(t) denotes the response between the input and
output, ® denotes the convolution sign, and n(t) denotes
the additive noise caused by the inverse filtering to achieve
the best recovery of smoothing metric. n(t) is not correlated
with x(t). Fourier transform of the above equation can
be obtained:

¥ (jo) = H(jw) & X (je) + N(jo), 2)

where H(jw) is the transfer function of the filter, which
reflects the frequency characteristics of the filter. N(jw)
is the power spectrum of the additive noise.

Low pass filtering involves the linear mean filter, Gaussian
filter, nonlinear bilateral filter, and median filter; high pass fil-
tering has various filters based on Canny and Sobel operators.
Low and high pass filtering algorithms often contradict each

other, so it is often necessary to reduce noise by low pass filter-
ing before edge detection and adjust the parameters to deal with
more image noise without losing high-frequency edges [39].

The ideal low pass filter model can be expressed
as follows:

1, D(x,y) <D,

H (x, y) = > (3)
0,D(x,y)=D

where D, is the passband radius, and D(x,y) is the

distance to the center of the spectrum, also known

as the Euclidean distance; it can be calculated as

follows: D(x,y) = \/(x ~X/2)* + (y - Y/2)*, where X and

Y denote the size of the spectrum image, and (X/2, Y/2)
denote the center of the spectrum.
The Gaussian low pass filter can be expressed as follows:

-Di(xy)

H(x,y)=
(xy)=e 202

(4)

After obtaining the low pass filter expression, the high
pass filter expression can be construct by subtracting the
low pass filter model by 1.

For better noise removal, the response function H(jw)
needs to be continuously adjusted. Therefore, the convolu-
tion function G(jw) needs to be found to further improve
the input signal X(jw) according to the output:

X(jw) = G(jw) * Y (jo).- (5)

The filter function in the frequency field can be
expressed as follows:

oy~ HORD
HPPR() +N(F)

H*(f)

3 > (6)
IHHI+ NR(S)

where G(f) and H(f) denote the Fourier transform of h(t)
and g(¢) in the frequency field, and R(f) and N(f) denote
the power spectrum of the input function x(¢) and additive
noise n(t) in the frequency field, respectively. * denotes the
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FI1GURE 2: Energy and magnitude of 12070 working face coal seam.

conjugate complex number. Equation (6) can be further
rewritten as follows:

G(f) =

1[ H()P ] )
H(f) |[H(H) + N(F)IR(f)

where N(f)/R(f) denotes the signal-to-noise ratio. When the
signal-to-noise ratio tends to infinity, i.e., the noise closes to
zero, the above equation is equal to 1, so the filtering is simpli-

fied as an inverse filtering process. However, when the noise
increases, the signal-to-noise ratio decreases, and the values of
the above parameters decrease as well. This suggested that the
bandpass frequency of the filtering depends on the signal-to-
noise ratio. Substituting Equation (7) into Equation (5), the
input signal X(f) in the frequency field can be obtained:

2oL H(f)I*
X(f)= H(f) [IH(f)|2+N(f)/R(f)

] *Y(f) (8)
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F1GURE 3: Energy and magnitude of 12090 working face coal seam.

After obtaining X(f), the deconvolution result %(f) can be
obtained by the inverse Fourier variation.

The original microseismic waveform obtained from
the sensor was filtered, and the microseismic energy
and magnitude data obtained were shown in Figures 2
and 3. The filtered data will be used to build a predic-
tion model by GP for the energy and magnitude data in
next section.

4. Energy and Magnitude Prediction Modeling

GP, as an improvement of GA [40], has been widely used in
geotechnical engineering for reservoir mechanics prediction
and simulation [41-43]. The principle is based on the sur-
vival of the fittest of the genetic law, which simulates the
reproduction and evolution of populations (e.g., replication,
crossover, and mutation) to generate optimal individuals for



TABLE 2: Parameters of the GP model.

GP parameter

Values

Terminal set
Function set
Prediction set
Fitness function
Maximum generation
Population size
Tree initialization
Selection method
Genetic operators
Mutation rate
Crossover rate
Reproduction rate

Termination criterion

X9 2
+, -, X,/, sin, cos, tan, exp, sqrt, In, power
Power and magnitude
Sum,,
100
100
Ramped half-and-half
Tournament
Mutation, crossover, replication
Dynamic (initial value 0.5)
Dynamic (initial value 0.5)
Dynamic (initial value 0)
Maximum generation

Mutation

FIGURE 4: Schematic diagram of individual (a) crossover and (b)
mutation.

given condition. In contrast to GA, GP utilizes tree
structure codes to represent individuals in a population
instead of binary code lines of GA [35, 44]. The tree
structure individuals consist of predictor variables, mathe-
matical symbols, and numbers, and the expressions of
output variables can be constructed under fixed output
rules. Genetic operators (replication, crossover and muta-
tion, etc.) are used on tree-structured individuals in pop-
ulation to create new offspring programs. It can generate
the best individual, also known as the individual with the
highest fitness, i.e., the equation with the best prediction,
under the rule of the survival of the fittest [45]. The sum
of the absolute error between the measured and predicted
values of an individual (Sum,) is used as a measure of
fitness in GP. This means that a lower Sum,, corresponds

Geofluids
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to a higher fitness, and the Sum, equation can be
expressed as follows:

N

Sum,, = Z‘msmi - mspi|, 9)
i=1

where ms_; is the microseismic data obtained through
the field; ms; is the microseismic data predicted by GP.
N is the overall number of samples.

Table 2 shows the parameters used in the GP modeling.
In this study, the three-dimensional coordinates (x, y, and z)
of the subsurface space were used as predictor variables, and
the energy and magnitude data were used as output variables
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to be predicted using the coordinates. In the initialization of
the microseismic population, the ramped half-and-half
method was used to generate microseismic individuals with
different breadth and dimensions to enhance diversity [36].
In the selection of microseismic individuals, the tournament
method was used to randomly select a certain number of
highly adapted individuals from the microseismic popula-
tion as parents using high fitness as the criterion, and then
create offspring of microseismic individuals using genetic
operators including replication, crossover, and mutation
[36]. The highest fitness individuals in each generation are
directly entered into the offspring by the replication
operator, and the number of replications can be specified
by the user. For the remaining positions of next generation
individuals, the microseismic individuals are genetically
manipulated according to the programmed crossover and
mutation probabilities.

Subtree crossover is the selection of random crossover
points (nodes) of microseismic parents and replacement to
create new microseismic individuals, and the crossover is
shown in Figure 4(a). Mutation is the selection of a random
mutation node of a microseismic individual and replacing
the subtree of that node using the system randomly gener-
ated microseismic individuals, and the mutation is shown
in Figure 4(b). The initial values of crossover and mutation
probabilities are the default values in the system settings.
The initial values of mutation and crossover probabilities
are set to 0.5, and they are adjusted at any time during the
population iteration to reflect the operator performance.
An increase in the operator probability indicates that the
produced microseismic individuals are more adaptive than
the previous generation; at the same time, it decreases the
probability of producing individuals that are poorly adapted
to the environment. The microseismic individuals with the
highest fitness obtained during the final run of the algorithm
are the predicted results of GP.

Puls

y 19

FIGURE 8: Optimal tree expression generated by GP.

The energy and magnitude data are substituted into the
GP separately, and the following prediction curves can be
obtained. The functions of the algorithm running of popula-
tion iteration can be presented separately, taking the magni-
tude prediction of working face 12090 as an example.
Figure 5 shows the dynamic evolution of the crossover and
mutation probabilities during the algorithm run, and the
cumulative occurrence of crossover, mutation, and replica-
tion operators. When the individuals with high fitness of
population appeared, the replication operator would be
introduced to replicate the high fitness individuals directly
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FIGURE 9: Prediction of power and magnitude of 12070 working face coal seam.

to the next generation to increase the average fitness of the
population, and the occurrence of the replication operator
in the last generation is 87. It can be found from the figure
that the crossover operator has a higher ability than the
mutation operator to produce highly adapted individuals
in the early iterations of the population. However, as the
population evolves, the fitness stabilizes, and the mutation
ability of the magnitude individuals needs to be improved

to create better individuals. The ability of mutation operator
to create the best individuals was higher than that of cross-
over in the late evolutionary stage, with 474 and 525 occur-
rences of crossover and mutation operators in the last
generation, respectively.

Figure 6 shows the maximum, optimum, and average
sizes and depths of the population individuals in the 12090-
magnitude modeling. As the population multiplies, the size
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FIGURE 10: Prediction of power and magnitude of 12090 working face coal seam.

and depth of the population individuals increase. The magni-
tude prediction expressions, represented by the magnitude
individuals, also gradually increase in complexity but also
gradually stabilize as the generation increases. The purple
curve in the figure represents the average fill rate of pop-
ulation individuals, which is closely related to population
diversity. The average filling rate represents the filling
degree of each individual, and the average filling rate of

unevenly developed individuals is low. At the beginning
of the program, the average fill rate presents a sudden
decrease, but the decrease gradually tends to be balanced.
The lower average fill rate implies higher population diver-
sity, which shows uneven development of individuals. This
phenomenon is related to the ramped half-and-half
method invoked to generate microseismic individuals with
different breadth and dimensionality. Figure 7 shows the
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fitness, number of nodes, and depth evolution of the opti-
mal individuals in each generation. Since we used the sum
of absolute error (Sum,,) between the measured and pre-
dicted values of individuals as a measurement of fitness, it
can be found that the fitness of the optimal individuals gradu-
ally increases, showing a continuous decrease in Sum,,. The
best individual appeared at 90th generation of population evo-
lution, and the fitness of the best individual was 212.20, the
depth of the tree was 14, and the number of nodes was 24.

The tree expression of the magnitude individual with the
highest fitness generated at the end of the population itera-
tion for a given 3D coordinate environment is shown in
Figure 8. To obtain the prediction formula for the magni-
tude, we traversed each node starting from the bottom and
left node, based on the rule of bottom to top and left to right,
until the top of the tree. The final generated prediction for-
mulas are shown in Table 3. Table 3 shows the depth, num-
ber of nodes, iterative generations, fitness (Sum,,), R% and
the final prediction formula for the energy and magnitude
optimal individuals of 12070 and 12090 working faces. From
the equations, the coordinates y and z have a greater influ-
ence on energy and magnitude and show a significant role
in the prediction. In contrast, the x-direction does not show
a significant difference between energy and magnitude, so
the x-coordinate does not appear in the prediction formula
for magnitude and energy. Substituting the coordinates into
the prediction formula, the obtained energy and magnitude
data for the two working surfaces are shown in Figures 9
and 10. Due to the excavation and unloading effect on the
working face, the mining stress causes the high energy and
magnitude at the edge of the working face, and the energy
and magnitude evolution predicted by GP can also describe
this phenomenon well. Comparing Figure 3, Figure 4, and
Figure 9 with Figure 10, it can be found that the actual mag-
nitude and energy data of the working face fit well with the
predicted data, and R? does not show an accurate fit due to
the large amount of data obtained, but it is within the
acceptable range. This implied that GP shows good perfor-
mance in predicting the energy and magnitude signals in
the field.

5. Conclusion

In this study, we established the magnitude and energy pre-
diction formulas by GP and obtained the real-time evolution
of each parameter of the optimal individual based on a large
amount of energy and magnitude data from the 12070 and
12090 working faces of Shoushan Mine of Pingdingshan
Coal Group in China. The data were filtered, and a predic-
tion model of microseismic data was constructed based on
underground spatial three-dimensional coordinates. The
main conclusions of this study are as follows:

(i) Since the original microseismic waveform contains
large background noise, the original waveform was
filtered. The filter function was designed to convolve
the function G(jw) in the frequency field, and the
input signal X(jw) can be continuously improved
according to the output, and X(f) after deconvolu-

11

tion can be obtained by the inverse Fourier variation,
and then the noise elimination was achieved

(ii) The magnitude and energy prediction formulas are
established by GP. The real-time evolution of each
parameter of the optimal individual is obtained.
The actual magnitude and energy data of the work-
ing face show good agreement with those predicted
by the GP prediction formulas. Due to the excava-
tion and unloading effect of working face, the min-
ing stress causes the high energy and magnitude at
the edge of the surface, and the energy and magni-
tude evolution predicted by GP can also show this
phenomenon well
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