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Analyzing the characteristics of rock brittleness in low-permeability mudstone and shale (MS) formations is imperative for
efficient hydraulic fracturing stimulation. Rock brittleness depends on the mineral composition, organic matter abundance, and
bedding structure. Based on the MS from Shahejie Formation mineral composition (clay mineral, felsic mineral, and calcareous
mineral contents), total organic content, and bedding structure (laminated, laminar, and massive), six types of lithofacies were
identified: clay-rich MS, felsic-rich MS, calcareous-rich MS, clay MS, felsic MS, and calcareous MS. The quartz, feldspar,
calcite, and dolomite of the Shahejie Formation are brittle minerals. Consequently, lithofacies with high felsic and calcareous
mineral contents are more brittle. In addition, laminated and laminar MS are also conducive to hydraulic fracturing.
Therefore, laminated, organic-rich, and calcareous-rich MS are the dominant lithofacies for hydraulic fracturing in the Shahejie
Formation. The lithofacies and brittleness index were predicted by the response characteristics between mineral compositions
and logging curves. The 3521–3552m section of well B11x is dominated by calcareous-rich MS with developed laminae,
representing a favorable section for hydraulic fracturing. Fragile minerals and oil are widely developed in the lower part of the
lower 1st member of the Shahejie Formation (Es1

L) in the southwestern part of Zhaohuangzhuang-Suning, where hydraulic
fracturing can be used to increase shale oil production.

1. Introduction

Abundant continental shale oil resources are the focus of
current unconventional oil development and research
[1–3]. Continental fine-grained sedimentary rocks (CFSR)
are primarily developed in lake environments. Owing to
the variations in the sedimentary environment, the mineral
composition, structure, and organic content of CFSR are
highly heterogeneous, which is not conducive to selecting
fracturing intervals [4–8]. One of the vital construction fac-
tors affecting the recoverability of shale oil is hydraulic frac-
turing treatment [9–12]. Fracability is a measure of the
difficulty of a shale reservoir to be effectively reformed and

indicates whether a reservoir may produce a larger reformed
volume by fracturing [13, 14]. Chong et al. [15] proposed the
concept of using brittleness index (BI) as a norm to evaluate
the fracturing ability of shale reservoirs. Fracability is
enhanced when the BI of mudstone and shale (MS) is higher.

The brittleness of MS can be evaluated based on the
mechanical properties or mineral composition of the rock.
Young’s modulus and Poisson’s ratio are critical mechanical
properties that indicate shale brittleness. Higher Young’s
modulus and lower Poisson’s ratio indicate higher shale brit-
tleness, and the shale will be more amenable to hydraulic
fracturing treatment [16, 17]. There are two different
methods for determining the mechanical properties of rocks:
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static and dynamic. In the static method, a certain pressure
is applied to the rock under laboratory conditions to analyze
the stress–strain relationship of the rock, thereby calculating
Young’s modulus and Poisson’s ratio. In the dynamic
method, the mechanical properties of rocks are determined
using sonic wave propagation through the rock. The
mechanical properties of a continuous distribution are
obtained through logging data, including sonic wave and
rock density data. They define the brittle minerals, which is
crucial for calculating the BI using the mineral composition
method. Based on the mineral composition characteristics of
the Barnett Shale, Jarvie et al. [18] considered quartz to be
the major brittle mineral. Wang and Gale [19] suggested that
dolomite is also a brittle mineral. Additionally, some
scholars consider that quartz, feldspar, calcite, and dolomite
are brittle minerals in shales with complex mineral composi-
tions [20–22].

Static parameters produce several changes in the
sample-loading history; however, the mechanical properties
of rock under formation conditions can be simulated by
applying different forces to the sample. The rock mechan-
ical properties (Young’s modulus, Poisson’s ratio, bulk
modulus, and shear modulus) and rock strength (compres-
sive strength, tensile strength, and shear strength) at any
formation depth can be easily obtained from sonic logging
data. However, shear wave velocity cannot be obtained in
most old wells because it is usually obtained from long
spacing sonic logging or multipole array logging [23]. Min-
eral components can be obtained via methods such as
whole-rock mineral X-ray diffraction (XRD), energy dis-
persive spectroscopy, and element capture spectroscopy
logging. A practical method can combine the above
methods for maximum advantage. The mechanical proper-
ties of rock minerals vary considerably. However, by ana-
lyzing the relationship between different minerals and
mechanical properties, minerals can be divided into brittle
and nonbrittle ones. Subsequently, a BI calculation formula
can be derived based on the mineral components. This for-
mula has guiding research in target areas with few research
data.

There are several significant differences between marine
shale and CFSR [24–28]. CFSR is strongly affected by the
sediment source and sedimentary environments [29, 30].
Consequently, CFSR is highly heterogeneous, which is pri-
marily manifested in the mineral types, rock compositions,
structural characteristics, pore space, organic matter (OM)
characteristics, and hydrocarbon mobility [31–36]. Some
scholars have studied this issue. Jiang et al. [25, 37] proposed
a classification scheme for eastern China, which is based on
total organic content (TOC), carbonate content, and clay
minerals, with TOC contents of 2% and 4% as the bound-
aries. The rocks are then divided into three categories: low
TOC, medium TOC, and high TOC. Additionally, 50% car-
bonate and clay minerals are used as boundary, and thus, six
subcategories are established. Chen et al. [38] analyzed the
mineral composition, bedding structure, OM abundance,
color, and other contaminants in the Dongying Sag and
found that the content of mixed fine-grained sedimentary
rocks was >60%. Using this definition, the rock was subdi-

vided into 17 lithofacies based on Jiang et al.’s classification
scheme [25].

The brittleness characteristics of MS are closely associ-
ated with rock characteristics such as mineral composition,
bedding structure, and TOC, which can be reflected by lith-
ofacies [39]. Different lithofacies have different brittleness
characteristics, and analysis of the coupling relationship
between lithofacies and brittleness has great significance
for selecting hydraulic fracturing intervals. Research on
the shale interval of the Es1

L in the Raoyang Sag is rela-
tively limited, and data are insufficient. Therefore, this
study first classified the lithofacies of the rocks in Es1

L.
The classification was based on mineral composition, sedi-
mentary structure, and TOC. Subsequently, the mechanical
properties of the rock were obtained through triaxial
mechanical experiments. Brittle minerals were defined by
analyzing the relationships between different minerals and
mechanical parameters of the rocks, and the BI was calcu-
lated. The dominant lithofacies were selected by analyzing
the brittleness characteristics of the different lithofacies.
Finally, hydraulic fracturing intervals conducive to shale
oil development were selected.

2. Geological Setting

The Raoyang Sag, with an area of approximately 5280 km2,
is located in the central region of the Jizhong Depression,
Bohai Bay Basin (Figure 1). The sag has the richest
hydrocarbon resources in the depression [30, 40, 41].
High-quality hydrocarbon source rocks of the Es1

L and
3rd member of the Shahejie Formation, which are an
essential material basis for the formation of shale oil, are
developed in a semideep and deep lacustrine sedimentary
environment [30, 42].

3. Samples and Methods

3.1. Samples. The Es1
L in the Raoyang Sag has a large area of

continuously distributed organic-rich shale with high OM
content. Most areas have entered the oil generation window
[30, 40, 42]. In this study, an experimental analysis was per-
formed on 99 MS samples with different secondary struc-
tures from Es1

L. The experiment included four types of
tests: TOC measurement, Rock–Eval pyrolysis analysis, thin
section identification, and XRD analysis.

3.2. TOC and Rock–Eval Pyrolysis Analyses. The TOC and
Rock–Eval pyrolysis analyses were conducted at the Key
Laboratory of Deep Oil and Gas at the China University of
Petroleum (East China). For estimating TOC, samples were
first crushed to an approximate mesh size of 100 and then
reacted with 5% diluted hydrochloric acid to remove inor-
ganic carbon. After oven-drying at 80°C (5%), the TOC con-
tent was determined using an Elab-TOC/E2000 analyzer.
Rock-Eval pyrolysis analysis required crushing the sample
to an approximate mesh size of 100 and then heating the
sample from 300 to 600°C (25°C/min) under anaerobic con-
ditions with nitrogen as the carrier gas in a YQ-VIIA Rock–
Eval rock pyrometer. The hydrocarbons and carbon dioxide
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emissions released from the rock were quantified using a
flame ionization detector and thermal conductivity detector.
The measured parameters were the free hydrocarbon con-
tent when vaporized at a temperature of 300°C (S1), residual
hydrocarbon generation potential when the temperature was

between 300 and 600°C (S2), and temperature of the maxi-
mum pyrolysis yield (Tmax).

3.3. XRD Tests. XRD tests were performed on the 99 samples
to quantitatively analyze their relative mineral contents. All
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samples used for XRD analysis were powders with a particle
size of <40μm. The analytical instrument used was a
Panalytical X’Pert PRO MPD X-ray diffractometer with Cu
Kα radiation (40 kV, 40mA) at a scanning speed of 2°/min
and testing angle range of 5°–90°.

3.4. Mechanical Experiment. Six rock samples from the study
area were drilled as regular core plugs with a diameter of
approximately 2.5 cm using an SK-5625A cycling CNC dia-
mond wire cutting machine. In natural underground condi-
tions, the rock is always under in situ stress and mostly in a
state of stress from three axes. Therefore, when hydraulic
fracturing is designed, it is necessary to consider the defor-
mation characteristics of rocks under a certain confining
pressure. In this test, a conventional triaxial compression
experiment was performed on a plugged specimen. First,
the specimen was placed in an autoclave, and lateral pressure
(confining pressure) was then applied to the core. Finally,
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Figure 2: Distribution frequency diagrams of (a) TOC and (b) S1 in the Es1
L of the Raoyang Sag.
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axial stress was applied to the core through the hydraulic
cylinder of the press. The confining pressure was maintained
at 20MPa throughout the experiment, and the axial pressure
was gradually increased until the specimen was destroyed.

4. Results

The TOC values of the MS samples ranged from 0.09% to
5.71%, with an average of 1.36%. Among the samples, 59
had a TOCvalue > 1:00% (Figure 2(a)). The S1 value of the
99 samples ranged from 0.01% to 6.27% (average of 0.78%)
(Figure 2(b)). Clay minerals and quartz were the major min-
erals in Es1

L in the Raoyang Sag, with average contents of
31.80% (range: 1.30%–58.30%) and 22.30% (range: 1.00%–
56.90%) (Figure 3(a)). The clay minerals in Es1

L primarily
comprised of illite (average: 40.50%) and illite–smectite
mixed layer clay (average: 39.70%), followed by kaolinite
and chlorite (Figure 3(b)). Other minerals also had various
degrees of development (Figure 3(a)).

Figure 4 shows the stress–strain relationships of the six
specimens under a confining pressure of 20MPa. Based on
the calculated results, Young’s modulus ranged from 9.04
to 28.07GPa, with an average of 19.40GPa. Poisson’s ratio
was approximately 0.2. The distribution of Poisson’s ratio
was relatively narrow with only small perturbations. Young’s
modulus values varied significantly among the different
samples. Young’s modulus was the major factor affecting
the mechanical characteristics of the rock in the study area.

5. Discussion

5.1. Types and Characteristics of Lithofacies

5.1.1. Lithofacies Types. In this study, the minerals of the
Es1

L were divided into four categories: clay minerals, felsic
minerals (quartz and feldspar), calcareous minerals (calcite,
aragonite, dolomite, and iron dolomite), and other minerals
(pyrite, siderite, and gypsum) according to the properties of
each mineral in the MS. The MS were classified based on its
mineral content [43]. MS with a clay mineral content > 50%
were defined as clay-rich MS. When clay minerals were the
most abundant minerals, with a content between 33% and
50%, the MS were categorized as clay MS. Felsic-rich MS,
felsic MS, calcareous-rich MS, and calcareous MS were also
similarly defined (Table 1). The sedimentary structure of
the Es1

L was also categorized. According to the degree of
bedding development, MS of the Es1

L were approximately

divided into laminated (bedding thickness < 1mm), laminar
(1mm < bedding thickness < 50 cm), and massive (bedding
thickness > 50 cm) structures. The rock with laminated or
laminar structure was classified as shale, and the rock with
massive structure was called mudstone.

In previous lithofacies classification schemes, the OM
boundaries have typically been determined based on subjec-
tive experience. However, this method is controversial
because of the differences in geological conditions. By ana-
lyzing the relationship between shale oil content and TOC,
Lu et al. [44] classified shale oil and gas resources into three
levels: scattered (ineffective), inefficient, and enriched
resources. TOC can be used as a grading standard that is
important for the study of shale oil. The oil content of the
samples from Es1

L exhibited the characteristics of a tripartite
division with increases in TOC value and chloroform bitu-
men “A” (Figure 5). The TOC classification limits were
determined to be 0.6% and 1.7%. Based on these classification
boundaries, rocks were divided into three types: organic-rich
MS (TOC > 1:7%), organic-medium MS (0:6% < TOC <
1:7%), and organic-poor MS (TOC < 0:6%).

In summary, the classification rules for the shale in the
Es1

L in the Raoyang Sag include the following three aspects:
structure (laminated, laminar, or massive), characteristics of
OM contents (organic-rich, organic-medium, or organic-
poor), and rock type (such as clay-rich shale) (Table 1).
The lithofacies classification results of the 99 shale samples
in the study area are shown in Figure 6.

5.1.2. Lithofacies Characteristics. The rock types of the 99
samples from the Es1

L were primarily clay MS (35.35%)
and calcareous-rich MS (23.23%), followed by felsic MS
(21.21%) and calcareous MS (11.11%) (Figure 7). As shown
in Figure 6, the rock type, bedding structure, and OM char-
acteristics have a specific relationship. In calcareous-rich
MS, calcareous minerals, siliceous minerals, clay minerals,
and OM typically occurred in alternate bands (Figures 8(a)
and 8(b)), or calcareous minerals, clay minerals, and OM
occurred in alternate bands (Figures 8(c) and 8(d)). The
TOC ranged from 0.54% to 5.07%, with an average of
2.45%. The calcareous MS and calcareous-rich MS exhibited
the same bedding characteristics (Figures 8(e) and 8(f)).
However, clay mineral bands and siliceous mineral bands
appeared more frequently in the calcareous MS, and the
OM content was slightly lower. Within the clay MS, with
an average TOC of 2.44%, organic-rich MS were observed,
which can be divided into two types: well-developed bedding

Table 1: Classification of rock types in the Es1
L of the Raoyang Sag.

Codename Rock type
Mineral content (%)

Clay Felsic Calcareous

A Clay-rich MS ≥50 <50 <50
B Felsic-rich MS <50 ≥50 <50
C Calcareous-rich MS <50 <50 ≥50
D Clay MS 33~50 <Clay mineral content <Clay mineral content

E Felsic MS <Felsic mineral content 33~50 <Felsic mineral content

F Calcareous MS <Calcareous mineral content <Calcareous mineral content 33–50
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type and underdeveloped bedding type. The bedding-
developed clay MS had a ternary laminar structure. The
ternary laminar layer comprised alternately distributed calcar-
eous minerals, felsic minerals, clay minerals, and OM
(Figures 8(g) and 8(h)). The clay MS with underdeveloped
bedding were dominated by massive structures (Figures 8(i)
and 8(j)). The former was dominated by organic-rich MS,
whereas the latter was mostly organic-poor MS with OM con-
tent ranging from 0.09% to 1.60% (average: 0.58%). The clay-
rich MS mostly had a massive structure and low OM content
(Figures 8(k) and 8(l)). The felsic-rich MS (Figures 8(m) and
8(n)) and felsic MS (Figures 8(o) and 8(p)) were dominated
by siliceous minerals, followed by clay minerals. Laminae were
not developed, and most of them are organic-poor MS or
organic-medium MS types.

5.2. Brittleness Evaluation

5.2.1. Brittleness Evaluation Based on Mineral Composition.
Young’s modulus (E) is a physical quantity that reflects the

ability of a solid material to resist deformation. It is
expressed as the slope of the stress and strain in a uniaxial
rock mechanics experiments [45–47].

E = Δσa
Δεa

, ð1Þ

where Δσa is the axial stress increment and Δεa is the axial
strain increment.

Poisson’s ratio (υ), also called the transverse deforma-
tion coefficient, refers to the ratio of the absolute value
of the transverse positive strain to the positive axial strain
when the material is under tension or compression in one
direction.

v =
Δεr
Δεa

, ð2Þ

(k)

400 𝜇m

(l)

(m)

1000 𝜇m

(n)

(o)

1000 𝜇m

(p)

Figure 8: (a, b) Calcareous-rich MS, well XL25x, 3540.65m; (c, d) calcareous-rich MS, well G24, 2617.00m; (e, f) calcareous MS, well
XL25x, 3538.41m; (g, h) clay MS, well B11x, 3543.90m; (i, j) clay MS, well G34, 2517.56m; (k, l) clay-rich MS, well G103, 2754.10m;
(m, n) felsic MS, well XL13, 3220.08m; (o, p) felsic-rich MS, well G107, 2400.70m.
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where Δεa is the axial strain increment and Δεr is the
radial strain increment.

The compositions of the six samples are listed in Table 2.

(1) Impact of Material Composition on Brittleness. The
mechanical properties (Young’s modulus) of different min-
erals are extremely different and are closely related to the
nature of the minerals [43]. Even for the same mineral, the
contribution to brittleness in different regions may have
completely opposite effects. The calcite in the Dongying
Sag in eastern China has a degradative effect on the shale
brittleness [43]. However, the calcite in the Barnett shale
of North Texas is an essential contributor to effective res-
ervoir fracturing [48]. Therefore, the contribution of the
various minerals to brittleness cannot be generalized. Brit-
tle minerals require specific analyses in different regions.
The influence of the different minerals on Young’s modu-
lus was analyzed comprehensively in the Shahejie Forma-
tion (Figure 9).

Figure 10 shows that clay minerals are negatively corre-
lated with Young’s modulus (Figure 10(a)) and positively
correlated with calcareous minerals (Figure 10(b)). Three
samples, RC, RD, and RF, had low felsic and high calcareous
mineral contents. The respective calcareous mineral con-
tents occupying the central part of the rock mineral compo-
sition (Figure 10(c)) were 67.28%, 67.28%, and 65.32% and
significantly contributed to rock frangibility. For these three
samples, the contribution of felsic minerals to brittleness was
limited. Nevertheless, felsic minerals did make have a posi-
tive contribution to shale brittleness (Figure 10(d)). In addi-
tion, the shale oil development interval commonly had a
relatively high OM content, and therefore, the impact of
OM on the brittleness of the MS cannot be ignored. Eliyahu
et al. [49] revealed that Young’s modulus of OM is less than
that of inorganic minerals. Furthermore, OM typically occu-
pied the micronanoscale pore spaces between particles,
thereby reducing the overall shale brittleness. The trend
shown in Figure 10(f) is consistent with the aforementioned

10 20 30 40 50 0 10 20 30 40 0 20 40 60 0.0 0.8 1.6 2.4
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RB
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RE

RF

0 10 20 30
Young's modulus (GPa)

CM

Content (%)

PF
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Qtz

Content (%)

Cal
Dol

Ank
Ara

Content (%)

Py
Sid

Content (%)

Figure 9: Characteristics of mineralogical composition and Young’s modulus for the different samples.

Table 2: Composition characteristics of mudstone and shale.

Serial number Qtz (%) PF (%) Pl (%) Cal (%) Dol (%) Sid (%) Py (%) Ank (%) Ara (%) CM (%)

RA 24.1 5.0 11.0 12.3 0.0 0.0 0.4 2.2 7.2 36.9

RB 22.3 2.1 7.4 10.0 7.2 2.2 0.6 0.0 0.0 48.4

RC 10.3 0.0 1.9 10.5 0.0 0.0 0.7 33.2 23.5 17.8

RD 10.3 0.0 1.9 10.5 0.0 0.0 0.7 33.2 23.5 17.8

RE 32.2 4.5 10.8 15.5 6.4 1.3 0.3 0.0 0.0 29.2

RF 15.2 2.4 0.0 61.1 0.0 0.0 0.0 4.2 0.0 17.0

RA and RE are felsic MS; RB is clay MS; and RC, RD, and RF are calcareous-rich MS.
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research results. The content of other minerals was low,
resulting in only a small influence on the rock brittleness
(Figure 10(e)).

(2) Impact of the Bedding Structure on Brittleness. Rock is
cemented by various mineral crystals and contains cracks,
joints, and other internal defects [50–52]. The bedding sur-
face of shale has an essential influence on fracturing, partic-
ularly when the bedding surface is different from the loading
direction [53, 54]. The RC and RD samples were obtained
from the same shale but in different directions. The RC sam-
ple was perpendicular to the bedding, and the RD sample
was parallel to the bedding. As shown in Figure 8, the rup-
ture strength and Young’s modulus of the RD sample were
lower than those of the RC sample. Fracturing parallel to
the bedding plane is more conducive to the reformation of
shale.

5.2.2. BI Based on Mineralogy. Referring to previous evalua-
tion methods [18] and considering them along with the min-

eralogical characteristics of the Shahejie Formation, clay
minerals and TOC are negatively correlated with brittleness,
and felsic minerals and calcareous minerals are positively
correlated. Thus, the formula for calculating the BI of the
material composition can be expressed as follows:

B = Cfel + Cca
Ccl + Cfel + Cca + CTOC

, ð3Þ

where B is the brittleness index and Ccl, Cfel, Cca, and CTOC
are the clay mineral content, felsic mineral content, calcare-
ous mineral content, and TOC, respectively.

This equation can more conveniently evaluate the brit-
tleness characteristics of shale oil reservoirs in locations with
sparse research data. This equation can help in selecting an
interval favorable for hydraulic fracturing.

5.2.3. Brittleness Characteristics of Lithofacies. Clay minerals
are unfavorable for shale oil, principally because of two
aspects. On the one hand, clay minerals are plastic. They
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Figure 10: Relationship of Young’s modulus of mudstone and shale with (a) clay, (b) felsic, (c) calcareous, (d) felsic and calcareous minerals,
(e) other minerals, and (f) TOC.
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react with water during hydraulic fracturing, thereby causing
the formation to collapse [55]. The clay-rich shale contains
many clay minerals, and majority of it has massive structure.
These are the reasons for its low brittleness. In contrast, the
brittleness of the clay shale is greater than that of the clay-
rich shale. The content of brittle minerals is higher, and
some clay shales have developed bedding. These factors are
all favorable to increase.

Sufficient oil and gas contents are essential for the devel-
opment of unconventional oil and gas reservoirs [56]. After
establishing this, the next step is to improve the original per-
meability of the shale through fracturing [57]. The shales
with a high content of calcareous and felsic minerals were
brittle (Figure 11). However, the calcareous-rich MS and cal-

careous MS, which are the dominant lithofacies for hydrau-
lic fracturing, tended to have laminar structures with high S1
and well-developed pore spaces. In contrast, the felsic-rich
MS and felsic MS were relatively poor lithofacies, with low
S1 and block structures. Although the clay mineral content
of the laminar clay shale was slightly higher, the developed
bedding and high S1 caused it to be a secondary favorable
lithofacies (Figure 11).

5.3. Establish a Mineral Component Calculation Model Based
on Logging Evaluation

5.3.1. Establishment of the Model. The back propagation
(BP) neural network is a multilayer feedforward neural

Table 3: Correlation analysis of clay, felsic, and calcareous mineral contents and logging curve for well B11x.

Mineral composition CAL SP GR AC CNL DEN R04 R4 R25

Clay minerals 0.41 -0.29 -0.33 0.02 0.37 -0.41 -0.55 -0.43 -0.50

Felsic minerals 0.48 -0.31 -0.41 0.14 0.39 -0.44 -0.48 -0.54 -0.59

Calcareous minerals -0.46 0.33 0.39 -0.07 -0.38 0.44 0.60 0.50 0.57
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Figure 12: Establishment and application process of the mineral prediction model.
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network trained by the error backpropagation algorithm,
comprising an input layer, output layer, and hidden layer
[58, 59]. It has self-learning ability, particularly promotion,
generalization, and self-adaptive ability and is one of the
most widely used neural network models. It can learn and
store many input and output pattern mapping relationships
without revealing the mathematical equations describing
these mapping relationships in advance [59]. The learning
process of the BP neural network involves two parts: forward
propagation processing and back propagation processing. In
the forward propagation process, the input layer set is proc-
essed layer by layer from the input layer through the hidden
layer and then transmitted to the output layer. The state of
each neuron layer only affects the state of the next neuron
layer. If the desired output layer cannot be obtained, the out-
put is transferred to the back propagation. At this time, the
error signal propagates from the output layer to the input
layer. It adjusts the connection weights of the layers and
biases of the neurons of each layer along the way so that
the error signal becomes continuously smaller. The basic
principle of the BP neural network for predicting mineral
components is to find a mapping relationship by continu-
ously modifying the network weights and correction thresh-

old until a satisfactory accuracy is obtained [59–61]. In this
study, the input data were the screened logging curves, and
the output data were mineral components.

Mineral components can be easily obtained from logging
curves [62]. The relationships between different mineral
components and conventional logging curves were analyzed.
Afterward, the BP neural network algorithm was used to
establish logging evaluation models for felsic, calcareous,
and clay minerals. Finally, the inorganic mineral content
was predicted. Taking well B11x in the Xiliu area of the
Raoyang Sag as an example, the mineral contents were
obtained via XRD analysis. First, the core data must be sub-
jected to homing in with depth and matched with the corre-
sponding logging curve. Conventional logging curves include
lithology log (natural gamma log, spontaneous potential log,
and caliper log), porosity log (acoustic time difference, density
logging, and neutron log), and resistivity log (deep resistivity,
medium resistivity, and shallow resistivity).

Different logging curves have different logging character-
istics for various mineral types. For different types of min-
erals, logging curves with more significant correlation
coefficients should be selected for core depth homing and
logging modeling. The correlation analysis results of the
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measured values of various minerals and the normalized
values of the logging curves are presented in Table 3. The
BP neural network algorithm was used to calculate the con-
tinuous distributions of felsic, calcareous, and clay minerals
in the Es1

L of well B11x. The results showed that the calcu-
lated value of the mineral composition in well B11x had a
high correlation with the measured value (Figure 12(a)).
The calculation model of minerals based on the BP neural
network can better predict the continuous distribution of
MS minerals in the longitudinal direction (Figure 13).

5.3.2. Application. Figure 12(b) shows that the established
mineral component prediction model predicts the mineral
component contents. Subsequently, the lithofacies are divided
based on the established lithofacies division scheme. The dis-
tribution position of facies favorable to fracturing are deter-
mined, and the hydraulic fracturing interval is finally selected.

The lithofacies in well B11x were dominated by
calcareous-rich MS and clay-rich MS (Figure 13). The over-
all characteristics were as follows: calcareous minerals were
highly developed (average 46.90%), with a large BI value
(average: 0.654). The shale oil content was rich in well sections
3524–3551m and well sections 3570–3598m, with average of
2.68mg/g and 1.27mg/g, respectively. The 3521–3552m well
section has included a sizable calcareous-rich shale interval
with high BI, which was easy to fracture and reform. This is
an optimal configuration for the development of shale oil frac-
turing. The well section of 3570–3598m, with complex min-
eral composition, primarily included clay-rich MS and
calcareous-rich MS. Calcareous MS, clay MS, and felsic MS
were also developed to varying degrees. In the most-enriched
shale oil area, the lithofacies were clay-rich MS with a low
BI, which was not conducive to hydraulic fracturing. However,
calcareous-rich MS and calcareous MS were developed in the
upper and lower parts, which were relatively brittle overall
and can be used as alternative fracturing intervals.

The profile connected by wells is located in the
Zhaohuangzhuang-Suning area of the Raoyang Sag
(Figure 1). The middle part of the profile is located at the cen-
ter of the sag, with a stable depositional environment
(Figure 14). Multiple lithofacies appear alternately, including
clay MS, felsic MS, felsic-rich MS, and calcareous MS. The left
slope zone of the profile is close to the sediment provenance
and exhibited a transitional trend. Felsic-rich MS with low
shale oil content dominate the upper part of this area. A large
section of calcareous-rich MS, with rich shale oil content and
continuous distribution, exists in the middle and lower parts,
representing good areas for shale oil development.

6. Conclusions

(1) The lithofacies of Es1
L were divided into six types.

Calcareous-rich MS and calcareous MS had layered
structures and developed OM. The laminated clay
MS had a high TOC value. The clay-rich MS,
felsic-rich MS, and felsic MS primarily had massive
structures and low TOC

(2) Minerals such as quartz, feldspar, calcite, and dolo-
mite in the Es1

L of the Raoyang Sag positively con-
tributed to the shale brittleness. In contrast, clay
and OM had an adverse effect on shale brittleness.
The BP neural network mineral calculation model
can better predict the continuous distribution of
the lengthwise mineral composition of MS. The
lengthwise distribution of the brittleness of the entire
well can be obtained

(3) Lithofacies with high brittle mineral contents and
developed laminae exhibited better brittleness.
Although OM is a plastic substance, a high TOC
value is a prerequisite for shale oil development.
Therefore, calcareous-rich MS and calcareous MS
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Figure 14: Profile connected by wells showing the (a) brittleness index, (b) lithofacies, and (c) S1.
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are the dominant lithofacies for shale oil develop-
ment in the Es1

L in the Raoyang Sag. Their enrich-
ment area can be considered as hydraulic fracturing
area for shale oil reservoirs
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