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In the hypervelocity impact event, the strong ground shock effect is induced and may cause damage to underground engineering.
The existing experimental methods and calculation procedures have difficulties in estimating the ground shock under complicated
and large-scale impacts. Analytical and experiential methods independently prove that the shock energy radiating from a certain
region underground is proportional to the mass of the materials in the region. Based on this relationship, an equivalent method is
proposed to estimate the impact-induced ground shock with the help of abundant research results for underground explosions:
The ground shock of two events can be seen as being equivalent as long as their crater sizes are the same. The calculated
ground shock effect is compared with the measured values in impact experiments, and the results show great agreement.

1. Introduction

Hypervelocity impact on geomaterials can induce strong
shock waves, namely ground shock, propagating deeply
into the earth and cause damage to underground engineer-
ing. The surrounding rocks of the engineering will be
unstable under the disturbance of ground shock. It is of
necessity and interest to evaluate the characteristics of
ground shock produced by a meteorite impact or a kinetic
weapon strike.

The most direct method to determine the profiles of
impact-induced ground shock is to measure them with
gauges in experiments. This is usually done in laboratories
with scale models. Nakazawa [1] conducted impact experi-
ments with copper impactors and basalt targets. The gauges
were sandwiched between adjacent target plates to measure
shock pressure at different distances away from the impact
center. Shirai et al. [2] investigated the shock pressure and

attenuation in water ice with the impact velocities between
3.9 and 4.6 km/s. Wang et al. [3] impacted granite targets
with steel projectiles and measured shock pressure with in-
material gauges. On the other hand, theoretical investiga-
tions on the evolution of impact-induced ground shock were
also carried out by some researchers, such as Melosh [4] and
Mok [5]. These investigations are usually based on Hugoniot
equations.

The aforementioned studies can well obtain and predict
the ground shock induced by relatively simple and small-
scale impacts but may lack simplicity and accuracy for com-
plex and large-scale impacts. Besides, for impacts that
already happened, e.g., historical meteorite impacts, tradi-
tional methods lose validity to determine the ground shock
experienced. For this case, investigations are mainly carried
out using observation methods [6–8]. However, crater
observations also showed some uncertainty when quantita-
tive analysis is required.
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A convenient and steady method for estimating
ground shock is thus necessary. From the aspect of energy
and work and considering the fact that the essence of
ground shock is the motion of material particles and
grains, the energy of ground shock originates from the
work done by the force expanding the crater. In this con-
nection, it is possible to build a relationship between the
crater and the ground shock in terms of energy. On the
other hand, given that the shallow-buried explosion and
hypervelocity impact are similar in crater shape and that
the scale of experimental data of explosion-induced
ground shock is much larger, it will be of practical signif-
icance if the equivalent transformation from hypervelocity
impact to shallow-buried explosion can be established.
This paper attempts to realize these ideas and to provide
a convenient calculation procedure for reviewing and pre-
dicting the impact-induced ground shock.

2. Characteristic Energy Factor of
Ground Shock

In the center of the action, forces on the free surface push
rock materials outward to form a cavity. Meanwhile, a pro-
portion of the total energy is transmitted into rock masses
in the form of shock waves through doing work. In the vicin-
ity of the cavity, the damage region occurs due to shock pres-
sure larger than the rock strength.

A confined explosion can be seen as being in an infinite
and isotropic medium. As is shown in Figure 1, a spherical
cavity with radius r0 is formed in the explosion center. The
damage region adjacent to the cavity can be roughly divided
into two parts, i.e., a fracture region with radius rf and a
radial-crack region with radius rc [9]. Beyond the damage
region, rocks deform elastically. The dissipation of the shock
energy occurs during the process of propagation, and only
approximately 5% of the total explosion energy remains
when ground shock propagates across the surface of the
damage region, Sc [10]. This part is also known as seismic
waves.

After the detonation, the rocks expand outward symmet-
rically. The motion of rocks can be described in a spherical
coordinate system with the charge as the origin. The energy
of the ground shock radiating from a certain spherical sur-
face with radius r can be expressed as the work done by
shock stress:

W = Sr

ður ∞ð Þ

0
σrdur = Sr

ð∞
0
σr

∂ur
∂t

dt: ð1Þ

where σr is the radial stress, ur is the radial displacement,
urð∞Þ is the residual displacement when t⟶∞, Sr = 4π
r2 is the surface area of the sphere with radius r, and t is
the time.

The evolution of displacement of rocks in the damage
region is difficult to calculate due to its complicated mecha-
nism. However, the displacement in the elastic region can be

described by the potential function of the form

ur t, rð Þ = ∂φ t, rð Þ
∂r

, ð2Þ

where the potential function φðt, rÞ is given by Haskell
[11], i.e.

φ t, rð Þ = −
ψ

r
f τð Þ,

τ = 1
t0

t −
r
Cp

 !
,

f τð Þ = 1 − e−τ 1 + τ + τ2

2 + τ3

6 − Bτ4
� �

,

ð3Þ

where Cp is the propagation velocity of longitudinal waves,
t0 ≈ rc/Cp is the characteristic time of the shock motion,
and ψ and B are unknown parameters. In the elastic
model, B ≈ ν, where ν is the Poisson’s ratio.

The displacement and stress fields of the elastic region
are derived from Equations (2) and (3) [12]:

ur
Cpt0

= λ∗
f τð Þ
R2 + f ′ τð Þ

R

 !
,

σr
ρC2

p

= −λ∗ 4γ2 f τð Þ
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R2 + f ′′ τð Þ
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 !
,

σθ
ρC2

p

= λ∗ 2γ2 f τð Þ
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R

" #
,

σr − σθ

2ρC2
p

= −λ∗ 3γ2 f τð Þ
R3 + 3γ2 f

′ τð Þ
R2 + γ2

f ′′ τð Þ
R

 !
,

ð4Þ

where σθ is the circumferential stress, ρ is the density of
rocks, R = r/ðCpt0Þ, γ = Cs/Cp, Cs is the shear-wave velocity,

r0 rf

rc

abc

Sc

0

Figure 1: Diagram of the damage region in a confined explosion:
(a) cavity; (b) fracture region; (c) radial-crack region.
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and

λ∗ =
ψ

Cpt0
� �3 : ð5Þ

The residual displacement and stress follow from Equa-
tion (4) as t⟶∞:

ur ∞ð Þ
Cpt0

= λ∗
R2 ,

σr ∞ð Þ
ρC2

p

= −
4γ2λ∗
R3 ,

σθ ∞ð Þ
ρC2

p

= 2γ2λ∗
R3 ,

σr ∞ð Þ − σθ ∞ð Þ
2ρC2

p

= −
3γ2λ∗
R3 :

ð6Þ

Substituting Equations (4)–(6) into Equation (1) yields
the expression of the radiated energy, which consists of
two terms, i.e., the elastic potential energy and the ground
shock energy. The ground shock energy can be written as

W = α

4 λ∗ρC
2
pSrur ∞ð Þ, ð7Þ

where α = ½5 + 3ð1 + 24BÞ2�/64.
Equation (7) describes the ground shock energy radiat-

ing from the spherical surface with radius r in the elastic
region. Assume that the Tresca criterion is satisfied on the
boundary of the elastic region, r = rc, i.e.

σθ ∞ð Þ − σr ∞ð Þ = 2σs, ð8Þ

where σs is the shear strength of rocks.
Substituting Equations (6) and (8) into Equation (7), the

seismic energy radiating from the boundary of the elastic
region can be written as

W = α

12γ2 σsScur ∞ð Þ, ð9Þ

where Sc = 4πr2c . The product Scurð∞Þ is the volume being
displaced due to forces on the boundary.

Set r = rc in Equation (6), then

ur ∞ð Þ = σs
3μ rc, ð10Þ

where μ = ρC2
s is the shear modulus of rocks. Then the seis-

mic energy can be written as

W = α

12γ2
σ2s
μ

4
3πr

3
c =

α

12γ2
σ2s
μ
Vc: ð11Þ

Equation (11) shows that the seismic energy is propor-
tional to the volume of the entire damage region and the
coefficient is only related to the properties of the emplace-
ment rocks.

The damage region can be seen as a hypocenter. For the
sake of generality, a dimensionless factor is introduced to
describe the energy characteristic of the hypocenter:

k = W

McC
2
p

= α

12
σs

μ

� �2
, ð12Þ

where Mc = ρVc is the mass of the hypocenter. The fraction
σs/μ is the limit shear strain of rocks.

It is obvious that the energy factor k is only determined
by the properties of rocks which are easy to measure by
laboratorial test. In this connection, a relationship between
the seismic energy and the volume (namely mass) of the
damage region has been established.

In the case of a shallow-buried explosion. The typical
damage region of a shallow-buried explosion is shown in
Figure 2. The buried depth of charge is hb. A crater with
radius ra on the surface is formed. Assume that the
boundary of the damage region has a parabolic shape.
The maximum depth of the damage region is zc, and the
extent of the damage region along the free surface is
assumed to be equal to the diameter of the crater [12].
The falling debris forms an inner ejecta blanket at the bot-
tom of the crater, making the crater depth seems to be
shallower.

Introduce a cylindrical coordinate system (r, θ, z) with
the r-axis directed along the surface and the z-axis directed
downward. The origin is placed at ground zero. The motion
of the rocks does not depend on the coordinate θ due to the
rotational symmetry. Then the equation of the boundary of
the damage region is

z = −
zc
r2a

r2 − r2a
� �

: ð13Þ

The surface area and the volume of the damage region
are

Sc = 2π
ðzc
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a − z

r2a
zc

s
dz = 4

3πrazc,

Vc = π
ðzc
0

r2a − z
r2a
zc

� �
dz = 1

2πr
2
azc:

ð14Þ

Equations (9) and (10) apply for the case of the
shallow-buried explosion, provided that the radius rc is
replaced by the equivalent hemispheroid radius [12]. For
Sc in Equation (14), the equivalent radius �rc is such that
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Sc = 4πrazc/3 = 2π�rc2, then

�rc =
ffiffiffiffiffiffiffiffiffiffiffi
2
3 razc

r
,

ur ∞ð Þ = σs
3μ

ffiffiffiffiffiffiffiffiffiffiffiffi
2
3 razc:

r ð15Þ

Substituting Equations (14) and (15) into Equation (9)
yields

W =
ffiffiffi
6

p
α

81γ2 π
σ2s
μ

razcð Þ3/2 = α

12γ2
σ2
s
μ
Vc∗, ð16Þ

where Vc∗ = 2π�rc3/3. Then the energy factor for seismic
energy of shallow-buried explosions is

k = W

Mc∗C
2
p
= W

ρVc∗C
2
p
= α

12
σs
μ

� �2
: ð17Þ

Equation (17) is exactly the same as Equation (12),
indicating that the seismic energy factor is a constant for
different types of underground explosions with different
shapes of damage regions, as long as the rock mass prop-
erties are the same. For rocks with ν = 0:2 – 0:3 and σs/μ
= ð1 – 2Þ × 10−3, k = ð1:38 − 10:77Þ × 10−7.

Different from the elastic region, the physical and
mechanical properties of the cavity and the damage region
are too complicated to obtain the analytical solutions for dis-
placement and stress fields. However, the size of each region
can be calculated according to its boundary conditions. For
confined explosions, for example, [13],

r0 =
βQ1/3

ρC2
pσ

2
c

� �1/9 ,

r f = r0
E
3σc

� �1/3
,

rc = rf
σc
2σt

� �1/2
,

ð18Þ

where Q is the TNT equivalent of the charge, E is Young’s
modulus of rocks, β = 9:8 × 103 is the coefficient, and σc
and σt are, respectively, the compressive and tensile strength
of rocks.

It is obvious that the ratios between sizes of different
regions only depend on the properties of the rocks. On the
other hand, it is experimentally proved that the ratios of
energy radiating from different boundaries to the charge
energy are also constants [10]. In this connection, Wang
and Li [13] derived the formulas for the energy factors sep-
arately corresponding to the boundaries of the cavity, the
fracture region, and the radial-crack region, and the results
indicate that they are constants dependent on the properties
of rocks. For rocks with ν = 0:2 – 0:3 and σs/μ = ð1 – 2Þ ×
10−3, the orders of magnitude of the energy factors are listed
in Table 1.

The experiential energy factor of the radical-crack
region in Table 1 is consistent with the analytical value
calculated with Equation (17), indicating the accuracy
and stability of the energy factor. In this connection, it is
reliable to estimate the energy radiating from a certain
region with its mass or volume. It is noteworthy that the
aforementioned calculation procedure is valid for explo-
sions as well as impacts: On the one hand, the form of
the potential function φðt, rÞ is independent from the type
of the initial action; on the other hand, the size of each
region is determined by its boundary conditions, which
are related to the rock strength and also have nothing to
do with the type of the action.

3. The Ground Shock of Shallow-
Buried Explosions

The last section proves theoretically that the energy of
ground shock depends on the extent of the damage region.
In practice, it is more convenient to describe the characteris-
tics of explosions in terms of the TNT equivalent of the
charge. In this connection, the relationship between the
charge and the crater size should be given.

An empirical relationship is given by Henrych [14] using
the law of conservation of energy, i.e.,

Q = A1h
3
b + A2h

4
b + A3h

2
b

� �
f ωð Þ, ð19Þ

hb

ra

Sc

zc

z

Crater

Damage region

Elastic region 0

Figure 2: Diagram of the damage region in a shallow-buried explosion.
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where Ai (i = 1, 2, 3) are coefficients determined by exper-
iments, ω = ra/hb is the parameter describing the geometry
of the crater, and f ðωÞ is a function of ω which satisfies
f ð1Þ = 1.

The terms with h3b, h
4
b, and h2b correspond to the kinetic

energy, the gravitational potential energy, and the surface
energy of the ejected rocks, respectively.

For a wide range of ω, e.g., 0:7 ≤ ω ≤ 20, f ðωÞ can be
written as [14]

f ωð Þ = 1 + ω2

2

	 
2
: ð20Þ

In shallow-buried explosions, charge energy mainly
transforms into the kinetic energy of the ejected rocks; thus,
Equation (19) can be simplified into

Q = A1h
3
b
1 + ω2

2

	 
2
: ð21Þ

For hard rocks such as granite,A1 = 1:8 − 2:55 kg/m3 [14].
The shock pressure can be obtained as long as the charge

is determined with the help of Equation (21). Considering
the fact that the proportion of ground shock energy
increases with the buried depth increasing and reaches
the maximum when explosions are confined, for confined
explosions, the shock pressure decays with distance in
the form of [10]

σmax = A
r

Q1/3

� �−n

, ð22Þ

where A and n are parameters dependent on rock
properties.

For shallow-buried explosions, the stress amplitude of
ground shock can be calculated by introducing a coefficient
ηQ defined as

ηQ = Qeff
Q

, ð23Þ

where Qeff is the effective charge of the confined explosion
which produces the same shock pressure as the shallow-
buried explosion does at the same distance.

The stress amplitude of shallow-buried explosions can
thus be written as

σmax = A
r

Q1/3
eff

� �−n

, ð24Þ

or, more generally,

σmax = ησA
r

Q1/3

� �−n

, ð25Þ

where ησ = ηn/3Q is the coupling coefficient with the meaning
of the ratio of stress amplitude of the shallow-buried explo-
sions to that of confined explosions at the same distance.
Coefficient ησ increases with the buried depth increasing
and, in general, has the form of

ησ =
f ∗

hb
Q1/3

� �
, hb < h∗,

1, hb ≥ h∗,

8><
>: ð26Þ

where h∗ ≈ r0 is the minimum buried depth of confined
explosions. f ∗ is a monotonic increasing function of the bur-
ied depth hb whose concrete form is closely related to the
properties of emplacement rocks.

In practice, a specific form of Equation (25) is used,
i.e. [15]

σmax = 48:77ησρCp
2:8r
Q1/3

� �−n
: ð27Þ

As long as the stress amplitude is determined, the
stress-time relation can be written as [15].

σr tð Þ =
σmax

t
tr
, t ≤ tr,

σmax exp −
t − trð Þ
ta

	 

, t > tr,

8>>><
>>>:

ð28Þ

where tr ≈ 0:1ta is the time of stress rising and ta = r/Cp is
the time of stress wave traveling.

4. The Ground Shock of Hypervelocity Impacts

According to the calculation in Section 2, the ground shock
of a hypervelocity impact can be regarded as being equiva-
lent to that of a shallow-buried explosion if their crater sizes
are the same.

Experiments of projectile impacting show that the
characteristics of the impact crater change with the impact
velocity [3, 16]. When the impact velocity is relatively low,
a deep hole is formed at the center of the crater. The
diameter of the hole is slightly larger than that of the pro-
jectile. As the impact velocity increases, the hole shortens
and eventually vanishes. Meanwhile, the diameter of the
crater increases, and the crater shape is becoming similar

Table 1: Orders of magnitude of the energy factors of different
regions.

Regions k

Cavity 10-3

Fracture region 10-5

Radial-crack region 10-7
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to that of the shallow-buried explosion, as is shown in
Figure 3.

To equate the ground shock effect of a hypervelocity
impact to that of a shallow-buried explosion, an energy
equivalent coefficient η is introduced as the ratio of the
charge energy to the kinetic energy of the projectile that
forms a crater of the same size, i.e.,

η = QQv

Ek
=
QvA1h

3
p 1 + r∗a /hp

� �2� �
/2

h i2
0:5Mυ20

, ð29Þ

where Ek is the kinetic energy of the projectile, M is the pro-
jectile mass, υ0 is the impact velocity, and Qv is the explosion
heat of the charge. For TNT, Qv ≈ 4:18 × 106 J/kg. In Equa-
tion (29), it is assumed that the buried depth of the charge
approximately equals the crater depth.

Under hypervelocity impact, the projectile behaves like a
jet flow, and the hydrodynamic model is applied to describe
the interaction between the projectile and the target [16]:

1
2 ρj υj − υ
� �2 + Y j =Ht +

κ

2 ρtυ
2, ð30Þ

where ρj and ρt are, respectively, the densities of the projec-
tile and the target; Y j and Ht are, respectively, the dynamic
hardness of the projectile and the target; υj is the velocity
of the projectile tail; υ is the velocity of the interface between
the projectile and the target; and κ is the coefficient of inter-
nal friction with the form of

κ =

1 + ν

3 1 − νð Þ , υ∗ ≤ 1:5,

2 1 + νð Þ/ 3 1 − νð Þ½ � − 1+ exp υ∗∗ð Þ
1+ exp υ∗∗ð Þ , 1:5 < υ∗,

8>>><
>>>:

υ∗∗ = 2 υ∗ − 1:5ð Þ, υ∗ =
υ0
c
,

ð31Þ

where ν is the Poisson’s ratio of the target and c =
ð2Ht/ρtÞ1/2 is the characteristic velocity of the target.

It can be deduced from Equation (31) that κ⟶ 1 as
υ0 ⟶∞, indicating that the target behaves hydrodynami-
cally when the impact velocity is extremely high.

It follows from Equation (30) that the penetration depth,
i.e., the crater depth, is

hp
L

=
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − κ/λ2p

� �� �
1 − ϖð Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − κ/λ2p

� �� �
1 − ϖð Þ

r
− κ/λ2p
� � , ð32Þ

where L is the initial length of the projectile, λp = ðρj/ρtÞ1/2,
and ϖ = ð2ðHt − Y jÞÞ/ðρjυ20Þ. If υ0 ⟶∞, ϖ⟶ 0, then

hp
L

⟶ λp, ð33Þ

thus Lλp is the limit depth of the crater.
The crater radius can be derived from a jet flow model

[17–19]. As is shown in Figure 4, a rigid body with a radius
rp is moving downward in a brittle medium with the velocity
υ0. The medium in the fracture region behaves like an ideal
compressible liquid of the same density as the initial
medium. The internal boundary of the radial-crack region
Γ is assumed to be rigid. Then the problem of projectile pen-
etration transforms into the problem of a fluid flowing past
an obstruction in a pipeline with a rigid boundary [17].

The Bernoulli equation and continuity equation in the
fracture region are

κ

2 ρtυ
2
0 +Ht =

κ

2 ρtυ
2
∞,

ϑ0 r2f − r2p
� �

υ∞ = r2f υ0,
ð34Þ

where υ∞ is the velocity at infinity distance behind the
obstruction and ϑ0 = ðr2f − r20Þ/ðr2f − r2pÞ is the contraction
coefficient of the jet.

hp

r⁎a

Crater
Projectile

Figure 3: Diagram of the crater of the hypervelocity impact.

2rf
2r0
2rp

x

Γ

𝜐∞

𝜐0

𝜐∞

Figure 4: Diagram of the calculation model of crater size.
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It follows from Equation (34) that

rf = rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ0δ

ϑ0δ − 1

s
,

δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1

κ

1
υ2∗

s
:

ð35Þ

The theoretical value of ϑ0 is given by Gurevich [19]:

ϑ0 =
ςχ

1 − ςχsinπχ/πð ÞÐ 10 1/ ξ + ςð Þð Þ + 1/ ξ + 1/ςð Þð Þ − 2/ ξ + 1ð Þð Þ½ � dξ/ξχ� � ,
ð36Þ

where χ = α/π, α is the half-angle at the apex of the projectile

(0 < α ≤ 2π), and ςχ = υ0/υ∞ = ðυ∗Þ/ð1 + υ2∗Þ−1/2.
Voitishek and Slepyan [18] further obtain the relation

between the radiuses of the radial-crack region and the frac-
ture region:

rc
r f

= π ϕ∗ + 0:5ð Þ2
nc 1 − ϕ∗ð Þ2

" #1/3
H2

t r f
γsE

 !1/3

, ð37Þ

where γs is the effective surface energy, nc is the number of
growing cracks and is assumed to be invariable, E is Young’s
modulus of the target, and ϕ∗ ≈ 0:187 is a constant.

Set ν = 1/3, then γsE = πK2
cð1 − ν2Þ/2 ≈ 1:5K2

c , where Kc
is the fracture toughness of the target. Besides, nc = 6π is
assumed [18], and Δ = K2

c/H2
t is the extent of the plastic zone

at the apex of the crack, and then Equation (37) can be sim-

plified into

rc
r f

≈ 0:43
rf
Δ

� �1/3
: ð38Þ

Substituting Equations (32) and (38) into Equation (29)
produces the analytical solution of coefficient η. The result,
however, is quite complicated. Thus, the empirical formula
is suggested in practice for convenience.

Since the size of the impact crater has been determined,
the parameters of the equivalent shallow-buried explosion
are

Q = ηEk

Qv
,

hb = hp:

ð39Þ

Then the ground shock of hypervelocity impact can be
obtained by substituting Equation (39) into Equations
(26)–(28).

5. Comparison with Experimental Results

5.1. The Energy Equivalent Coefficient η. Li et al. [16] and
Wang et al. [20] conducted hypervelocity impact experi-
ments with metal projectiles and granite targets. The projec-
tile head is of oval shape with the CRH value of 3.0. The
length of the projectile L = 36mm, the radius rp = 3:6mm,
the mass M = 9:67 g, and the density ρj = 7850 kg/m3. For
targets, the density ρt = 2670 kg/m3, the longitudinal wave
Cp = 4200m/s, the compressive strength σc = 150MPa, the
shear strength σs = 50MPa, the shear modulus μ = 27GPa,
the fracture toughness Kc = 2:7MPa · m1/2, and the dynamic
hardness Ht = 3GPa.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Theoretical curve
Experimental results

𝜐⁎= 𝜐0/c

𝜔
=
r c

/h
p

Figure 5: Experimental and theoretical parameter ω vs. scale velocity υ∗.
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The projectiles were launched at velocities between 1800
and 4200m/s. The depths and radiuses of craters were mea-
sured after experiments; besides, their theoretical values are
calculated with Equations (32) and (38), respectively. As a
measure of crater shape, parameter ω at different scale veloc-
ities is shown in Figure 5. The charge Q of equivalent
shallow-buried explosions and the energy equivalent coeffi-
cient η are calculated on the basis of experimental and theo-
retical crater sizes, respectively. The results are separately
depicted in Figures 6 and 7.

The change of ω with the velocity reflects the charac-
teristics of craters at different impact velocities. As is
shown in Figure 5, ω decreases as υ∗ increases when υ∗
< 1:5, corresponding to the conditions of rigid penetration
and quasi-fluid penetration [16] where crater depths
develop faster than crater radiuses do. When υ∗ > 1:5,
however, ω increases with υ∗ increasing, indicating that
crater radiuses develop faster than crater depths do. The
region υ∗ < 1:5 is not taken into account in this paper
because the penetration effect, rather than the ground
shock effect, predominates in this region. Besides, the cra-
ter shape in this region is not similar to that of shallow-
buried explosions.

Figure 6 shows that the equivalent charge Q increases as
the impact velocity increases. It is only natural that the
energy of ground shock induced by impacts is larger for pro-
jectiles with higher kinetic energy.

Figure 7 illustrates the change of η with υ∗. According to
the definition of η, the region η < 1 corresponds to the case
where more kinetic energy than explosion energy is needed
to produce the same ground shock energy. In other words,
shallow-buried explosions have higher energy conversion
efficiency in terms of ground shock than high-velocity
impacts do. For the region η > 1, however, the reverse
applies. The critical value η = 1 corresponds to the special

case where hypervelocity impacts and shallow-buried explo-
sions are completely equivalent in terms of energy.

Considering the fact that hypervelocity projectiles com-
press the ground in one direction and that explosions release
energy in all directions, hypervelocity impacts are supposed
to transform a larger proportion of energy into ground
shock energy than explosions do. In this connection, it can
be inferred that for hypervelocity impacts, the penetration
effect still predominates when η < 1. Thus the case η < 1 is
also not taken into account in this paper for the equivalent
calculation.
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Figure 7: Experimental and theoretical coefficient η vs. scale
velocity υ∗.
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As is shown in Figure 7, η > 1 when υ∗ > 1:88, and then
the simplified expression of η can be written as

η = eυ∗−1:88, ð40Þ

or more generally,

η = kae
υ∗ , ð41Þ

where ka is the coefficient dependent on the properties of the
projectile and target.

5.2. Verification for the Equivalent Calculation. In order to
measure the stress of ground shock induced by projectile
impacting, the granite targets were made of blocks with dif-
ferent thicknesses, and PVDF piezoelectric gauges were
placed between adjacent blocks. The structure of targets
and the layout of gauges are shown in Figure 8.

Figure 9 shows the time history curves of stresses at dif-
ferent distances when υ0 = 3558m/s. The maximum stress at
the first layer is approximately 401MPa. Given that the
Hugoniot elastic limit of granite exceeds 3GPa [21], it can
be inferred that the measurement points are in the elastic
region. Fitting the maximum stresses with exponential law
produces the curve of stress attenuating with distance, as
shown in Figure 10. The parameter n in Equation (25) is
determined as 1.4.

The scale velocity corresponds to 3558m/s is υ∗ = 2:37.
Substituting this value into Equation (40) gives η = 1:63,
indicating that the energy of the equivalent shallow-
buried explosion equals 1.63 times the kinetic energy of
the projectile. The equivalent charge Q can be calculated
with Equation (39). In this case, Q = 2:39 × 10−2 kg.
Besides, n = 1:4, tr ≈ 0:1ta, and ηc = 0:7. Substituting these
parameters into Equations (27) and (28) produces the the-
oretical ground shock of the equivalent shallow-buried
explosion. The time history curves of stresses are shown
in Figure 11.

In general, the theoretical stresses in Figure 11 agree well
with the experimental values in Figure 9. However, second-
ary stress peaks are detected after the main peaks of curves
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Figure 8: Diagram of targets.
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in Figure 9, and the stress attenuation is weaker for experi-
mental curves than for theoretical curves. These may be
due to the reflection effect on the interlayers between adja-
cent granite blocks.

Figure 12 shows the stress attenuation curves of the
hypervelocity impact and the equivalent explosion. As is
shown in the figure, the experimental and theoretical stress
amplitudes at the same distance agree well with each
other, especially for r = 10 cm, 15 cm, and 70 cm, where
two values are nearly the same. In this connection, the
effectiveness of the equivalent method proposed in this
paper is proved.

6. Conclusions

(a) In the impact and explosion events, the shock energy
radiating from a certain region underground is pro-
portional to the mass of the materials in the region.
The coefficient is determined by the properties of
the materials

(b) The dimensionless factor k can be used to define the
boundaries of different regions. Each boundary of
the regions (crater, fracture region, and radial-crack
region) corresponds to a constant k dependent upon
the properties of the materials. Based on the invari-
ability of k, the equivalent method for estimating
impact-induced ground shock is proposed: The
ground shock of an impact is regarded as being
equivalent to that of an explosion if their crater sizes
are the same

(c) Comparison is carried out between the calculated
and experimental ground shock. The fitted energy
equivalent coefficient η changes exponentially with
the impact velocity. The calculated stress-time
curves and the stress attenuation curve agree well
with the experimental curves
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