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The Triassic Yanchang Formation in the Pengyang area of Ordos Tianhuan depression is an important oil and gas formation.
However, most of the oil pays in the study formations are low-resistivity or low-contrast reservoirs with low permeability, bringing
challenges to the reservoir identification and evaluation by well logs. In this paper, we first measured the nuclear magnetic
resonance (NMR), phase permeability, cation exchange capacity (CEC), and X-ray diffraction for core samples. Then, the genetic
types for the low-resistivity pays were analyzed based on the experiment results, water analysis, and well log data collected. It was
found that large variations of formation water salinity, high irreducible water saturation, and clay conductivity are the primary
genetic types. Further, the random forest (RF) algorithm with sensitive parameter inputs was used to identify the oil, oil and water,
and water layers. The anomaly of spontaneous potential (ΔSP) that characterizes water salinity, the relative value of gamma ray log
(ΔGR) that describes the bound water content, resistivity, density, and acoustic logs were taken as sensitive logs according to the
genetic analysis. Finally, this identification method was verified by comparison with the traditional crossplot method and oil test
results. The identification accuracy of the RF is 90%, far higher than that by the crossplot method.

1. Introduction

The oil and gas exploration in China has entered the stage of
complex and unconventional oil and gas reservoirs. The geo-
logical conditions of exploration objects are complex, and
exploration is becoming more and more difficult. The Meso-
zoic in the southern part of Ordos Tianhuan depression is
an important oil and gas reservoir belt. However, the pore
structure is complex, and water properties of oil and gas
reservoirs are changeable [1–3], causing a large number of
low-contrast or low-resistivity reservoirs to develop. The inter-
pretation of oil and water layers with different log response
characteristics is unclear, resulting in challenges to the identi-
fication and evaluation of oil reservoirs based on well logs.

In the middle of the last century, Tixier et al. [4] of
Schlumberger first put forward the concept of low-
resistivity reservoir, then started to investigate the definition
of low-resistivity reservoir. From the perspective of oil satu-
ration and resistivity index, Zemanek [5] thought that the
resistivity index of low-resistivity reservoir should be less
than three, and the oil saturation should be less than 50%.
However, many scholars pay more attention to the resistivity
ratio of oil and water layers to measure whether the oil layer
is a low-resistivity reservoir. Ouyang et al. [6] believed that
the oil layer can be determined as a low-resistivity reservoir
if the resistivity of oil reservoirs is less than twice that of the
water layers. The main genetic types for low resistivity of oil
reservoirs are conductivity of clay, high-salinity formation
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water, high irreducible water saturation, deep invasion of
high-salinity filtrate, and a small amount of conductive
minerals [7–12]. For the Chang 8 member, Ordos Basin,
Bai et al. [13] believed that the water salinity and irreducible
water saturation are the main reasons causing the resistivity
of oil reservoirs to be low.

Many scholars have studied the fluid identification of low-
resistivity reservoirs. The more classical methods include over-
lapping, crossplots, nuclear magnetic resonance logs, andmath-
ematical statistics methods [14–17] Among these methods, the
most commonly used methods are overlapping and crossplot
methods [18, 19]. Although nuclear magnetic resonance
(NMR) logging plays a vital role in fluid identification [20],
there is almost no NMR logging data in some old oilfields.
Ren et al. [21] defined a fluid indicator factor based on the
double-porosity overlap method. By constructing the crossplot
of fluid identification factor with porosity, they predicted the
fluid properties of low-porosity and low-permeability reservoirs
in the Subei Basin with high accuracy. Sun et al. [22] established
a double-porosity model of tight sandstone based on the Voigt–
Reuss–Hill model and further used the elastic parameters
predicted by the established model to construct a fluid identifi-
cation chart suitable for low-porosity and low-permeability res-
ervoirs. Based on the correlation coefficient for the upper
Paleozoic tight sandstone reservoir in the Linxing-Shenfu area
of Ordos Basin, Hou et al. [23] proposed a fluid discrimination
method by using density porosity and resistivity logging data.

With the advent of the era of big data, scholars have tried
to process and interpret logging data through various machine
learning methods to improve production efficiency and accu-
racy [24–26]. The process of machine learning is to find the
objective function through training data. The commonly used
algorithms include decision tree, random forest algorithm,
logical regression, support vector machine, neural network,
and cluster analyses. These methods mine the complex non-
linear relationship between data through complex transforma-
tion, which is more effective for the problems that cannot be
effectively solved by traditional physical or empirical models.
Combining logs with production data, Zhang et al. [27] accu-
rately identified oil, gas, and water layers in the coexistence
area of low-resistivity oil layer and high-resistivity water layer
by using the support vector machinemethod. Based on electri-
cal and physical properties, acoustic parameters, or gas logging
parameters, Liu et al. [28] extracted oil and gas sensitive
parameters and applied four mathematical algorithms of the
decision tree, radial basis function, neural network, and cluster
analysis to the comprehensive evaluation of fluid properties.
The identification method of carbonate reservoir in the Jidong
exploration area is more accurate than that of single informa-
tion. Chen et al. [29] applied the machine learning AdaBoost
M2 algorithm to the fluid recognition of sandy conglomerates.
The K-type multifluid type is disassembled into a binary
classification problem, and the decision tree is called as a weak
learning algorithm to automatically obtain the classifiers for
fluid discrimination. Tan et al. [30] used a committee machine
method to identify the fluid types for tight sandstones from
GR, resistivity, and porosity logs. Luo et al. [31] used long-
term and short-term memory network (LSTM) and convolu-
tional neural network (CNN) to characterize the timing char-

acteristics of log curves and the correlation between multiple
log curves, respectively. The recognition accuracy of the oil-
bearing reservoir is significantly improved by using the
weighted crossentropy loss function. The multilayer fluid rec-
ognition method improves the recognition accuracy of oil, oil
and water, and water layers.

Random forest (RF) is an algorithm for regression pre-
diction and classification prediction based on multiple deci-
sion trees [32]. Numerous decision trees are established by
random repeated sampling technology and node random
splitting technology. The prediction results of many decision
trees are combined and output as a whole. The random for-
est algorithm has the advantages of highly parallel training,
fast training speed for large samples of big data, a small var-
iance of the trained model, strong generalization ability, and
insensitivity to the lack of some features [33, 34].

In this paper, we collected a large amount of core porosity
and permeability, water analysis, and well log data. Also, we
measured the NMR, phase permeability cation exchange
capacity (CEC), and X-ray diffraction for core samples. Based
on the well log and core analysis data, the possible reasons for
the low-resistivity oil pay are analyzed and discussed. Further,
the RF algorithmwith sensitive parameter inputs instructed by
the genesis analysis was used to identify the oil, oil and water,
and water. Finally, this identification method was verified by
comparison with crossplots and oil test results.

2. Geological Characteristics of the Chang 8
Member in the Pengyang Area

Ordos Basin is the second largest sedimentary basin in China.
The basin is characterized by its large area of about
330,000km2 and broad resource distributions, with significant
potential and economic reserves [35]. It is a multicycle superim-
posed petroliferous basin. The basin could be divided into 6 sec-
ondary structural units, including Yimeng Uplift, Weibei Uplift,
Yishan Slope, Western Fold-Thrust Belt, Tianhuan depression,
and Jinxi Fault Fold Belt [36]. The target area, the Pengyang area,
is located in the southern Tianhuan depression, (Figure 1). The
Triassic Yanchang Formation is one of the main exploration
horizons.

The data were taken from the Chang 8 member of the Tri-
assic Yanchang Formation in the Pengyang area, Ordos Basin,
China. The target layers are characterized by low-porosity and
low-permeability reservoir. The core porosity and permeabil-
ity of Chang 8 member are shown in Figure 2. The porosity
is mainly distributed between 6% and 21%, with an average
of 15.59%, and the permeability is mainly distributed from
0.1 to 30mD, with an average of 1.45mD.

3. Experiments

To investigate the genetic mechanisms of the low-resistivity
oil pay, we measured the NMR, phase permeability, cation
exchange capacity (CEC), and X-ray diffraction (XRD) min-
erals of rock samples drilled from the target reservoirs. The
NMR T2 spectra of twenty samples were measured, while
CEC and XRD were measured in ten of them, and phase per-
meability was measured in two.
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The nuclear magnetic resonance measurement adopts
the nuclear magnetic resonance analysis and imaging system
MesoMR23-060H-I produced by Niumet. The magnetic
field strength is 21MHz, the waiting time Tw is set to 3 s,
and a value of 0.1ms was used for the interecho spacing,
TE. And the echo number (NECH) is set to 10000, and the
number of scans (NS) is 32.

For the measurement of phase permeability curve, the core
samples were dried at 110°C for 24h, cooled to room tempera-
ture in a drying dish, and weighed and measured with vernier
calipers. The dry core samples were evacuated for four hours
and saturated with water at pressure for 24h, after which the
imbibition of oil at atmospheric conditions was performed until
there is no water flowing out. At this time, the water in the core
was called the irreducible water. Then, the water flooding exper-
iment was carried out under constant speed conditions, record-
ing the time, pressure difference value, and oil/water volume in

the experiment. Finally, the data were substituted into the calcu-
lation formula to calculate the oil/water relative permeability
value and oil and water saturation and plot the relative perme-
ability curve.

The CEC and quantities of cation exchange (Qv) of reser-
voir rock are two critical physical parameters to characterize
the conductivity of rock clay. CEC of clay minerals refers to
the total number of cations that could be exchanged by clay
minerals under pH value 7, that is, the number of cations that
can be absorbed and exchanged by clay minerals. CEC is a
measure of the number of negative charges of clay minerals.
The unit of cation exchange capacity is mmol/100g, that is,
the number of millimoles of cation exchanged per 100g dry
sample. Qv is the amount of cation exchangeable per unit pore
volume of clay, in milliequivalents per liter. In the CEC mea-
surement experiment, according to the national standard SY/
T 6352-2013, the reagents used include 1mol/L ammonium
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Figure 1: Geological map of the Pengyang area, Ordos Basin, China.

3Geofluids



acetate solution (pH7.0), 77.09 g ammonium acetate solution
(CH3000NH3, chemically pure), ethanol solution (for indus-
trial use, must be free of NH4

+), and 0.05mol/L hydrochloric
acid standard solution.

For the XRD measurement, the core sample needs to go
through the steps of separating clay particles, sample prepara-
tion, glycerol treatment, and 550°C heat treatment. The instru-
ment used for XRD analysis is Porter Philips 00186
diffractometer. The anode of the ray tube is copper (Cu Ka
radiation) with a wavelength of 1.5406A. The X-ray tube
was operated at 50kV and 30mA.

4. Genetic Mechanisms of Low-Resistivity
Oil Pay

4.1. The Effect of the FormationWater Salinity. Formationwater
salinity is one of the main factors affecting rock resistivity. Gen-
erally speaking, the water in the same formation is relatively sta-
ble, and the change of salinity is small. However, the water
analysis data show that the formation water salinity of the target
formation in the study area varied heavily. Figure 3 shows the
distribution histogram of the formation water salinity collected
from 27 wells. It shows that the formation water salinity of the
Yanchang Formation is mainly distributed between 20g/L and

90g/L, but there are a few wells with salinity greater than 100g/
L. The formation water resistivity varies from about 0.1Ω·m to
1.8Ω·m at 25°C. The change of the formation water salinity
results in low contrast between oil and water layers. And the dif-
ference in the formation water salinity weakens, conceals, or
even cancels the contributions of oil content to electrical prop-
erties, resulting in a blurred boundary between oil and water
layers and low coincidence rate of log interpretation.

Figure 4 shows logs of the Well M1. In this figure, the
gamma-ray (GR) and caliper and spontaneous potential
(SP) are displayed in track 1 (from left). The second track
displays the array induction resistivity logs, including AT90,
AT60, AT30, AT20, and AT10. The detection depth of AT90
is the deepest, while that of AT10 is the shallowest. Porosity
logs, in terms of density (DEN), compensated neutron
(CNL), and acoustic (AC) logs, are presented in track 3. Track
4 is measured depth. Tracks 5 to 7 present the porosity, perme-
ability, and shale volume contents, respectively. The blue line in
depth track indicates the oil test layer. Figure 5 shows logs of
another well, Well M2. The oil test layer for Well M1 is the
interval of 2439-2442m with the resistivity of 8~10Ω·m, and
for Well M2 is the interval of 2265-2268m with the resistivity
of 5~8Ω·m. However, the fluid type of M1 is water, and that
of M2 is oil, according to oil test results. The formation water
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Figure 3: Histogram of the formation water salinity distribution.
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salinity of the two wells is, respectively, about 20.5 g/L and
73.8 g/L, making it difficult to identify fluid types of target
reservoirs.

The influencing factors of the formation water properties
between different wells include the following: (1) the sedimen-
tary reason; that is, the lithology of fluvial sedimentary facies
varies greatly. The reservoir with heavymud and fine lithology
retains high-salinity water in the diagenetic process. (2) In fine
lithologic reservoirs, free water in large pore throats is driven
away during hydrocarbon migration and accumulation, while
immobile water with high salinity is retained in small pore
throats. (3) Frequent tectonic movement destroys complete
and closed traps, and the water from the reservoir bottom or
rock and mineral filtration migrate to the reservoir again. Sur-
face water can penetrate the underground primary reservoir
through open faults, changing the properties of reservoir fluid.
High formation water salinity is controlled by oil accumula-

tion. With the increase of buried depth, hydrocarbon source
rock is compacted. Further, the high salinity formation water
and oil in the source rock pores are squeezed out, under the
action of excess pressure and downward migration into the
pore of the formation, displacing the original formation in
pore water or mixing with the original formation water. And
low salinity of formation water is controlled by tectonic set-
ting, fracture, and fault development, which makes the upper
low salinity of formation water and lower together. Low salin-
ity of formation water along cracks, or faults to the reservoir
pores, displaces the original formation in pore water or mixes
the original formation water. Thus, the formation water salin-
ity becomes lower.

4.2. The Impact of Irreducible Water Saturation. The high
bound water saturation may also be one of the main leaders
of forming low-resistivity reservoirs, so it needs to be analyzed
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and studied. Reservoir bound water usually consists of three
parts: (1) film water retention on the surface of rock particles
(nonclay) due to wettability, (2) capillary water retention in
pores, and (3) clay particle adsorption of water.

Twenty samples from Chang 8 reservoir in the Pengyang
area in 7 wells were tested for the NMR saturation experiment.
The saturated NMR T2 spectra of each sample are shown in
Figure 6. It shows that the T2 spectra of Chang 8 reservoir in
the study area are dominated by small pores and high content
of bound water. Table 1 presents the bound water saturation
from NMR T2 spectra. From Table 1, it can be seen that the
bound water saturation of the reservoir is mainly distributed
between 40% and 80%, with an average of 73.74%. T2 logarith-
mic mean (T2lm) values vary from 0.48 to 7.79ms. The aver-
age of the T2lm is 2.03ms. Figure 7 shows the relative
permeability curves of samples T2 and T3. From this figure,

it is seen that the irreducible water saturation is about 40%.
The high irreducible water saturation could reduce the resis-
tivity of oil layers.

Figure 8 shows an example of producing different fluid
types caused by different irreducible water saturation. In this
figure, different from Figures 4 and 5, MSIGTA, MPHITA,
and MFFI are, respectively, total porosity, free fluid porosity,
and bound water porosity, obtained from NMR T2 spectra.
The last track presents T2 spectra and T2lm logs. The resis-
tivity of the upper layer (2370~2374.5m) is about 30Ω·m,
and the oil testing shows that it is an oil and water layer.
The lower layer (2384.5~2386.5m) has resistivity values
ranging from 10 to 20Ω·m, and the oil testing result shows
that it is a good oil layer. The irreducible water saturation
of the lower layer is close to total water saturation; thus, they
are pure oil layers. In contrast, the water saturation of the
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upper layer is greater than the irreducible water saturation,
which may cause the oil and water producible at the same
time.

4.3. Conductivity of Clay. Clay minerals in sandstone reser-
voirs generally have additional electrical conductivity. The
electrical conductivity of clay-bearing sandstone is very differ-
ent from that of pure sandstone, which is one of the important

reasons forming low-contrast or low-resistivity oil layers.
Clay-bearing sandstone formations all contain a certain
amount of clay, and the surface of clay particles is usually neg-
atively charged. Under normal circumstances, the negatively
charged cations adsorbed on the surface of clay particles
cannot move, but the adsorption is not very tight. Under the
action of an electric field, the adsorbed cations can exchange
positions with other hydrated ions in the solution in the rock,
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Figure 6: NMR T2 spectra of Chang 8 reservoir in the Pengyang area.

Table 1: Porosity, permeability, bound water saturation, and T2lm from NMR measurements.

Sample Number Por (%) Permeability (mD) Bound water saturation from NMR (%) T2 logarithmic mean (ms)

T1 20.8 11.63 54.52 2.98

T2 22.7 65.94 51.52 7.79

T3 17.8 2.29 72.30 2.29

T4 17.7 3.47 65.77 2.9

T5 17.2 1.70 84.14 1.29

T6 7.0 0.40 82.81 0.48

T7 11.5 1.28 81.59 1.39

T8 15.9 4.29 55.28 4.36

T9 10.0 0.37 83.12 1.07

T10 5.0 0.12 81.83 1

T11 7.5 0.13 83.70 0.86

T12 18.0 2.25 84.64 1.76

T13 19.2 5.38 75.21 1.3

T14 6.0 0.045 92.74 1.41

T15 13.1 0.84 66.99 1.96

T16 16.7 1.03 76.30 1.53

T17 9.4 0.13 69.71 0.92

T18 15.4 0.74 67.63 1.17

T19 15.7 1.13 56.82 2.84

T20 13.9 0.42 88.15 1.35

7Geofluids



0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e p

er
m

ea
bi

lit
y

Sw, v/v

Oil
Water

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e p

er
m

ea
bi

lit
y

Sw, v/v

Figure 7: Relative permeability curves of samples T2 and T3.

AT10

AT20

OHMM

OHMM

OHMM

OHMM

OHMM
AT30

AT60

AT90
100

100

US/M

G/C3

AC

CNL

DEN

GAPI
GR

SP
MV

MM
CAL

350

35030 180

150

1000 0

2.7 2.2

% %

%

%

%

% %

%

%%

0.4 0.01

0.01 MD
CPERM

PERMPOR
–0.1

MPHITA

MSIGTA

SWI

25

25

25

25

25

MD

1000

1000

0

2380

2385

2390

2375

2370

2365

0

CPOR MFFI
0

0 0 0

0

0

0

0 0

MS 3000

1991

1

1

1

1

1

1

100 100
CSO

SW

CSW

POR

0.3

V/V
SH

TASPEC

T2LM
V/V

100

100

100100

100

100

Figure 8: Example of producing different fluid types caused by different irreducible water saturation.

8 Geofluids



causing electrical conductivity. This conductive feature pro-
duced by the cation exchange of clay minerals is called the
additional conductivity of clay minerals.

The clay types and contents derived from X-ray diffraction
analysis show (see Figure 9 and Table 2) that the clays in the
study area are dominated by chlorite, followed by mixed layer
of illite/smectite, accompanied by a small amount of illite, kao-
linite, andmixed layer of chlorite/smectite. There is no indepen-
dent smectite mineral. As shown in the scanning electron
microscope pictures in Figure 10, the hydromica (illite) in the
reservoir interstitial of Chang 8 in the study area is honeycomb
or filamentous. The particle surface has a honeycomb illite/
smectite clay film (Figure 10(a)). Figure 11(b) shows the pores

filled by filamentous illite clay. The chlorite film is attached to
the surface of rock particles to absorb formation water, which
improves the conductive network of the reservoir and reduces
the resistivity of the reservoir.

Experiments worldwide indicated that the disordered illite/
smectite layer clay minerals have a strong cation exchange
capacity. The cation exchange capacity (CEC) and cation
exchange capacity Qv of reservoir rock are two important
physical parameters that characterize the additional conductiv-
ity of clay. In this area, ten core samples were selected for CEC
experimental measurement, and the measurement results are
shown in Table 3. It shows that the Qv value is small, all less
than 1.0. In conventional sandstone oil and gas reservoirs, it
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Table 2: Clay mineral analysis results of the Chang 8 member in Pengyang area.

Sample number Illite (%) Kaolinite (%) Chlorite (%) Illite/smectite (%) Chlorite/smectite (%)

T1 0 0 22 61 0

T2 0 0 0 30 55

T3 0 0 6 29 0

T5 10 10 57 23 0

T10 13 38 44 6 0

T13 3 0 97 1 0

T14 8 0 88 4 0

T16 11 0 87 2 0

T17 6 0 80 5 0

T20 16 10 57 17 0

(a) Honeycomb illite/smectite (b) Filamentous illite

Figure 10: Scanning electron microscope image for samples of Chang 8 reservoir.
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should not have a great impact on the conductivity of the rock.
However, it has a more significant influence on Chang 8 mem-
ber reservoirs with small porosity and complex pore structure.
Especially in the oil layer of the target reservoirs, the equivalent
cation exchange capacity Qv′ (Qv′ = Qv/Sw) enhances the
additional conductivity of clay. Therefore, the additional con-
ductivity of clay minerals is one of the reasons for the forma-
tion of the low-contrast oil layer in the Chang 8 member of
the Yanchang Formation.

5. Fluid Identification Based on RF Algorithm

5.1. RF Algorithm. The random forest (RF) is an ensemble
learning algorithm for classification, regression, and other
tasks in geological and geophysical [37]. RF utilizes multiple
decision trees as base learners to build an intelligent system,
which combines all prediction results from base learners by
the majority voting or average approach to provide accurate
results. RF, a unique form of the Bagging algorithm, applies
a random selection of sample numbers and feature numbers

to generate a series of different sample subsets [32]. The
hundreds of independent base decision trees are constructed
based on sample subsets. In this study, the final output is
obtained using majority voting due to the classification task
of fluid type (Figure 11). Although a single decision tree has
poor accuracy, the accuracy of the comprehensive decision
could be very high since each decision tree is well trained
for a specific subset.

The corresponding basic steps of the algorithm are as fol-
lows [38]: (1) bootstrap sampling with the return is used to gen-
eratemultiple sample subsets from the sample data. Each subset
generates a decision tree through training. (2) The optimal fea-
ture is determined from the sample subset when the decision
tree divides nodes. The decision tree makes the branches of
the optimal feature grow until they cannot regenerate. (3) The
eventual result is obtained by voting for each prediction result
from the basic decision tree.

The main advantage of the RF is that each decision tree
uses part of the sample data and extracts several features for
modeling. The multiple independent decision trees provide

Sample data

Bootstrap sampling

Subset data N

Decision tree 1 Decision tree N

Final type

Majority voting

Decision tree 2

Type NType 2Type 1

Subset data 1 Subset data 2 ...

...

...

Figure 11: The structure of the random forest [32].

Table 3: Result of CEC and Qv.

Sample number CEC (mmol/100 g) Por (%) Grain density (g/cm3) Qv (meq/mL)

T2 3 0.23 2.65 0.27

T3 7.3 0.18 2.68 0.9

T5 5.1 0.17 2.71 0.66

T6 2.2 0.07 2.71 0.79

T10 1.4 0.05 2.65 0.7

T11 1.8 0.08 2.64 0.58

T15 3.1 0.13 2.64 0.54

T17 3.8 0.09 2.68 0.98

T18 2.1 0.15 2.68 0.31

T20 2.9 0.14 2.7 0.49
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RF with higher accuracy, better generation, and superior sta-
bility. Especially for a high-dimensional small sample classifi-
cation problem like fluid identification of low-resistivity pay
zones, the stability and generation of the model are very signif-
icant. RF has been successfully applied in many aspects, such
as lithology identification [39], hydrocarbon source rock eval-
uation [40], and reservoir parameter prediction [41].

5.2. Data Description and Preprocessing. In order to illustrate
the fluid identification capability of tight sandstone reservoirs
of random forest, we collected data regarding the Chang 8 for-
mation of the Triassic Yanchang Formation from the Pengyang
area, Ordos Basin, China. Oil testing data of sixty layers are
obtained as sample data in this study. Considering the analysis
above of genetic mechanisms of low-resistivity oil pay, the
complicated water salinity distribution, the impact of irreduc-
ible water saturation, and the additional conductivity of clay
mainly lead to low-resistivity oil reservoirs. The distinct oil test
layers may have different causes of low resistivity. The array
induction resistivity log with a detection depth of 90 inch can
well indicate oil and gas bearing property to some extent. The
density log (DEN) and sonic time log (AC) represent the
porosity of rocks. The anomaly of spontaneous potential
(ΔSP) that equals to the difference between the SP and shale
baseline could characterize water salinity. The relative value
of the natural gamma ray log (ΔGR) describes the bound water

content and CEC. Therefore, according to the petrophysics
analysis of reservoirs, the RT, DEN, AC, ΔSP, and ΔGR are
determined as input parameters of random forest.

Sample data includes feature data from well logs and
label data from fluid types of reservoirs. Table 4 shows the
statistics of sample data, including the maximum value, min-
imum value, average value, and standard deviation of well
logs. The label data includes three types of layers in the study
region based on the oil testing results, namely, oil layer (OL),
oil and water layer (OWL), and water layer (WL). The cor-
responding label data is determined using a unique vector.
For example, the oil layer is (1, 0, 0), which indicates that
the probability of an oil layer is 1, and the probability of
other types is 0. The oil and water layer is (0, 1, 0), and the
water layer is (0, 0, 1).

Due to the difference in dimension and order of magni-
tude of each parameter, the min-max normalization method
is utilized to scale these sensitive data. Data normalization
can eliminate the unit difference between different logs and
improve the convergence speed of the prediction process
[42]. In this study, data is normalized in the range [0,1]
based on the following equation:

xnorm =
x − xmin

xmax − xmin
, ð1Þ

Sample data

Accuracy1

Accuracy2

Accuracyk

Accuracy3

kth iteration

2nd iteration

3rd iteration

1st iteration

Training set
Testing set

...

...

...

...

...

Accuracy = 1
k

.𝛴
k

Accuracyi

Figure 12: The schematic of the cross-validation method.

Table 5: Optimized hyperparameter settings of the random forest algorithm.

n_estimators Max_depth Min_sample_split Min_samples_leaf Max_features Max_samples

Optimum value 200 3 2 1 60% 2/3

Table 4: The statistical information of the input data for building the model.

AT90 (Ω·m) DEN (g/cm3) AC (μs/m) ΔSP (mV) ΔGR (API)

Maximum value 42.000 2.500 289.700 78.000 0.583

Minimum value 3.400 2.230 219.400 7.0 0.052

Average value 12.350 2.360 256.350 33.510 0.200

Standard deviation 8.082 0.056 14.239 14.222 0.099
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where xnorm is the normalization processing result, x is the
raw data, xmin is the minimum value from the original data,
and xmax is the maximum value of the raw data.

5.3. Hyperparameter Selection and Model Establishment. To
boost the generalization ability of the random forest, it is
necessary to use the cross-validation method with grid
search to optimize the hyperparameters (Figure 12). The
cross-validation method divides sample data into k portions.
Each portion is called a fold. The data of (k − 1) folds are
exploited to the train model, and the remaining data is
employed to the test model. The above steps are imple-
mented k times until each fold is used as once testing fold.
We arrange all parameters into a network of parameter com-
binations. Each parameter combination is input into the
cross-validation method in turn for performance evaluation.
The optimum parameter with the highest accuracy is
determined.

In this study, hyperparameters such as the number of
trees in the random forest (n_estimators), the maximum
depth of the tree (max_depth), the minimum number of
samples required to split the internal nodes (min_sample_
split), the minimum number of samples required to be at a

leaf node (min_samples_leaf), the maximum number of fea-
tures to be considered when looking for the best split (max_
features), and the number of samples for training each basic
estimator (max_samples) are optimized using the 10-fold
cross-validation method with grid search. For the random
forest algorithm, those hyperparameters have a great effect
on the prediction result. The n_estimators control the
strength of random forest. The max_features and max_sam-
ples determine the diversity of the base decision trees. The
max_depth, min_sample_split, and min_samples_leaf repre-
sent the complexity of the base decision trees. In our prac-
tices, the optimal values of n_estimators are 50, 100, 200,
300, and 500, and the optional values of max_depth are
ranged from 1 to 10, while the optional values of min_sam-
ples_leaf are 1, 2, 5, 10, 15, 20, 30, 40, and 60. The min_sam-
ple_split, max_features, and max_samples are set as 2, 60%,
and 2/3, respectively. According to the optimization result of
10-fold cross-validation method, the optimized hyperpara-
meter settings are listed in Table 5.

Finally, the built random forest model is obtained to pre-
dict the fluid property of tight sandstone reservoirs. In order
to analyze the prediction result, a confusion matrix is calcu-
lated from the actual and predicted types of samples. The

Table 6: Confusion matrix of the classification identification.

Fluid types
Predicted

Recall
Oil layer Oil and water layer Water layer

OL 10 0 0 1.0

OWL 0 8 4 0.67

WL 0 2 36 0.95

Precision 1.00 0.80 0.90 0.90

100

1000

10000

2.22.252.32.352.42.452.52.55

RT
⁎
Δ

SP

DEN (g/cm3)

Oil layer
Oil and water layer
Water layer

Figure 13: Cross plot of DEN-AT90 ∗ ΔSP crossplot.
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precision and recall of each sample type can be calculated
based on the confusion matrix, and their equations are as
follows:

Precision =
TP

TP + FP
, ð2Þ

Recall =
TP

TP + FN
, ð3Þ

where TP is the number of true-positive samples, FP is the
number of false-positive samples, and FN is the number of
false-negative samples. Table 6 presents the confusion matrix
of the classification identification. Taking the oil and water
layer in Table 6 as an example, the TP of the water layer is 8
, the FP of the oil and water layer is 2 , and the FN of the oil
and water layer is 4 .

From Table 6, the overall classification accuracy of the
random forest is approximately 90.0%, which is a general
coincidence rate, namely, the ratio of the correct number of
layers to the total number of layers. The recall value of the
oil and water layer is relatively low, because some oil and water
layer samples are predicted as water layers due to the similar
well log responses. Figure 13 presents a crossplot of AT90 ∗
ΔSP with DEN, which is utilized to identify the fluid type of
reservoirs in the study region. The red, green, and blue sym-
bols represent the dots of oil, oil and water, and water layers,
respectively. However, different types of fluids overlap, mak-
ing it difficult to identify the fluid types of target reservoirs
based on this crossplot. The random forest algorithm provides
a better prediction performance than the traditional crossplot
method.

To intuitively indicate the effectiveness of the random
forest algorithm in the study region, we exhibit the well logs,
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Figure 14: Well logs, oil test, and predicted results of Well J.
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oil testing layers, and predicted results of Well J (Figure 14).
In this figure, the array induction resistivity logs are M2R9,
M2R6, M2R3, M2R2, and M2R1, which are presented at
track 2. The detection depth of M2R9 is the deepest, while
that of M2R1 is the shallowest. The predicted results by
the RF algorithm is displayed in Track 5. Tracks 6 to 9 pres-
ent the porosity, permeability, water saturation, and shale
volume contents, respectively. The predicted fluid types of
layers 29 and 30 are oil, and of layers 31 and 32 are water.
The oil test of layer 29 is shown inside the yellow box. The
blue oval in Figure 13 represents the dot of layer 29. From
Figure 13, layer 29 is located in the mixed area of oil layer
and water layer, making it hard to distinguish the oil from
the water layers. However, the fluid of this layer predicted
by the RF algorithm is oil, which verifies the effectiveness
of the RF algorithm with sensitivity parameters based on
the genetic mechanism of low-resistivity pay.

6. Conclusions

(1) The porosity of the Chang 8 member of Yanchang
Formation in the Pengyang area of Ordos Basin,
China, is mainly distributed between 6% and 21%,
with an average of 15.59%. And the permeability var-
ied from 0.1mD to 30mD, with an average of 1.45mD

(2) The genetic types of the low-resistivity pay zones of
the target formation are a large variations of forma-
tion water salinity, high irreducible water saturation,
and clay conductivity. The water salinity mainly var-
ied from 20 g/L to 90 g/L. The irreducible water satu-
ration obtained from NMR and phase permeability
is mainly distributed between 40% and 80%. The
Qv values varied from 0.27 to 0.98, which is rela-
tively high in the low-porosity oil reservoirs

(3) The RF algorithm with sensitive parameter inputs
instructed by the genesis analysis was used to iden-
tify the oil, oil and water, and water. The anomaly
of spontaneous potential (ΔSP) that characterizes
water salinity, the relative value of gamma ray log
(ΔGR) that describes the bound water content and
CEC, resistivity, density, and acoustic logs were
taken as sensitive logs

(4) The identification results by RF were verified by
comparison with oil test results. The accuracy of
the identification is 90%, far higher than that by
the crossplot method
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