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The inverse analysis method based on in situ measurement information provides a new approach to determine the mechanical
parameters of rock mass. The accurate on-site monitoring data is the prerequisite and basis for the success of displacement
back analysis. To improve the accuracy of requirement parameters, a reasonable layout program should be developed to
optimize the layout of the measuring position. In order to study the optimal arrangement of measuring points in anisotropic
rock mass, the layout optimization of measuring points around a tunnel in the transversely isotropic rock mass is studied
according to the maximum sensitivity criteria. The influence of the spatial location of the measuring points on the
measurement of the tunnel deformation is obtained. The results indicate that the measuring point should be arranged close to
the extreme point in the direction of the larger principal stress.

1. Introduction

In underground cavern engineering, displacement monitor-
ing, as an effective means to obtain the dynamic changes of
rock mass in underground engineering, provides a reliable
basis and adjustment direction for the dynamic design, con-
struction, and management of underground engineering.
The displacement monitoring results can provide the basis
for the modification of supporting structure parameters. It
can also be used to analyze the dynamic changes of tunnel sur-
rounding rock and provide safety information for tunnel con-
struction and long-term use. It can provide a basis for the
correct selection of excavation methods and support construc-
tion time.Wu et al. [1] also determined the crack type and fail-
ure mode of the tunnel through numerical simulation based
on the field monitoring data. On the basis of on-site monitor-
ing and numerical simulation, Cheng et al. [2] predict the real
creep of salt caverns through long-term creep tests, which pro-

vides a new idea for monitoring rock mass deformation. Xu
et al. [3] proposed a real-time monitoring method and system
and establishedmulti-index early warning and damage criteria
for roadway deformation failure, including displacement,
speed, and acceleration. Wang et al. [4] analyzed the fracture
position of the main roof by monitoring the deformation
and stress of the surrounding rock of the coal seam and put
forward an early warning for the construction. Pan et al. [5,
6] applied the monitoring technology to the rock mass grout-
ing technology and verified it through numerical simulation.
The research has guiding significance for the monitoring of
broken rock mass. The importance of displacement monitor-
ing in tunnel engineering can be seen.

In addition, accurate on-site monitoring data is the pre-
requisite and basis for the success of displacement back analy-
sis. Currently, according to the spatial layout principle of
measuring points, the following three theoretical systems have
been formed: the principle of the maximum displacement [7],
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the principle of the maximum sensitivity [8, 9], and the prin-
ciple of the minimum variance [10, 11]. Kernevez et al. [12]
believed that the spatial position of the measuring points was
more important than the number of measuring points and
there existed a critical number of the measuring point. Accord-
ing to engineering calculation, Sun et al. [13] considered that
the influence of increasing the number of the measuring point
on the result of back analysis was little. Based on the idea of
sensitive displacement components, Yang [14] discussed the
accuracy criteria and optimization of the placement of displace-
ment components. Xiang [15–17] proposed the criterion of
optimization arrangement for measurement points. Huang
[18] used the sensitivity principle to analyze the layout of mea-
suring points in material parameter identification of two-
dimensional orthotropic bodies. By constructing the square
sum of the difference between the measured displacement
and the corresponding displacement calculated by the bound-
ary element as the objective function, Huang [19] used the
Levenberg-Marquardt method to iterate the minimization
objective function, thereby transforming the parameter identi-
fication problem into a minimization objective function. Built
on the finite element software ABAQUS, Li et al. [20] con-
ducted a parameter identification algorithm software design
and compiled a user unit program that can calculate the sensi-
tivity of the node displacement to the material parameters.
Then, the accurate material parameters can be obtained. Zhang
[21, 22] analyzed the optimization arrangements for measure-
ment points in transversely isotropic material based on the
principle of the maximum displacement. She [23–25] adopted
the most perceptive principle to optimize the survey line and
carried out engineering back analysis. Zhang et al. [26, 27] used
the horizontal stratified anisotropic random field to study the
influencing factors of tunnel convergence and proposed a scale
factor method considering spatial variability.

In the above research, the research on the optimal layout of
measuring points was mostly aimed at isotropic rock mass.
With the development of the theory and practice of under-
ground cavern engineering, the importance of rockmass anisot-
ropy is highlighted. However, there were few studies on the
optimal layout of measuring points in the displacement back
analysis of anisotropic rock mass. There are few studies on the
optimal arrangement of measuring points based on the princi-
ple of maximum sensitivity. Therefore, based on the maximum
sensitivity principle, this paper attempts to study the optimal
arrangement of measuring points in a circular tunnel in trans-
versely isotropic rock mass and find out some principles for
the arrangement of displacement measuring points. Trans-
versely isotropic rock mass is a special case of anisotropic rock
mass. The elastic properties in all directions in a certain plane
of the rock are the same, and this surface is called an isotropic
surface. However, the mechanical properties in the direction
perpendicular to this surface are different. The rock mass with
this feature is referred to as the transversely isotropic rock mass.

Based on the principle of maximum sensitivity and the ana-
lytical solution of displacement of circular tunnel in transversely
isotropic rock mass, the sensitivity criterion of displacement to
the radius and angle of measuring point arrangement is theoret-
ically deduced in this study. Combined with engineering exam-
ples, numerical simulation is used to analyze the position where

the maximum displacement occurs under different stress states,
and the theoretical results are verified. The research results can
provide a basis for the layout of measuring points in under-
ground engineering.

2. Maximum Sensitivity Criteria

The sensitivity function is as follows:

G xið Þ = ∂F xð Þ
∂xi

: ð1Þ

In Equation (1), GðxÞ is the objective function, FðxÞ is the
parameter equation of x, and x is the independent variable.
The function of FðxÞ is an increasing function about x when
GðxÞ > 0. It is a reducing function about x when GðxÞ < 0. If
GðxÞ = 0, slight change of x has no effect on FðxÞ. In engineer-
ing, the absolute value of GðxÞ is usually used to reflect the
change degree of FðxÞ at point x. The greater the absolute
value, the greater the sensitivity.

Since the degree of difficulty in inversing the parameters is
dependent on the sensitivity of the parameter, the maximum
sensitivity criteria are used as the principle of arrangement
for measurement points. However, it is applied when the par-
tial derivatives of the model parameters can be easily obtained,
or there is more than one parameter to be inversed.

3. Optimization Arrangement for Measurement
Points of the Circular Roadway in the
Transversely Isotropic Rock Mass

3.1. Sensitivity Analyses of the Angle to Displacement.
Figure 1 presents an idealized model for a circular tunnel
in transversely isotropic rock mass. The transversely isotro-
pic rock mass means that the rock mass has the same mate-
rial constant in any direction parallel to the plane, and the
material parameters of the parallel and vertical planes are
different. The transversely isotropic elastomer has five inde-
pendent elastic constants, namely, μ, E′, μ′, and G′.

Zhang [21] deduced the displacement analytical solution
of round tunnel as follows:

ur =
p + q
2

a2

r
1 + μ

E
+ p − q

2
a4

r3
1 + μ

E
−
4a2
r

1
E
−
μ′2

E′

 !" #
cos 2θ,

ð2Þ

where ur is the radial displacement; q and p are the horizon-
tal and vertical initial ground stresses, respectively; E and μ
are, respectively, the elastic modulus and Poisson’s ratio in
the isotropic plane; E′ and μ′ are the corresponding elastic
constants in the direction perpendicular to the isotropic
plane; a is the radius of the tunnel; and r and θ are the polar
diameter and angle in polar coordinates.

In Equation (2), ur > 0 indicates that the direction of dis-
placement is toward the excavation face, and ur < 0 indicates
that the direction is away from the excavation face.
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Xiang et al. [16] conducted a study on the uniqueness of
the back analysis of transversely isotropic rock mass displace-
ments and concluded that p and q are the most identifiable.
Therefore, the sensitivity coefficients of radial displacement
to the parameters p and q can be obtained, respectively, as fol-
lows:

∂ur
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= 1
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The relationship between the parameters is shown in
Equation (2):

a4

r3
1 + μ

E
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4a2
r

1
E
−
μ′2

E′

 !
< 0: ð5Þ

According to themaximum sensitivity criteria, the value of
the sensitivity coefficients ∂ur/∂p and ∂ur/∂q can be maxi-
mized at the point of cos 2θ = −1 and cos 2θ = 1, respectively.
Then, the function of θ will lead to θ = 90° and θ = 0°,
respectively.

According to the initial ground stress, the variation of
displacement with the angle in three cases would be dis-
cussed.

p − q = 0: ð6Þ

In this case, Equation (2) transforms into

ur =
p + q
2

a2

r
1 + μ

E
: ð7Þ

It can be seen from Equation (7) that there is no direct
relationship between the displacement and the angle θ, and
the displacement is equal in a circle around the origin.

p − q > 0: ð8Þ

ur increases with θ during the interval 0° ≤ 2θ ≤ 180°, and
it decreases during the interval 180° ≤ 2θ ≤ 360°.

Therefore, ur reaches the maximum value when θ = 90°.
The equation is as follows:
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ur reaches the minimum value when θ = 0°. The equa-
tion is as follows:
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p − q < 0:
ð10Þ

ur decreases with θ during the interval 0° ≤ 2θ ≤ 180°,
and it increases during the interval 180° ≤ 2θ ≤ 360°.

Therefore, ur reaches the maximum value when θ = 0°.
The equation is as follows:

ur max =
p + q
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ur reaches the minimum value when θ = 90°. The equa-
tion is as follows:

ur min =
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From the above analysis, it can be seen that the maxi-
mum displacement always occurs in the direction of larger
initial stress, and the smallest displacement always occurs
in the direction of smaller initial stress. However, according
to Equation (3) and Equation (4), the arrangement of mea-
suring points in the two principal stress directions is most
beneficial for the inversion of parameters.

3.2. Sensitivity Analyses of the Radius to Displacement. The
sensitivity function of the radius to displacement can be
obtained from calculating the partial derivative. The sensi-
tivity function is as follows:

p

p

q qo
θ

x

y r

a

Figure 1: Model for a circular tunnel in transverse isotropy.
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Let ∂2ur/∂r2 = 0; then, the following formula can be
obtained:

p + qð Þ 1 + μ
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+ p − q
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ð14Þ

The extreme value can be obtained as follows:

rExtreme =
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When the equation ðp + qÞ/ðp − qÞ cos 2θ = ½4ðð1/EÞ −
ðμ′2/E′ÞÞ/ðð1 + μÞ/EÞ� − 6 is set up, rextreme = a. The sensi-
tivity at the cave wall reaches the maximum value.

When the equation ðp + qÞ/ðp − qÞ cos 2θ > ½4ðð1/EÞ −
ðμ′2/E′ÞÞ/ðð1 + μÞ/EÞ� − 6 is set up, rextreme > a. Then,
there is a maximum sensitivity at the extremes.

When the equation ðp + qÞ/ðp − qÞ cos 2θ = ½4ðð1/EÞ −
ðμ′2/E′ÞÞ/ðð1 + μÞ/EÞ� − 6 is set up, rextreme < a. The sensi-
tivity at the cave wall reached a maximum according to
the actual situation of the project.

4. Engineering Example

4.1. Computational Models. The model adopts a circular tun-
nel. The calculation area of the model is 50m × 50m, and
the mesh of the computational model is illustrated in
Figure 2. The transversely isotropic plane is xoz. The left
and right of the model are limited in the horizontal direc-
tion, and the bottom of the model is limited in the vertical
direction. The initial stress distribution is illustrated in
Figure 1.

The parameters of the circular tunnel are shown as fol-
lows: a = 2:0m, E = 1:0GPa, E′ = 0:8GPa, μ = 0:25, and μ′
= 0:3. Arrangement for measuring points in the circular
tunnel is shown in Figure 3. Four kinds of crustal stress
parameters are illustrated in Table 1.

4.2. The First Stress Condition

(1) Sensitivity analysis of displacement to the angle

The first stress condition is p = 10MPa and q = 20MPa.
According to FLAC3D, the radial displacement of the circu-
lar tunnel is shown in Figure 4. The radial displacements of
each survey line are illustrated in Table 2.

Depending on Figure 4 and Table 2, the maximum radial
displacement of each measured line appears at the wall.
With the increase of the depth of the measuring point, the
radial displacement decreases. For the same depth in differ-
ent lines, the radial displacement decreases with the increase
of the angle. The maximum radial displacement occurs in
the direction of the larger initial stress, and the smallest
radial displacement becomes visible in the direction of the
smaller initial stress. This is in agreement with the theoreti-
cal analysis in Section 3.1.

(2) Sensitivity analysis of displacement to the radius

According to Equation (14), the following equation can
be obtained by substituting known parameters:

4
1/Eð Þ − μ′2/E′

� �
1 + μð Þ/E

2
4

3
5 − 6 = ‐3:16: ð16Þ

Then, the extreme values of different lines will be found,
and the position of the maximum sensitivity is established
according to the conclusion obtained in Section 3.2.
Table 3 presents the sensitivity of the displacement of the
radius. Table 3 shows that qualified survey lines are L1, L2,
and L3. According to Equation (15), the maximum sensitiv-
ity of the displacement of the survey lines L2 and L3 to the
radius appears at the cave wall. It shows that the measuring
points should be arranged at the cave wall. The maximum
sensitivity of the displacement of the survey line L1 to the
radius appears at rextreme. It shows that the measuring points
should be arranged there. This is in agreement with the the-
oretical analysis in Section 3.2.

4.3. The Second Stress Condition. The second stress condi-
tion is p = 5MPa and q = 10MPa. According to FLAC3D,
the radial and tangential displacements of each survey line
are shown in Table 4. Comparing Tables 4 and 2, the radial
displacement and tangential displacement under the two
stress conditions have a multiple relationship, while the
deformation law remains the same. The sensitivity analysis
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of displacement to radius is exactly the same as that of the
first stress case. This confirms that as long as p/q is constant,
the sensitivity of the displacement to the radius will not
change with the initial ground stress.

4.4. The Third Stress Condition

(1) Sensitivity analysis of displacement to the angle

The third stress condition is p = 20MPa and q = 10MPa.
According to FLAC3D, the radial displacement of the circu-
lar tunnel is shown in Figure 5. The radial displacements of
each survey line are shown in Table 5 .

According to Figure 5 and Table 5, the maximum radial
displacement of each measured line still appears at the wall
though the initial geostress changes. With the increase of the
depth of the measuring point, the radial displacement
decreases [28–35]. For the same depth in different lines, the
radial displacement increases with the increase of the angle
from 0° to 90°. The maximum radial displacement occurs in

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1700 Model Perspective
23:28:45 Sat Mar 19 2022

Center:
X: -3.553e-015
Y: 5.000e+000
Z: 0.000e+000

Rotation:
X: 0.000
Y: 0.000
Z: 0.000

Dist: 1.433e+002 Mag.: 1
Ang.: 22.500

Fixity Conditions
Linestyle
Surface
Magfac = 0.000e+000

Axes
Linestyle

50 m × 50 m

XY

Z

Figure 2: The mesh of the computational model.

1 m

15°
15°

15°
15°

15°

15°

L7
L6

L5

L4

L1

L3

L2

y

x

a

O

Figure 3: Arrangement for measuring points.

Table 1: Four kinds of crustal stress parameters.

Case p (MPa) q (MPa)

Case 1 10 20

Case 2 5 10

Case 3 20 10

Case 4 10 30

5Geofluids



the direction of the larger initial stress, and the smallest radial
displacement appears in the direction of the smaller initial stress.
This is consistent with the theoretical analysis in Section 3.1.

(2) Sensitivity analysis of displacement to the radius

Table 6 presents the sensitivity of the displacement to the
radius. It shows that the qualified survey lines are L5, L6, and
L7. According to Equation (15), the measuring points on the
survey lines L5 and L6 should be arranged at the cave wall.
The measuring points on the survey line L7 should be

arranged at rextreme. This is in agreement with the theoretical
analysis in Section 3.2.

4.5. The Fourth Stress Condition

(1) Sensitivity analysis of displacement to the angle

The fourth stress condition is p = 10MPa and q = 30
MPa. According to FLAC3D, the radial displacement of
the circular tunnel is shown in Figure 6. The radial displace-
ments of each survey line are shown in Table 7.

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1620 Model Perspective
12:54:49 Wed Dec 03 2014

Center:
X: -3.553e-015
Y: 5.000e+000
Z: 0.000e+000

Rotation:
X: 0.000
Y: 0.000
Z: 0.000

Dist: 1.433e+002 Mag.: 1.95
Ang.: 22.500

Gp Extra 1
Magfac = 0.000e+000

4.5873e-004 to 5.0000e-003
5.0000e-003 to 1.0000e-002
1.0000e-002 to 1.5000e-002
1.5000e-002 to 2.0000e-002
2.0000e-002 to 2.5000e-002
2.5000e-002 to 3.0000e-002
3.0000e-002 to 3.5000e-002
3.5000e-002 to 4.0000e-002
4.0000e-002 to 4.5000e-002
4.5000e-002 to 5.0000e-002
5.0000e-002 to 5.5000e-002
5.5000e-002 to 5.5248e-002

Interval = 5.0e-003

Figure 4: The radial displacement.

Table 2: The radial displacements of each survey line.

Line L1 (cm) L2 (cm) L3 (cm) L4 (cm) L5 (cm) L6 (cm) L7 (cm)

N1 5.24 5.29 4.40 3.52 2.63 1.70 1.46

N2 3.84 3.56 2.88 2.06 1.13 0.65 0.45

N3 2.83 3.56 2.61 1.79 1.31 0.65 0.24

N4 2.83 2.57 1.99 1.36 0.78 0.41 0.24

N5 2.19 1.97 1.49 1.19 0.59 0.31 0.16

N6 1.76 1.57 1.49 1.01 0.59 0.24 0.13

N7 1.45 1.57 1.17 0.87 0.47 0.24 0.11

N8 1.45 1.29 0.94 0.68 0.39 0.20 0.11

N9 1.21 1.07 0.94 0.68 0.39 0.17 0.09

N10 1.03 0.90 0.78 0.54 0.32 0.15 0.08
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According to Figure 6 and Table 7, changing the initial
geostress, the maximum radial displacement of each mea-
sured line still appears at the wall. And the maximum radial
displacement occurs in the direction of the larger initial
stress, and the smallest radial displacement appears in the
direction of the smaller initial stress. This is consistent with
the theoretical analysis in Section 3.1.

(2) Sensitivity analysis of displacement to the radius

Table 8 presents the sensitivity of the displacement to the
radius. It shows that the qualified survey lines are L1, L2, L3,
L6, and L7. According to Equation (15), the measuring
points on the survey lines L3 should be arranged at the cave
wall. The measuring points on the survey lines L1, L2, L6,
and L7 should be arranged at rextreme. This is in agreement
with the theoretical analysis in Section 3.2.

When the stress in the vertical direction constant is kept
constant and the stress in the horizontal direction increases,
except for the measuring line L5, the other measuring lines
will gradually have extreme points as the angle increases
and the value is increasing, while the sensitivity coefficient
is at the extreme point to get the maximum value. Moreover,
in the larger principal stress direction, the extreme point is
near the cave wall, while in the smaller principal stress direc-
tion, the extreme point is far from the cave wall. However, as
the displacement gradually decreases, a larger relative error
would occur. Considering the effect of error transmission,
it is recommended that the measuring point is arranged near

the extreme point in the direction of the larger principal
stress.

5. Discussion

Based on the maximum sensitivity criterion, the problem of
the optimal layout of measuring points for back analysis of
displacements in transversely isotropic rock masses is investi-
gated to determine the most suitable location for measuring
points in this work. The connection between the sensitivity
of displacement to the angle and radius is obtained.

Both Zhang [21] and this work are aimed at optimizing
the arrangement of measuring points of the transversely iso-
tropic rock mass. However, the work of Zhang [21] was
based on the principle of maximum displacement. Three
aspects are discussed as follows. Firstly, both works just ana-
lyzed the circular tunnels. Then, Zhang [21] suggested that
the most suitable location for measuring points was at the
cave wall or extreme value, which is consistent with the con-
clusion of this work. Zhang [21] mainly considered the rela-
tionship of the lateral pressure coefficient. However, in this
paper, it makes further judgments according to the size rela-
tionship by Equation (15) as needed. Finally, Zhang [21]
believed that the direction of the larger principal stress and
the adjacent direction were suitable directions to arrange
the measurement line. Similarly, in this paper, the measuring
point was arranged in the area of the larger principal stress
near the extreme point.

Table 3: The sensitivity of the displacement to the radius.

Line θ (°) 2θ (°) cos 2θ (°) p + q/ p − qð Þ cos 2θ Judgment rextreme Conclusion

L1 0 0 1 -3 >-3.16 2.03 rextreme

L2 15 30 0.866 -3.464 <-3.16 1.95 Cave wall

L3 30 60 0.5 -6 <-3.16 1.65 Cave wall

L4 45 90 0 ∞ >-3.16 Unrealistic Fail

L5 60 120 -0.5 6 >-3.16 Unrealistic Fail

L6 75 150 -0.866 3.464 >-3.16 Unrealistic Fail

L7 90 180 -1 3 >-3.16 Unrealistic Fail

Table 4: The radial displacements of each survey line.

Line L1 (cm) L2 (cm) L3 (cm) L4 (cm) L5 (cm) L6 (cm) L7 (cm)

N1 2.76 2.65 2.20 1.76 1.32 0.85 0.73

N2 1.92 1.78 1.44 1.03 0.56 0.33 0.22

N3 1.41 1.78 1.31 0.89 0.65 0.33 0.12

N4 1.41 1.29 0.99 0.68 0.39 0.20 0.12

N5 1.10 0.99 0.74 0.59 0.30 0.15 0.082

N6 0.88 0.79 0.74 0.50 0.30 0.12 0.064

N7 0.73 0.79 0.58 0.44 0.24 0.12 0.053

N8 0.73 0.64 0.47 0.33 0.19 0.10 0.053

N9 0.61 0.54 0.47 0.33 0.19 0.087 0.045

N10 0.51 0.45 0.39 0.27 0.16 0.075 0.040
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1617 Model Perspective
13:10:22 Wed Dec 03 2014

Center:
X: 1.169e+000
Y: 4.994e+000
Z: -6.045e-001

Rotation:
X: 0.242
Y: 0.000
Z: 0.467

Dist: 1.433e+002 Mag.: 2.63
Ang.: 22.500

Surface
Magfac = 0.000e+000

Gp Extra 1
Magfac = 0.000e+000

7.0197e-004 to 5.0000e-003
5.0000e-003 to 1.0000e-002
1.0000e-002 to 1.5000e-002
1.5000e-002 to 2.0000e-002
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Figure 5: The radial displacement.

Table 5: The radial displacements of each survey line.

Line L1 (cm) L2 (cm) L3 (cm) L4 (cm) L5 (cm) L6 (cm) L7 (cm)

N1 1.46 1.70 2.63 3.52 4.40 5.29 5.52

N2 0.45 0.65 1.13 2.06 2.88 3.56 3.84

N3 0.24 0.65 1.31 1.79 2.61 3.56 2.83

N4 0.24 0.41 0.78 1.36 1.99 2.57 2.83

N5 0.16 0.31 0.59 1.19 1.49 1.97 2.19

N6 0.13 0.24 0.59 1.01 1.49 1.54 1.76

N7 0.11 0.24 0.47 0.87 1.17 1.54 1.45

N8 0.11 0.20 0.39 0.68 0.94 1.29 1.45

N9 0.091 0.17 0.39 0.68 0.94 1.07 1.22

N10 0.079 0.15 0.32 0.54 0.78 0.90 1.03

Table 6: The sensitivity of the displacement to the radius.

Line θ (°) 2θ(°) cos 2θ(°) p + q/ p − qð Þ cos 2θ Judgment rextreme Conclusion

L1 0 0 1 3 >-3.16 Unrealistic Fail

L2 15 30 0.866 3.464 >-3.16 Unrealistic Fail

L3 30 60 0.5 6 >-3.16 Unrealistic Fail

L4 45 90 0 ∞ >-3.16 Unrealistic Fail

L5 60 120 -0.5 -6 <-3.16 1.65 Cave wall

L6 75 150 -0.866 -3.464 <-3.16 1.95 Cave wall

L7 90 180 -1 -3 >-3.16 2.03 rextreme
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Figure 6: The radial displacement.

Table 7: The radial displacements of each survey line.

Line L1 (cm) L2 (cm) L3 (cm) L4 (cm) L5 (cm) L6 (cm) L7 (cm)

N1 8.73 8.26 6.45 4.69 2.92 1.07 5.86e-1

N2 6.25 5.73 4.43 2.89 9.21e-1 -1.06e-1 -5.39e-1

N3 4.63 5.73 3.92 2.39 1.31e-1 -1.06e-1 -5.49e-1

N4 4.63 4.16 3.05 1.90 6.34e-1 -1.79e-1 -5.49e-1

N5 3.60 3.19 2.28 1.59 4.90e-1 -1.51e-1 -4.59e-1

N6 2.90 2.55 2.28 1.40 4.90e-1 -1.19e-1 -3.79e-1

N7 2.39 2.55 1.79 1.17 3.96e-1 -1.19e-1 -3.09e-1

N8 2.39 2.09 1.45 9.02e-1 3.31e-1 -9.21e-2 -3.09e-1

N9 2.00 1.74 1.45 9.02e-1 3.31e-1 -7.08e-2 -2.56e-1

N10 1.69 1.46 1.19 7.18e-1 2.81e-1 -5.36e-2 -2.13e-1

Table 8: The sensitivity of the displacement to the radius.

Line θ (°) 2θ(°) cos 2θ(°) p + q/ p − qð Þ cos 2θ Judgment rextreme Conclusion

L1 0 0 1 -2 >-3.16 2.23 rextreme

L2 15 30 0.866 -2.309 >-3.16 2.16 rextreme

L3 30 60 0.5 -4 <-3.16 1.87 Cave wall

L4 45 90 0 ∞ >-3.16 Unrealistic Fail

L5 60 120 -0.5 4 >-3.16 Unrealistic Fail

L6 75 150 -0.866 2.309 >-3.16 6.72 rextreme

L7 90 180 -1 2 >-3.16 5.35 rextreme
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She [23] carried out an optimized arrangement of mea-
suring points for circular tunnels based on the principle of
maximum sensitivity. She [23] selected the isotropic rock
masses as the study object; in contrast, this research selected
the transverse isotropic rock mass. Then, both articles
obtained the sensitivity coefficients of the two principal
stresses. However, She [23] limited the measuring point to
the two N1 points of measuring line 1 and measuring line
7 in Figure 3 and connected the two points to get the direc-
tion of the arrangement of the measuring line. In this work,
the sensitivity analysis of the radius was comprehensively
analyzed, and the optimal measuring point at the extreme
value instead of the cave wall was selected.

6. Conclusions

(1) The sensitivity criterion for the arrangement of mea-
suring points in circular roadway of transversely iso-
tropic rock mass is deduced. The sensitivity of the
radius and angle of the measuring point arrange-
ment provides the basis for the formulation of the
monitoring program

(2) From the sensitivity analysis of displacement to angle,
the arrangement of measuring points in the two prin-
cipal stress directions is themost suitable for the inver-
sion of parameters. At the same time, the two principal
stress directions are also the priority positions in the
layout scheme of measuring points

(3) According to the sensitivity of the displacement to
the radius, whether the location of the most suitable
measuring point is at the cave wall or the extreme
value depends on the relationship between the radius
and the extreme value. Further discussion is required
based on the discriminants derived in this paper

(4) By changing the magnitude and direction of the
principal stress, the correctness of the theoretical
derivation is verified by numerical simulation, and
a comprehensive analysis is carried out. The results
show that the most suitable location for arranging
the survey line is the area close to the extreme point
in the direction of the larger principal stress
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