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The laminated joints of transversely isotropic rock mass show strong discontinuity, inhomogeneity, anisotropy, and nonlinearity.
This paper proposes a novel rigid block discrete element method (RB-DEM) to simulate the transversely isotropic rock mass. The
balls in traditional DEM simulation are replaced by rigid blocks generated using FEM mesh. The contact on the laminar joints can
be described accurately. The rigid block discrete element method (RB-DEM) results are consistent with the laboratory test. The
effects of joint parameters, joint spacing, and stiffness ratio on the uniaxial compression properties of transversely isotropic
rock mass are discussed. This study provides a novel and effective tool for the analysis of transversely isotropic rock mass.

1. Introduction

The transversely isotropic rock mass is widespread in geo-
logical materials (as shown in Figure 1). Isotropy refers to
the property wherein an object’s physical and chemical
properties do not change with its orientation [1, 2]. A trans-
versely isotropic rock mass is a particular case of anisotropic
rock masses. A rock mass with the same elastic properties in
all directions in a plane is called an isotropic surface. In con-
trast, the mechanical properties in the direction perpendicu-
lar to this surface are different, and the rock mass with such
properties is called a transversely isotropic rock body.
Researchers have studied the lamellar structure of phyllite
in-depth and pointed out that rocks containing phyllite

structures can be reduced to transversely isotropic mass.
The transversely isotropic elastomer model describes the
deformation and damage analysis of natural geological bod-
ies formed by sedimentation like this. Due to the specificity
of its engineering performance, it is often encountered in
the stability analysis of slopes and underground works.
Therefore, researchers must study and clarify the damaging
evolution of transversely isotropic rock mass under com-
pressive conditions [3–6].

Transversely isotropic phenomena are relatively com-
mon in geological materials, and anisotropic traits have a
crucial influence on the stress-strain analysis and damage
mechanical behavior of rock mass. Scholars have done much
research work at home and abroad. The current study
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mainly includes theoretical, experimental, and numerical
simulations. For academic studies, Sakurai et al. proposed
the displacement-strain feedback analysis method based on
the retrospective analysis method to derive the complete ini-
tial state of stress and Young’s modulus from a set of relative
displacements measured between adjacent monitoring
points [7]. Fan and Ye established the three-dimensional
equation of state in the local coordinate system, obtained
the accurate static and dynamic solutions of the three-layer
orthogonal thick plate, and proposed the orthotropic elastic
theory [8]. Valanis and Haupt proposed an internal time
plasticity model based on the theorem of irreversible ther-
modynamics [9]. These theoretical studies provide a crucial
theoretical basis for clarifying the mechanical behavior of
transversely isotropic rock mass.

In terms of experimental research, Amadei studied and
verified the relationship between five elastic parameters
and stress-strain of transversely isotropic rock mass under
different bedding angles [10]. Nguyen et al. recorded the
process of inclined cracks in Naples tuff under uniaxial com-
pression based on the digital image correlation method [11].
Based on fracture mechanics, Zhou et al. established a dam-
age model considering the random distribution of micro-
cracks in the rock mass. They studied the influence of
microdefects on the strength and stiffness of rock mass
[12]. Tien and Tsao implemented a split Hopkinson pres-
sure bar (SHPB) test on artificial layered rock specimens
with different dip angles [13]. The relationship between
Young’s modulus, overall strength, rock deformation, and
dip angle was studied using the incomplete bonding inter-
face composition model (IBICM) [14].

For numerical simulation, Chen et al. proposed the ran-
dom field simulation using the Karhunen-Loève (K-L)
expansion [15]. Faizi et al. conducted triaxial numerical sim-
ulations based on the discrete element method for different
dip angle models and investigated the mechanical behavior
of transversely isotropic rock mass [16]. Zhao et al. calcu-
lated the damage zone at the laminate tip based on the
Kachanov equation and discussed the crack connections
between the laminate surfaces. The transmission coefficients
of the stress waves at the level are derived [17].

Because the cross-sectional isotropic rock is more frag-
mented, it is difficult to collect the experimental specimens
in the field, and it is equally difficult to produce multiple
rock specimens in the laboratory. The development of
numerical calculations has made it possible to study the

compressional damage processes and damage mechanisms
in the transversely isotropic rock mass. Traditional compu-
tational models do not simulate the crack formation process,
and now, we usually use discrete element models or granular
flow models to simulate transversely isotropic rock mass
problems. The limited number of computational units in
the granular flow model has limitations in finely modeling
the mechanical processes of progressive failure of the inter-
mittent transversely isotropic rock mass. In contrast, the dis-
crete element model can consider the cracking of through
joints and the movement of blocks, using efficient solving
methods to find and classify contacts, enabling further
improvements in simulation efficiency.

This paper proposes a rigid block DEM modeling
method (RB-DEM). Compared with conventional DEM, this
method has the advantages of simple model generation, high
computational efficiency, and full consideration of the influ-
ence of the joint layers. In addition, using the DEM model
allows for a more accurate simulation of crack extension in
transversely isotropic rock masses. Adjacent boundaries no
longer use the SJ smooth joint model but instead use
particle-to-particle contact to transfer forces [16]. By setting
different strength parameters for the blocks and joints, we
can simulate the columnar transverse isotropic rock proper-
ties more realistically. By comparing and verifying that the
numerical results are close to the field test results, the paper
discusses the influence of various factors on the uniaxial
compression properties of the rock mass.

2. Method

2.1. Rigid Block Discrete Element Method

2.1.1. Rigid Block Contact Theory. The discrete element
method (DEM) replaces the objects of a discrete system with
discrete units of a specific shape. It focuses on the contact

Figure 1: Natural transversely isotropic rock masses.
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Figure 2: Standard rigid block model diagram.
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interaction between particles and particles or between parti-
cles and boundaries, as well as the macroscopic motion of
the whole discrete system. Rigid blocks, which can simulate
closed polygons, flow polygons, and irregular polygons, are
introduced into the DEM calculation. In this paper, the balls
in traditional DEM simulation are replaced by rigid blocks
generated using an FEM mesh [18]. In a DEM, rigid blocks
can be created by countless methods, such as creating rigid
blocks from vertices or importing rigid blocks from geome-
try. As shown in Figure 2, this paper uses a closed polygon
rigid block with a shape similar to the rigid block model pro-
posed by Francesco et al. Compared with the traditional
method, the contact detection algorithm of this rigid block
has better robustness and can accelerate the computation
[19, 20].

The discrete element solves Newton’s laws of motion
using explicit differential dynamics, and its program uses
an efficient solution method to detect and classify contacts.
With contact detection, contact will be generated if a pair
of rigid blocks are likely to collide. Once contact is created,
the algorithm will apply different contact detection algo-
rithms depending on the type of object in contact at both
ends. The program can maintain data structures and mem-
ory allocations, so tens of thousands of contacts can be proc-
essed quickly.

2.1.2. Adhesive Properties of Transversely Isotropic Rock
Mass. As shown in Figure 3, the linear parallel bonding
model is used as the linear model between the contacts in
this paper [21–23]. It is a linear-based model that can be
installed at both ball-ball and ball-facet contacts. The linear
parallel bond model provides the behavior of two interfaces:
an infinitesimal, linear elastic (no-tension), and frictional
interface that carries a force and a finite-size, linear elastic,
and bonded interface that carries a force and moment (see
Figure 3). The first interface is equivalent to the linear
model: it does not resist relative rotation, and slip is accom-
modated by imposing a Coulomb limit on the shear force.
The second interface is called a parallel bond because, when
bonded, it acts in parallel with the first interface. When the
second interface is bonded, it resists relative rotation, and

its behavior is linear elastic until the strength limit is
exceeded and the bond breaks, making it unbonded. When
the second interface is unbonded, it carries no load. The
unbonded linear parallel bond model is equivalent to the lin-
ear model. The model can reasonably simulate the mechan-
ical properties of selected objects with parallel bonded
members that transfer forces and moments between rigid
blocks and do not prevent sliding from occurring [24].

The contact interaction law that defines the relationship
between contact forces and contact overlap properties is
essential for DEM. As shown in Figure 4, in this paper, when
the contact members are all rigid blocks located in the same
group, the contact type is defined as a rock contact. When
the contact members are rigid blocks located in two different
groups, the contact type is defined as a joint contact. The
effect of various joint parameters on the strength of the nod-
ular rock mass is discussed in the next section.

2.2. Rigid Block Generation. The size of the geometric model
in this paper is 100mm × 50mm, as shown in Figure 5(a).
First, linear structures with different inclination angles are
established, and then, thin plates with different inclination
angles are established. Afterward, in order to get the desired
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Figure 4: Different contact types in jointed rock masses.
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mesh, the model is preprocessed, as shown in Figure 5(b). In
order to avoid abnormal meshes from interfering with DEM
calculations, the corresponding software is used to generate
well meshes in the model. All mesh elements are triangles,
creating a structural mesh of well-shaped cells in
Figure 5(c). The next step is to import the model into
FLAC3D, list the blocks for each group of rock masses,
and convert them to the corresponding block collection. In
Figure 5(d), we can see the final rock mass model, where
each rigid block consists of a set of blocks transformed from
many blocks.

3. Result

3.1. Parameter Calibration. Due to the influence of various
complex factors like the mineral composition of the rock
mass, the development level of joints, and the orientation
of joints, obtaining a suitable set of rock parameters becomes

extremely difficult. The microscopic parameters selected in
the DEM cannot be determined directly from the physically
tested rock properties and need to be calibrated by an itera-
tive trial-and-error approach. This paper utilizes the pair-
wise algorithm proposed by Thurstone for solving
psychometrical problems to find the most suitable parame-
ters [25]. Assume that each dimension is orthogonal. When
β = 90 ° , since the rock matrix mainly bears the applied load
in this direction, the weak joint layer has the least influence
on the effective modulus and rock strength. Therefore, it is
used to calibrate the effective modulus of the experimental
rock sample close to Zhang, the cohesive force, and tensile
strength [26]. The parameters of the experimental rock sam-
ples are approximated by changing the effective modulus,
cohesion, and tensile strength. Several iterations of the above
steps are performed to determine the best combination of
effective modulus, cohesion, and tensile strength. When β
=15°, 30°, 45°, 60°, and 75°, the damage mainly occurs on

(a) (b)

(c) (d)

Figure 5: Rock model and rigid block generation process.
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the weak joint layer of the body. Therefore, the effective
modulus, cohesion, and tensile strength of the rock matrix
are kept unchanged, and the parameters of the experimental
rock samples are approached by changing the effective mod-
ulus, cohesion, and tensile strength of weak joints. Several
iterations of the above steps are performed to determine
the optimal combination of the effective modulus, cohesion,
and tensile strength for weak joints. When β = 0 ° , the nor-
mal stiffness ratio becomes the fundamental factor that
determines the difference between the stress-strain curves
at β = 0 ° and β = 90 ° since the damage occurs mainly in
the rock matrix of the rock mass. The effective modulus,
cohesion, and tensile strength of the rock matrix and weak
joints can be kept constant to approximate the stress-strain
curve of the experimental rock sample by changing the nor-
mal stiffness ratio. Several iterations of the above steps are
performed to determine the normal stiffness ratio of the
weak joints and the rock matrix. Compared with the tradi-
tional orthogonal design, pairwise optimization can reduce
the input cost and increase efficiency. In addition, the larger
the number of dimensions, the more significant the results,
which applies to this paper. Table 1 lists the detailed param-
eters of the rock mass model in pairs [27].

3.2. Mechanical Characterization of Transversely Isotropic
Rock Mass. In this paper, a total of seven uniaxial compres-
sion test simulations were performed to investigate the effect
of seven anisotropic angles (β = 0 ° , 15°, 30°, 45°, 60°, 75°,

and 90°) on the properties of the transversely isotropic rock
mass. During each simulation, the change in stress value is
determined by the synthetic stress acting on the wall, while
the change in strain is calculated from the wall displacement
[28, 29].

After the rock is loaded, the strain increases with the rise
of stress. When the pressure increases to the rock strength
value, the rock fails. The stress-strain curve of solid mag-
matic rocks, limestone, and other rocks are nearly linear,
showing elastic deformation and sudden brittle damage,
which is in good agreement with the simulation results of
this paper [26].
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Figure 8: Stress–strain curves at different inclination angles.

0 20 40 60 80 100
0

20

40

60

80

100

Joint inclination angle (°)

Hard rock 2 UCS
Numerical UCS

Pe
ak

 st
re

ng
th

 (M
Pa

)
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Table 1: Numerical simulation parameters for jointed rock masses.

Composition
Effective
modulus
(GPa)

Tensile
strength
(GPa)

Cohesion
(GPa)

Friction angle
(°)

Rock 160 12 12 40

Joint 50 6.4 6.4 30
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(c) 30° (d) 45°

(e) 60° (f) 75°

Figure 9: Continued.
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3.2.1. Uniaxial Compression Strength. The uniaxial compres-
sion strength curves of the transverse isotropic rock mass at
different dip angles are shown in Figure 6. Comparing the
experimental and simulation results, we can see that the
two have a high degree of fit, generally showing a V shape.
With the change of inclination angle, the general trend of
the compressive strength curve is low in the middle and high
on both sides. The curve decreases in the dip angle of the
rock body from 0° to 60°, and the curve is relatively flat.
The inclination angle of the rock mass decreases from 0° to
60°, and the curve is relatively gentle. The strength of the
rock sample is the largest at 0° and the smallest at 60°. The
inclination angle of the rock mass rises within 60°~90°, and
the curve is relatively steep. From Figure 6, it can be seen
that when the dip angle of rock joints β = 90 ° , the corre-
sponding peak strength is 50MPa, while when out when
the dip angle of rock joints β = 60 ° , the peak strength of
the rock is 20MPa. The ratio of the corresponding peak
strength is 2.5. The gap between the two is too large. It
reflects that the dip angle of the rock mass will have a great
impact on the strength of the rock mass. In engineering
practice, we should pay more attention to the influence of
rock mass inclination on engineering safety [30].

3.2.2. Failure Process. The data obtained during the simula-
tion test were organized and plotted into a stress-strain

curve. Figures 7 and 8 show the stress-strain curves of the
uniaxial compression test of the columnar transversely iso-
tropic rock mass with a dip angle of 0° to 90°. According

Table 2: Numerical simulation parameters of rock mass with different joint strengths.

Ratio Composition Effective modulus (GPa) Tensile strength (GPa)
Cohesion
(GPa)

Friction angle
(°)

0.25
Rock 160 120 120 40

Joint 50 30 30 30

0.5
Rock 160 120 120 40

Joint 50 60 60 30

0.75
Rock 160 120 120 40

Joint 50 90 90 30

1
Rock 160 120 120 40

Joint 50 120 120 30
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Figure 10: The change of peak strength with different strength
ratios between structural surface and rock mass.
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Figure 9: Uniaxial compression failure mode of rock samples with columnar joints.
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to the indoor experimental results of Xia et al., we can know
the stress-strain curve of the indoor rock sample and the
development and evolution of microcracks [31]. It can
roughly be divided into five stages: microcrack compaction
and closure stage, linear elastic deformation stage, micro-
crack initiation and propagation stage, volume expansion
and crack unsteady propagation stage, and failure and post-
peak deformation stage. In the early stage, the original cracks
and pores inside the sample gradually closed with the
increase in load. At this stage, the stress-strain relationship
of the rock appears as a concave upward curve, but no inter-
nal microcracks are established in the simulation model, so
the crack closure stage does not appear in Figure 7
[32–34]. Once most of the primary cracks are compacted

and closed, the deformation of the rock enters the linear
elastic deformation stage, and the stress-strain curve shows
a straight line segment. The linear elastic deformation stage
of rock is a stage of microcrack initiation. When the stress
level applied to the rock exceeds the sprouting stress thresh-
old σci for new cracks, the microcracks inside the rock start
to sprout and show stable expansion [35–37]. At this stage,
the microcracks are in a steady state of expansion and the
crack damage threshold. When the stress level exceeds the
crack damage threshold σcd, the microcracks inside the rock
sample begin to penetrate gradually, form a crack network,
and finally form a macrofracture surface. The crack damage
threshold corresponds to the inflection point on the volume
strain curve where the rock volume shifts from compression
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Figure 11: Stress-strain curves of rock mass with different strength ratios between structural surfaces and rock mass.
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to expansion. The specimen reaches peak strength after σp ,
and the rock sample is damaged. Many new microcracks in
the rock are generated, expanded, and merged, failing the
specimen. For uniaxial compression tests, the peak rock
strength is σp. It is an important and commonly used
mechanical index in rock engineering. When the rock sam-
ple exceeds the peak strength σp, the stress-strain curve of
the rock enters the postpeak softening stage, and the stress
decreases with the increase of the strain [38, 39].

3.2.3. Failure Mode. The damage modes of transverse view
isotropic rock masses in uniaxial compression tests are
shown in Figure 9. As the column changes from rotation
too, the loading direction leads to anisotropic damage modes
of transverse view isotropic rock masses. Overall, the dam-
age modes of uniaxial tests can be divided into three catego-
ries [40–42]: splitting damage perpendicular to the column
axis, shear slip damage, and splitting damage along the col-
umn axis. When the column inclination is perpendicular to
the loading direction, for example, β = 0 ° (Figures 9(a)
and 9(b)), the columnar transversely isotropic rock mass
mainly suffers from splitting failure along the axial direction
of the specimen. Most anisotropic rock samples show split
failure under uniaxial compression, which is the characteris-
tic of uniaxial compression failure. When the inclination of
rock mass is medium or steep, for example, β = 30 ° , 45°
and 60° (Figures 9(c)–9(e)), shear slip along the inclined
rock mass face is the predominant structural damage mode.
For steeper dips, shear stress plays a key role in driving the
shear slip damage along the middle of the rock mass rock
specimen. When the axis of the rock mass is approximately
parallel to the loading direction, for example, β = 75 ° and
90° (Figures 9(f) and 9(g)), the transverse-view isotropic
rock mass exhibits another type of cleavage damage. In this
dip range, the axial stress causes the transverse-view isotro-
pic rock mass to undergo cleavage damage along the near-
vertical or vertical polygonal rock face, resulting in the col-
lapse of the rock mass.

4. Discussion

4.1. Effect of Joint Parameters. A rock mass is a combination
of rock blocks and structural planes. The strength of the rock
mass is the comprehensive strength considering the effect of

the structural plane. Factors such as the occurrence, joint
length, and connectivity of the joint plane have an important
influence on the strength of the rock mass. Since the essence
of the joint plane is the weak plane in a specific direction
developed in the rock mass, the strength of the structural
plane is weaker than that of the rock block.

Joint planes are usually divided into general joint planes
and weak joint planes. The strength of the weak structural
face is usually in the range of 0~0.02MPa, while the strength
of the general structural face is usually greater than
0.03MPa. In summary (as shown in Table 2), the strength
ratio of the joint plane and rock block is selected as 0.25,
0.5, 0.75, and 1 to study the influence of the joint surface
on the strength of rock mass with different dip angles.

In Figure 10, we can see the stress-strain curves of rock
masses with different joint strengths under uniaxial com-
pression. When the joint strength is constant, with the
change of the dip angle, the overall trend of the rock mass
compressive strength curve is that the middle is low, and
the two sides are high. When the dip angle is in the range
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Figure 12: Diagram of different joint spacings.
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of 0°~60°, the curve decreases, and the strength of the rock
mass sample is the smallest at 60°. When the dip angle is
in the range of 60°~90°, the curve rises, and the rock mass
sample has the highest strength at 90°. When the dip angle
is constant, as the joint strength increases, the peak strength
of the rock mass generally increases. When the dip angle is
0° and 90°, the change in the joint strength leads to a tinier
change in the rock mass strength. When the dip angle is
15°, 30°, 45°, 60°, and 75°, the alteration in the joint strength
leads to a larger change in the rock mass strength. The rea-
son for the above results is that when β is 0° and 90°, the
main failure mode of the rock mass is splitting failure, and
the strength of the rock mass depends on the strength of
the inner rock block. When β is 15°, 30°, 45°, 60°, and 75°,
the main failure mode of the rock mass is shear slip failure
along the joint plane, and the rock mass strength is more
affected by the joint strength.

Figures 11(a)–11(d) show the stress-strain curves
obtained by simulating the rock mass with different joint
strengths under uniaxial compression conditions. As can
be seen from the figure, as the joint strength changes, the
stress-strain curve also varies. It can be roughly divided into
three stages. In the early stage, the rock enters the linear elas-
tic deformation stage, and the stress-strain curve shows a
straight line segment. With the increase of the joint strength,
the deformation gradually increases, and the two show a
good linear relationship. When the stress exceeds the elastic
deformation stress limit, the stress-strain curve deviates
from the elastic deformation curve. During this stage, the
rock gradually enters the yield stage. Since the joint spacing
is different, the yield strength is different. With the increase
of the joint spacing, the yield strength also increases accord-
ingly. When the stress exceeds the ultimate stress, the stress
decreases, the strain softens, and the stress-strain curve
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shows the residual strength. Even at this stage, joint strength
has a great influence on residual strength.

The residual strength increases as the joint spacing
increases. Therefore, it has influences on the three stages of
the stress-strain curve. The elastic deformation, yield
strength, and residual strength all increase with the increase
of joint strength.

4.2. Effect of Joint Spacing. The rock mass is a geological
material full of various discontinuous surfaces, and joint sur-
faces are typical representatives of such discontinuous sur-
faces. The strength of joints is influenced by the
mechanical properties of rocks and joints on the one hand
and by the geometric characteristics of joints (such as
arrangement, yield, and spacing) on the other hand.

The researchers conducted many physical simulation
experiments to study the correlation between the perfor-
mance of transversely isotropic rock mass and the geometric
parameters of the joint network.

According to the research results of Einstein and Hirsch-
feld and Prudencio and Jan on the strength and deformation
characteristics of rock masses with different joint spacings
[43, 44], this paper selects three joint spacings of 5mm,
20mm, and 50mm (as shown in Figures 12(a)–12(c)) to
study the influence of the joint spacing on the strength of
rock mass with different dip angles.

In Figure 13, we can see the strength curves of rock
masses with different joint spacings under uniaxial compres-
sion. When the joint spacing is constant, with the change of
the inclination angle, the general trend of the compressive
strength curve is that the middle is low, and the two sides
are high. When the dip angle is in the range of 0°~45°, the
curve decreases, and the strength of the rock mass sample
is the smallest at 45°. When the dip angle is in the range of
45°~90°, the curve rises, and the rock mass sample has the
highest strength at 90°. When the inclination angle remains
unchanged, as the joint spacing increases, the peak strength
of the rock mass generally increases. The reason for the
above results is that when the joint spacing increases to a
certain extent, the strength of the rock mass is equal to the
strength of the rock block. When the joint spacing reduces
to a certain extent, the rock mass strength is equal to the
joint strength throughout.

Figures 14(a)–14(c) show the stress-strain curves
obtained by simulating the rock mass with different joint
spacing under uniaxial compression. As can be seen from
the figure, as the joint spacing changes, the stress-strain
curve also varies. It can be roughly divided into three stages.
In the early stage, the rock enters the linear elastic deforma-
tion stage, and the stress-strain curve shows a straight line
segment. With the increase of the joint spacing, the defor-
mation gradually increases, and the two show a good linear
relationship. When the stress exceeds the elastic deformation
stress limit, the stress-strain curve deviates from the elastic
deformation curve. During this stage, the rock gradually
enters the yield stage. Since the joint spacing is different,
the yield strength is different. With the increase of the joint
spacing, the yield strength also increases accordingly. When
the stress exceeds the ultimate stress, the stress decreases, the

strain softens, and the stress-strain curve shows the residual
strength. Even at this stage, the joint spacing has a great
influence on the residual strength.

The residual strength increases as the joint spacing
increases. Therefore, the joint spacing influences the three
stages of the stress-strain curve. The elastic deformation,
yield strength, and residual strength all increase with the
increase of joint spacing.

4.3. Effect of Normal-Tangential Stiffness Ratio (kn/ks). The
discrete element method (DEM) replaces the objects of a dis-
crete system with discrete units of a specific shape, and it
focuses on the contact interaction between particles and par-
ticles or between particles and boundaries, as well as on the
macroscopic motion of the whole discrete system [45, 46].
The determination of the fine apparent parameters is very
important when using discrete element models for calcula-
tions and plays a decisive role in the accuracy of discrete ele-
ment numerical simulations. For the apparent parameters,
we can obtain them through indoor and outdoor tests. We
determined the mesoparameters by observing the macrome-
chanical features characterized by the interaction of the
particle set and the interaction of the microscale-modeled
components. The complexity of particle interactions in dis-
crete elements has led to macroscopic parameter relation-
ships that have not yet been established. Therefore, it is
very important to study the relationship between macro-
and fine parameters of rock mass for us to use a discrete
element model to simulate the mechanical properties of the
rock mass.

The researchers conducted a large number of physical
experiments to study the mesoscopic parameters kn/ks of
the rock mass. According to Rojek et al. research on rock
mass strength and deformation characteristics under differ-
ent kn/ks values. In this paper, four different ratios of 0.3,
0.5, 1.0, and 1.5 are selected to study the influence of differ-
ent values of kn/ks on the strength of the columnar trans-
versely isotropic rock mass [47].
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Figure 15: The peak strength variation for different stiffness ratio
conditions.
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In Figure 15, we can see the uniaxial compression
strength curves of the rock mass under different stiffness
ratios. When the stiffness ratio is constant, with the change
of the inclination angle, the general trend of the compressive
strength curve is that the middle is low, and the two sides are
high. When the dip angle is in the range of 0°~45°, the curve
decreases, and the strength of the rock mass sample is the
smallest at 45°. When the dip angle is in the range of
45°~90°, the curve rises, and the rock mass sample has the
highest strength at 90°. When the column inclination angle
is constant, with the increase of the stiffness ratio, the peak
strength of the jointed rock body generally shows a trend
of first increasing and then decreasing.

Figures 16(a)–16(d) show the stress-strain curves
obtained by simulating the rock body subjected to uniaxial

compression under different stiffness ratios. As can be seen
from the figure, as the stiffness ratio changes, the stress-
strain curve also varies. It can be roughly divided into three
stages. In the early stage, the rock enters the linear elastic
deformation stage, and the stress-strain curve shows a
straight line segment. With the increase of the stiffness
ratios, the deformation gradually increases, and the two
show a good linear relationship. When the stress exceeds
the elastic deformation stress limit, the stress-strain curve
deviates from the elastic deformation curve. During this
stage, the rock gradually enters the yield stage. Since the stiff-
ness ratios are different, the yield strength is different. With
the increase of the stiffness ratios, the yield strength also
increases accordingly. When the stress exceeds the ultimate
stress, the stress decreases, the strain softens, and the
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Figure 16: Stress-strain curves of rock mass with different stiffness ratios.
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stress-strain curve shows the residual strength. Even at this
stage, the stiffness ratio has a great influence on the residual
strength.

The residual strength increases as the stiffness ratio
increases. Therefore, it influences the three stages of the
stress-strain curve. The elastic deformation and the residual
strength increase with the increase of the stiffness ratio,
while the yield strength decreases with the increase of the
stiffness ratio.

5. Conclusion

In this paper, rigid block DEM simulations are performed on
transversely isotropic rock mass models with different joint
parameters, joint internal friction angles, and joint spacing
under uniaxial compression. The study focuses on crack
propagation and stress-strain curves for a transversely iso-
tropic rock model and draws the following conclusions:

(1) The joint strength has an influence on the three
stages of the stress-strain curve. The elastic deforma-
tion, yield strength, and residual strength all increase
with the increase of joint strength

(2) When the joint spacing increases to a certain extent,
the strength of the rock mass is equal to the strength
of the rock block. When the joint spacing reduces to
a certain extent, the rock mass strength is equal to
the joint strength throughout

(3) The stiffness ratio has an influence on all three
phases of the stress-strain curve, and the elastic
deformation and the residual strength increase with
the increase of the stiffness ratio, while the yield
strength decreases with the growth of the stiffness
ratio
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