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Accurate evaluation of coalbed methane (CBM) content plays a momentous role in the identification and efficient development of
favorable exploitation blocks of CBM resources, but there are still many technical challenges in the exploration and development
of onshore CBM fields. With the development and application of geophysical logging technology, using geophysical logging data
to predict the gas content of CBM reservoirs has been proven to be an effective and feasible solution. However, the complex
logging response of the CBM reservoirs makes it difficult to characterize the relationship between the gas content and the
logging curve response by a simple linear relationship. In this paper, kernel extreme learning machine (KELM), a machine
learning method, is combined with the geophysical logging data to predict the vertical variation curve of gas content in CBM
wells. In this paper, the laboratory data on coal rock gas content from 12 CBM wells in the Southern Shizhuang block are
selected, and a CBM content prediction model based on the KELM method is constructed by selecting the log curves,
combining cross-validation and grid-seeking to determine the hyperparameters, and validating the prediction model using the
test dataset and a new well in the same block. The application of the model on the test dataset was remarkable, and the vertical
variation of CBM content obtained by applying it to the new well was consistent with the laboratory results, which proved the
correctness and generalizability of the model. The results of this paper show that the CBM content evaluation model based on
the KELM method and geophysical logging data is applicable to the 3# coal seam in the target block and can be used to predict
the vertical CBM content of CBM wells; compared with the extreme learning machine (ELM) method and the
backpropagation neural network (BPNN) method, the KELM method requires fewer hyperparameters to be explored when
constructing the CBM content evaluation model, and the model construction is simple and has high prediction accuracy. At
the same time, the CBM content model constructed by the KELM method differs for different blocks, coal seams at different
depths, and different response ranges of geophysical logging data. The construction of a CBM content prediction model using
the KELM method and logging curves is an effective means of characterizing CBM resources, and the model construction
process and evaluation criteria studied in this paper can be used to help other blocks evaluate the CBM content, providing
guidance for further exploration and development of CBM fields with practical application.

1. Introduction

The exploration and development of the coalbed methane
(CBM) resources have been widely recognized internation-

ally for their ability to reduce the safety risks of coal mining
and reduce the greenhouse effect, and research into CBM
exploration and development has been undertaken in several
countries [1–4]. China has abundant CBM resources, and
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the Ordos and Qinshui Basins are already in the commercial
development stage [5, 6]. The assessment of CBM resources
is an important part of CBM exploration and development
and has become a hot topic of research due to the uncer-
tainty of its resource assessment [7]. The CBM resources
are influenced by several factors, including the buried depth,
thickness, and gas content of CBM reservoirs [8–10]. The
accurate evaluation of the CBM content is of paramount sig-
nificance in determining favorable exploration blocks and in
formulating production and development plans.

As an unconventional oil and gas resource, CBM is more
complex than other reservoirs due to its storage and seepage
mechanism [11]. The gas content of CBM reservoirs is
related to geological factors such as the degree of coal rank
metamorphism, temperature, pressure, effective depth of
burial, thickness, tectonic features, and hydrogeological fea-
tures [12–15]. Many methods have been proposed interna-
tionally for the evaluation of the gas content of coalbeds.
Early on, Kim [16] combined the coal quality analysis with
reservoir pressure and temperature for the adsorption gas
content calculation and proposed an improved form;
Ahmed et al. [17] and Hawkins et al. [18] established the iso-
thermal adsorption models and the Langmuir coal order
equation calculation methods, respectively, to perform gas
content prediction. These techniques, which were created
using the experimental data, could be evaluated for the bore-
holes that had the coring done, but they were impractical to
apply for the CBM wells without coring samples and were
ineffective at determining the vertical trend of CBM content.
Subsequently, the geophysical logging data has been widely
used in CBM content prediction studies [19, 20]. The geo-
physical logging techniques are cost-effective and reliable,
and the high vertical continuity of the logging data allows
for high-resolution characterization of the subsurface verti-
cal physical properties of the borehole [21]. The geophysical
logging data can be used to effectively evaluate the vertical
distribution of CBM content in single wells and can be
extended to wells without coring experiments, which is of
great practical importance.

At present, more scholars have used the geophysical log-
ging data to evaluate the CBM content. Shao et al. [22] used
the logging volume model to evaluate the CBM content, and
Jin et al. [23] used the background value method to calculate
the gas content of CBM reservoirs, both of which achieved
certain results, but the choice of parameters in both methods
had a large impact on the results and the generalization of
such methods was poor, which could only be used for a sin-
gle well or single layer evaluation. Subsequently, Zhou and
Guan [24] used the geophysical logging data and the core
industrial fraction to construct an evaluation model and pro-
posed an industrial fraction-based gas content method for
the CBM reservoirs, which proved to be feasible, but when
evaluating the gas content through intermediate parameters,
the relationship between the parameters was not simply lin-
ear, and it was difficult to take into account substitution
errors. As a result, it is now more common to match the
coal-rock laboratory gas content with the geophysical log-
ging data, combined with mathematical methods to con-
struct a prediction model for CBM content. Guo et al. [25]

based on combining a grey multivariate static model with
the logging curves, which can continuously and accurately
evaluate the gas content curve of the whole coalbed. Liang
and Yuan [26] used the geophysical logging data to establish
a multivariate regression equation to predict the gas content
and used it as the basis for gas content prediction for the
corresponding blocks, and the results matched the geological
conditions; Huang et al. [27] combined the multivariate lin-
ear regression method with the Langmuir equation for the
Qinshui Basin to establish a CBM content evaluation model,
and the results were highly accurate and valid. When linear
relationship is difficult to characterize the relationship
between the CBM content and the logging curves, predic-
tions can be made using methods such as machine learning
[28, 29], which has a strong nonlinear approximation capa-
bility and is dominated by neural network methods, which
have been studied by many scholars, where the feature
parameters and target parameters are trained through neural
networks to form a grid model, and the test dataset is tested
for generalizability to evaluate the usefulness of the model
and the above methods. For example, the CBM content
and the logging curve data were trained by the backpropaga-
tion neural network (BPNN) method, and this method was
later validated on other wells in the block and found to be
highly accurate in predicting the CBM content [30, 31];
more algorithms such as the Support Vector Machine
(SVM) method [32, 33] and Random Forest (RF) method
[34] were subsequently introduced into the CBM content
prediction.

Although there are many methods for evaluating and
predicting the CBM content, there is no denying that the
complexity of CBM reservoirs is large and the corresponding
logging response of CBM reservoirs is also more complex.
Although scholars have tried and achieved good results
using neural network-like methods with strong nonlinear
approximation capability, in actual industrial production,
with the increase of experimental samples, the evaluation
model should also be updated accordingly. Neural networks
and extreme learning machine (ELM) methods are ran-
domly generated initial weights and make the models have
a certain degree of randomness, there are many hyperpara-
meters, and the constructed models are vulnerable to human
interference. The innovation of this paper is to use the kernel
extreme learning machine (KELM) method in combination
with the geophysical logging data to construct a model for
predicting the CBM content. The KELM method makes
the model construction method simple by introducing the
Gaussian Radial Basis Function (RBF), with a single hyper-
parameter and fast construction, and the model is repeat-
able, which can meet the needs of industrial production to
update the model due to the increase of experimental sam-
ples, as shown from the available literature and work area
data. The KELM method has not yet been applied to the
construction of models for predicting the gas content of
CBM reservoirs.

Based on the above idea, this paper introduces the
KELM method for the evaluation and prediction of the
CBM content. The KELM method is used to construct a
CBM content prediction model by determining the curves
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to be used in the construction of the model and investigating
the effect of different data ratios on the applicability of the
model. The KELM method is found to be simpler and more
accurate than the BPNN method and the ELM method. It is
concluded that the nuclear limit learner model based on geo-
physical logging data is effective in predicting the gas con-
tent of coal seams, which can provide effective guidance
for subsequent development and has practical application.

2. Geological Overview and Data Sources

2.1. Geological Overview. The Southern Shizhuang block is
one of the more highly explored CBM blocks in China.
The southern part of the Qinshui Basin regionally belongs
to the southern end of the Qinshui Complex Oblique, which
is a monoclinic structure overall. The Qinshui Basin has
experienced multiple phases of tectonic movement [35],
and the block has an east-west zoned tectonic pattern, with
an overall high southeast and low northwest tectonic pat-
tern. The Upper Carboniferous Taiyuan Group (C3t) and
the Lower Permian Shanxi Group (P1s) are the main coal-
bearing seam systems in the area, of which the 3# coal seam
of the Shanxi Group is the target coal seam for development
in the area [36] and is also the target coal seam for this study.
The 3# coal seam has a stable thickness distribution, mainly
in the range of 4.0m to 8.0m, with an average of 6.0m. The
coal rock has a high degree of maturity, with the maximum
vitrinite reflectance of 2.5% to 3.0%. In the 3# coal seam of
the target block, the coal structure of the seam can be
divided into undeformed coal, cataclastic coal, and granu-
lated coal, among which undeformed coal and cataclastic
coal are predominant (Figure 1(a)). From the macrocoal
component, semibright coal and semidull coal are dominant,
and dull coal has the lowest content (Figure 1(b)).

According to the observation of the collected core coal
samples, the cataclastic coal primarily appears as
centimeter-level lumps, the undeformed structural coal pri-
marily appears as long columnar and columnar, and some

of the undeformed structural coal is broken to a significant
degree, along with centimeter-level lumps. The granulated
coal primarily appears as powder, along with a small amount
of centimeter-level lumps. Combined with the information
of macrocoal components, the undeformed coal and the cat-
aclastic coal are dominated by bright coal, followed by mir-
ror coal. The fracture of the coal seam is the key factor to
control the permeability and the gas content of CBM reser-
voirs. As for the fracture development, the exact fracture
development cannot be obtained because the coal structure
of granulated coal is severely broken. It is known from the
fracture description of the undeformed coal and the cataclas-
tic coal samples that the coal samples typically develop one
group of fractures or two orthogonal groups of fractures,
and the variability of fracture density is large; in one group
of fractures, the fracture density may range from 4 to 15
fractures for each 5 cm, and in two groups of fractures, the
density of primary fractures may range from 8 to 20 frac-
tures for each 5 cm and 14 to 20 fractures for each 5 cm in
the second group. Based on the aforementioned view, the
complexity of fracture development and the variety of coal
structures also point to the ambiguity of the CBM contents.

2.2. Data Source of CBM Content. For the target block, 12
CBM wells were selected as research boreholes in this paper.
Desorption experiments were performed on core coal samples
to obtain data on the CBM content, and these samples ranged
from 400 to 1000m from the wellhead. As an example, 12 sets
of core desorption samples from the 3# coal seam in well A6
are shown. The core coal samples were sent to the laboratory
from the core confinement tank, and the measurement time,
interval time, the reading of the measurement tube, and the
volume of gas were recorded, combined with the field temper-
ature and field air pressure for calibration. Figure 2(a) shows
the cumulative desorption curves of 12 samples in well A6,
which were calibrated, and then, the residual gas content was
measured and the lost gas content was determined, and the
lost gas content was calculated as Figure 2(b).

(Cataclastic coal) 45.24%

9.52%
(Granulated coal) 

45.24% (Undeformed coal) 

(a)

45.78% (Semibright coal) 

42.21%
(Semidull coal) 

10.39%
(Bright coal) 

1.62% (Dull coal) 

(b)

Figure 1: Distribution of coal structure and macrocoal component in the 3# coal seam: (a) coal structure; (b) macrocoal component.
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Figure 2: Continued.
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The collected CBM content data were combined with the
volume of coal samples to determine the ratio of adsorbed
gas content, lost gas content, and measured residual gas con-
tent, as shown in Figure 3. The CBM content results of 12
groups of coal samples from the 3# coal seam of well A6
are shown in Table 1.

2.3. Preprocessing of Geophysical Logging Data and
Experimental Data. In this paper, a total of 12 core boreholes
were extracted for the CBM content data, and data prepro-
cessing and log data matching were performed. The geo-
physical logging data collected from the target block
parameter wells were mainly eight geophysical logs, namely,
spontaneous potential log (SP), natural gamma log (GR),
caliper log (CAL), compensation density log (DEN), acoustic
time difference log (AC), compensated neutron log (CNL),
and dual lateral resistivity (deep lateral resistivity log
(LLD)/shallow lateral resistivity log (LLS)) logging curves,

and some holes contain the flushed-zone resistivity log
(RXO) series curves. The preprocessing steps are as follows:

(1) Depth corrections were made to prevent the effects
of drill pipe deformation and stretching on sample
depth during the drilling process [37]

(2) Comparison of geophysical logging response gaps in
the dense layer above the 3# coal seam from different
wells and standardization of logging responses to
prevent response differences due to differences
between borehole environments and instruments

(3) Dilation correction of log data. For reservoirs with
poor mechanical strength, such as coal seams, vary-
ing degrees of dilation during drilling can make the
response values of log data abnormal

Along with the data preprocessing work, the samples
must be checked and rejected for abnormalities. For
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Figure 2: Desorption and CBM content calculation of coal core samples: (a) desorption of coal core samples; (b) calculation of the lost gas
content.
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example, (1) for samples that do not meet the experiment,
such as samples that have been lifted and drilled for longer
than the specified time, resulting in samples that have been
tested incorrectly such as lost gas content overload, (2) and
the noncoal reservoir samples in the gangue section, the

gangue is mudstone or carbonaceous mudstone, which usu-
ally has an obvious high GR value with a high DEN value
(such as sample point 6 in Figure 4(a) as an example), and
such points have a prominent response on the rendezvous
map, which is also demonstrated in Figure 4(b).
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Figure 3: Proportional distribution of each type of gas content in each sample of well A6.

Table 1: CBM content results of 12 sets of core coal samples from the 3# coal seam in well A6.

Sample
Desorption sample

mass (g)
Desorption gas content

(cm3)
Lost gas content

(cm3)
Residual sample

mass (g)
Measured residual gas

content (cm3)
Vg

(cm3·g-1)
A6-3-1 1100 12366.44 839.52 400 124.31 12.32

A6-3-2 1100 23380.27 1514.3 400 124.37 22.94

A6-3-3 1250 26864.66 1428.6 400 139.2 22.98

A6-3-4 1500 27967.59 821.99 400 129.26 19.52

A6-3-5 1200 24247.22 526.38 400 134.32 20.98

A6-3-6 1100 20070.15 934.76 400 159.09 19.49

A6-3-7 1000 18825.87 918.46 400 144.2 20.1

A6-3-8 1450 28953.87 1220.8 400 134.25 21.15

A6-3-9 1400 23171.6 858.72 400 159.12 17.56

A6-3-
10

1350 20648.98 607.49 400 139.13 16.09

A6-3-
11

1100 21552.73 818.82 400 139.28 20.69

A6-3-
12

1100 18365.28 754.25 400 149.14 17.75
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Figure 5 shows the standardized comparison of the
porosity series logging curves. The left coordinate of the
figure corresponds to the standardized curves (suffixed
with _AS, AS means after standardized), and the AC,
DEN, and CNL curves are shown before and after the
standardization. The variability of the distribution of the
standardized samples with respect to the original samples
is not excessive, indicating that there is little human inter-
ference and that the apparently high and low values in the

original samples due to the environment and instrumenta-
tion are corrected.

After completing the above process, a total of 151 sets of
sample data were harvested for the 3# coal seam CBM content
study for subsequent construction of the predictionmodel, the
specific value distribution is shown in Figure 6, and the gas
content of the core coal samples from the Southern Shizhuang
block is distributed between 4.55 and 26.13 cm3/g, with the gas
content mainly in the range of 5 to 20cm3/g.
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Figure 4: Rejection of core samples from the gangue section: (a) logging response trend of the sample at the gangue; (b) analysis of the
difference between the logging response of anomalies on the rendezvous plot.
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Figure 5: Continued.
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3. Methods

3.1. Extreme Learning Machine Method. The ELM algorithm
was proposed in 2006 [38], which is a new algorithm for sin-
gle hidden layer feedforward neural networks (Figure 7),
mainly to improve the backpropagation algorithm training
complexity and low efficiency and to reduce the type of
hyperparameters. General backpropagation neural networks
such as BPNN input layer to the hidden layer and hidden
layer to output layer weights and thresholds need to be con-
stantly changed to achieve the best model results; its gradient
descent-based iterative method converges slowly (closely
related to the initial weights and thresholds) and is prone
to fall into the local optimum trap.

While ELM can obtain the optimal output weights given
random weights from the input layer to the output layer and
a threshold of neurons in the hidden layer [39], the ELM
algorithm is based on the following principle:

For a set of n training samples,

N = xi, yið Þ i = 1, 2,⋯,n ; xi ∈ Ra, yi ∈ Rb
���n o

: ð1Þ

In Equation (1), a is the number of features of the input
sample and b is the dimensionality of the output value. An
ELM neural network model with n (number of samples)
neurons in the input layer, m neurons in the output layer,
and l neurons in the hidden layer can be constructed, and
this model can be expressed as

Hβ = Y : ð2Þ

In Equation (2), Y = ½y1, y2,⋯,yn�T is the output of the
network and H is the output matrix of the hidden layer of

the neural network. In practice, the number of neurons in
the hidden layer is usually not set too large, then l < n [38],
when β can be solved by the least-squares method, and the
solution is

β =H+Y : ð3Þ

In Equation (3), H+ is the Moore-Penrose generalized
inverse of the implied layer output matrix H. The orthogo-
nal projection method can be used effectively to calculate.

When HTH is a nonsingular matrix, H+ = ðHTHÞ−1HT , or

HHT is a nonsingular matrix, H+ =HTðHHTÞ−1. On this
basis, based on the ridge regression theory [40], Huang
et al. [41] argue that the solution obtained has better stability
and generalization by introducing the regularization factor
1∕λ into HTH or HHT when calculating the ELM output
weights β. With the introduction of the regularization factor,
the output of the ELM is

f xð Þ = h xð Þβ = h xð ÞHT I
λ
+HHT

� �−1
Y : ð4Þ

3.2. Kernel Extreme Learning Machine Method. Based on the
extreme learning machine, Huang et al. [41] also studied the
kernel-based extreme learning machine, which was named
KELM (kernel extreme learning machine) to distinguish it
from the general extreme learning machine. When the
implicit layer activation function is not known, one may
choose to use the kernel function as the mapping relation,
in which case the KELM kernel matrix is defined as

ΩKELM =HHT , ð5Þ
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Figure 5: Standardized comparison of logging curves in porosity series: (a) AC curve, (b) DEN curve, and (c) CNL curve.
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ΩKELM i,jð Þ = h xið Þ · h xj
À Á

= K xi, xj
À Á

: ð6Þ
With the introduction of the kernel function, the output

of KELM is

f xð Þ = h xð ÞHT I
λ
+HHT

� �−1
Y =

K x, x1ð Þ
K x, x2ð Þ

⋮

K x, xnð Þ

2
666664

3
777775

T

I
λ
+ΩKELM

� �
Y :

ð7Þ

When using the KELM, there is no need to know the
implicit layer activation function; instead, the mapping tool
uses the kernel function. The use of kernel functions enables
mapping relations in infinite dimensions without the “dimen-
sional catastrophe” of computational complexity. Because the
kernel function calculation process does not require knowl-
edge of the specific functional form of the sample datamapped
from low to high dimensions, only the specific kernel function
form is calculated in the low dimensional space; the kernel
function used in this paper is a Gaussian radial basis (RBF)
kernel function of the following form:

K xi, xj
À Á

= exp −
xi − xj j2
σ2

� �
: ð8Þ

In Equation (8), σ is the kernel function parameter, which
is mapped as shown in Figure 8.

It should be noted that when the kernel function is intro-
duced into the extreme learning machine, the number of neu-
rons in the hidden layer does not need to be artificially given,
nor do the connection weights from the input layer to the hid-
den layer, and the threshold of neurons in the hidden layer
needs to be given, and the KELM only needs to select the

appropriate kernel function. This paper will use the KELM
for the model construction of CBM content, written and
implemented through the MATLAB software platform.

4. Construction of CBM Content Model

In this paper, 151 sets of data from 12 CBM wells are used
for the construction of the KELM model, and MATLAB
software is used to conduct the training, test, and validation
processes in the KELM model. The workflow of the KELM
method for evaluating the CBM content is shown in
Figure 9 and consists of four sections: data preference nor-
malization, data partitioning, model optimization, and
model validation.

4.1. Geophysical Logging Curve Selection. Normally, different
geophysical logging responses often represent changes in the
physical properties of the rock, and changes in the CBM
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Figure 6: Experimental distribution trend of coalbed methane content. This figure counts and plots the distribution range of CBM content
in the target block.
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content can theoretically be characterized by changes in the
logging response. Considering the practicality of construct-
ing the model, the logging curves that were available for all
wells were selected and the effective depth of burial was
obtained by converting the elevation of the coal rock sam-
ples by combining the complement height with the logging
depth, and the rendezvous diagrams shown in Figure 10
were drawn for demonstration.

In the logging series characterizing lithology, the natural
radioactivity of the coal itself is weak, the natural radioactiv-
ity of the coal depends on the clay minerals present in the
coal, the clay minerals affect the CBM content by influencing
the adsorption properties of the coal, and an increase in clay
minerals in the coal reduces the CBM content, while a higher

presence of clay minerals in the coalbed leads to an increase
in natural radioactivity. The higher the natural gamma value
of the coalbed in the logging curve, the less effective pore
space in the coalbed, resulting in lower CBM content, a
trend that is met by Figure 10(a). In addition, this paper
extracted a positive correlation (Figure 11(a)) based on the
clay mineral content, which was found to be consistent with
the theory by meeting the GR curve. In addition, the SP
curve and CAL curve are used more for lithology identifica-
tion, the SP curve response is related to the nature of the
mud filtrate (Figure 10(b)), and the borehole diameter of
21.59 cm can explain the poor mechanical properties of the
coalbed susceptible to dilation (Figure 10(c)), which is also
corrected for dilation in this paper during preprocessing.
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In the series of logs characterizing porosity, density values
increase with increasing densities in the density log response
values, with theoretical increases in densities corresponding
to decreases in porosity and CBM content (Figure 10(d)). A
significant correlation was found between laboratory apparent
density and air-dried basis ash (Figure 11(b)). Conversely, the
less dense the coalbed, the looser it is, the higher the CBM con-
tent, and the higher the inorganic mineral content such as ash,
the more pores and fractures are filled, which is not conducive
to methane storage and adsorption, which explains the trend
in the response of CBM content to the DEN curve [42]. The
higher the content of the higher-order coal specular group,
the easier it is to fracture, and the fracture of the coal structure
will increase the adsorption area of the CBM, which will
increase the CBM content, and the acoustic time difference
logging response is sensitive to the CBM content, coupled with
the presence of large fractures in the coal rock, which will also
increase the AC curve response (Figure 10(e)); the CNL curve
is influenced by the coal rock skeleton and gas content multi-
ple parties; in coalbed, the actual porosity of the reservoir is
usually low, generally less than 10%, but because the coalbed
is composed of carbon, hydrogen, and oxygen and the CBM
contains methane, resulting in a high hydrogen content index,
compensated neutron logging presents a false high illusion;
after compensation, the compensated neutron logging
response in this block is negatively correlated with the CBM
content (Figure 10(f)).

In the logging series characterizing resistivity, resistivity
is influenced by the degree of coal metamorphism, mineral
content and distribution, coal structure, and more factors
[43] in addition to the CBM content. The trend of change
in gas content and resistivity is extremely complex and is
more based on the data extracted from the actual workings
for statistical purposes [44]. In this paper, statistics for the

target block concluded that the resistivity change pattern
indicated the relationship between the gas content and the
resistivity of the original coalbed was synergetic growth
(Figures 10(g) and 10(h)).

The depth of the coalbed determines whether the gas
produced by coalification can be preserved. Theoretically,
as the depth of the coalbed increases, the degree of coalifica-
tion and the amount of hydrocarbon production increase,
and the corresponding CBM content should increase
accordingly [45], but after the depth reaches a certain critical
depth, the trend of increasing gas content disappears due to
geological and tectonic factors [37]. The effective depth of
burial in the target block has a large influence on the CBM
content. The depth of burial of the 3# coal seam is shallow,
and the target boreholes are all located near 1000m above
sea level, and the core depth of coal samples are all located
above sea level, corresponding to the effective depth of burial
being closer to the sea level, which means the distance from
the wellhead is farther, as shown in Figure 10(i), and the gas
content is enriched as the depth of burial increases.

In addition to the analysis using the rendezvous dia-
grams and response principle, the relationship between the
logging curves and the CBM content was also quantitatively
analyzed, and the Pearson linear correlation index P, Ken-
dall rank correlation coefficient R, and Spearman rank corre-
lation coefficient S were used to quantify the correlation
between each logging parameter and the gas content as one
of the criteria for curve preference. The three correlation
coefficients are calculated as

P = N∑N
i=1xiyi −∑N

i=1xi∑
N
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Figure 10: Cross plots of geophysical logging data and Vg: (a) Vg with GR, (b) Vg with SP, (c) Vg with CAL, (d) Vg with DEN, (e) Vg with
AC, (f) Vg with CNL, (g) Vg with LLD, (h) Vg with LLS, and (i) Vg with DEP.
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R = 4A
N N − 1ð Þ − 1, ð10Þ

S = ∑N
i=1 xi − �xð Þ yi − �yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1 xi − �xð Þ2∑N

i=1 yi − �yð Þ2
q : ð11Þ

In Equations (9)–(11), x is for each logging parameter, y
is the experimental value of CBM content, i corresponds to
the serial number of each sample, and N is the total number
of samples for statistics, which is 151 in this paper. A is the
logarithm of statistical objects with a consistent size relation-
ship between two attribute values, �x is the mean value of the
logging curve, and �y is the mean value of the CBM content.

In this paper, the correlation coefficients of each logging
curve and CBM content were plotted (Figure 12), and the
correlation results of the three coefficients were calculated
with the same trend. Among the correlations with the
CBM content, the five logging curves, including the GR
curve, the AC curve, the DEN curve, the AC curve, and
the depth curve, have the most significant correlations with
the CBM content. The two log curves, the CNL curve, and
the LLD curve have slightly weaker correlations with the
CBM content. Combined with the actual response mecha-
nism, the correlation between the two log curves, the SP
curve, the CAL curve, and the CBM content is the weakest.
The above is consistent with the results of the previous
analysis.
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Figure 11: Cross plot experimental data: (a) relationship between clay mineral content and GR; (b) relationship between ash content and
laboratory apparent density of samples under air drying condition.
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The response of CBM content to geophysical logging
data cannot usually be described by a simple linear equa-
tion, as illustrated by the analysis of rendezvous plots
and quantitative calculations of correlations. Of the resis-
tivity logging series, the LLD logging curve was chosen
because it characterizes the resistivity of the original for-
mation, i.e., compared to the LLS series, the LLD is unaf-
fected by the intrusion. In conclusion, six curves, AC,
DEN, CNL, GR, depth, and LLD, will be used to construct
the CBM content, while logarithmization of the LLD curve
is recommended.

4.2. Kernel Function Search. The KELM method was used to
construct the CBM content model by simply optimizing the
kernel function in the model, while the effect of different
data scales on the model was investigated to determine the

optimal data scale. Before constructing the KELM method
model, due to the large differences in the values of the data
collected from different logging series, to avoid a large
impact on the prediction accuracy and training speed, the
built-in mapminmax function of MATLAB was used to nor-
malize the input logging data to the range of ½0, 1�, respec-
tively. The normalization equation is

Y = x − xmin
xmax − xmin

: ð12Þ

In Equation (12), Y is the standardized logging data, x is
the original logging data, and xmin and xmax are the mini-
mum and maximum values in the logging data sequence,
respectively.
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After normalizing the geophysical logging response
values, the collected gas-content data were first divided into
a training dataset and a test dataset at different scales, and
cross-validation was introduced into the model construction
to avoid chance in the exploration results [46]. The basic
principle is the following: the training dataset is divided into
k subsets, each subset in turn as test data, the remaining k
− 1 subsets as training data, repeated k times to get k
models, using the mean square error as the model evaluation
method, can get k groups of prediction accuracy, the final k
-fold cross-validation results are the average value of k
groups of prediction accuracy, as shown in Figure 13. In this
paper, the preprocessed data are set in different ratios, and
the data ratios of the training dataset and test dataset are
set as 5 : 5, 6 : 4, 7 : 3, 8 : 2, and 9 : 1, respectively; the optimal
kernel function is then determined in the training using 3-

fold cross-validation combined with grid search, and the
average mean square error (MSE) calculated from the
cross-validation is used as the evaluation index to complete
the kernel function selection, and finally, the parametric
model is applied to the training and test datasets. Figure 14
shows the optimization process of the kernel function under
each data ratio, the step size of this paper is 0.1, and com-
bined with the actual calculation results, it shows that under
different data ratios, with the increase of the value of the ker-
nel function, the cross-validation score decreases rapidly and
then increases gradually, and the kernel function corre-
sponding to the lowest value of the average MSE is deter-
mined by calculation as the optimal kernel function value.
When the proportion of data in the training set exceeds
70%, there may be a drop in the correctness of the ran-
domly sorted test dataset. Table 2 shows the results of
the search for merit and the effect of the KELM method
on the model construction results by the size of the train-
ing data, where the ratio of 8 : 2 to 9 : 1 is extracted from
the set where the correctness of the test dataset is affected.
Analysis of Table 1 shows that the training accuracy is rel-
atively low when the proportion of training data is small,
due to the fact that for the whole sample space, the smaller
data samples limit the generalized learning ability of
KELM, and the error keeps decreasing as the proportion
of training data increases. When the proportion of data
in the training set exceeds 70%, there is a risk that the rel-
ative error gap between the training and test datasets will
increase. Two explanations are given for this phenomenon:
(i) the training dataset is too large and overfitting occurs,
making the test dataset less accurate and the model of no
practical application at this time; (ii) it may also be caused
by the number of data in the test dataset being compressed
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Figure 14: Optimization process of kernel function under different data proportions.

Table 2: Kernel function optimization results and error statistics of
KELM method under various data ratios.

Ratio
(training : testing)

Kernel
function

Average relative
error (%)

σ
Training
dataset

Testing
dataset

Error
variation

(%)

5 : 5 6.1 13.72 18.71 4.99

6 : 4 9.1 14.67 17.95 3.28

7 : 3 3.9 14.49 15.99 1.5

8 : 2 5.6 14.54 17.81 3.27

9 : 1 3.2 12.06 18.63 6.57
aError variation =mean relative error difference between testing dataset and
training dataset.
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in the same sample space, which is more likely to be mag-
nified by the quality of the small sample data in the test
dataset being constantly compressed, and the data in the
test dataset at this time can hardly cover the whole data
distribution range, and the correctness of the test dataset
cannot effectively characterize the performance of the
model due to the chance of random binning of the data.
Therefore, in order to effectively demonstrate the effective-
ness of the method in this paper, a training data ratio of
7 : 3 is used to construct the CBM content evaluation
model more conducive to the demonstration of the KELM
model performance.

When using machine learning methods, such as the
KELM method used in this paper, there are certain limita-
tions. Similar to the multiple regression approach, the
adjustment of the data can have an impact on the overall
network structure, just like the slight change of the coeffi-
cients in the multiple regression approach. Similarly, the
change in data volume will also have an impact on the
model. As we know from the previous exploration of the
data ratio, the larger the training data share is in the same
sample space, the more fully the model learns, but it is not
conducive to the testing of the test dataset. When the pro-
portion of training data exceeds 70%, the model is stable
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Figure 15: Application effect of CBM content model constructed by KELM method: (a) application effect of training dataset; (b) application
effect of test dataset.
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and the values of the kernel function become stable. The
model constructed in this paper is only for the 3# coal seam
in the Southern Shizhuang block, and it is no longer applica-
ble in different geological regions or when the sources of gas-
bearing data vary greatly, and the prediction model must be
reconstructed with the actual data. Similarly, when predict-
ing the gas content of the development wells, the anomalies
in the logging curves affect the accuracy of data normaliza-
tion and thus the application effect, i.e., the model is not
applicable when the response range of the logging is too dif-
ferent from that of the core wells after preprocessing.

There is still room for improving the accuracy of the
model in this paper. The hyperparametric search mode can

be improved. This paper uses a stable grid search mode,
but it is possible to reduce the search step or increase the
optimization search mode, but this will also cost more time.
All of the above is the next step in the research of this paper,
and there is still a need for breakthroughs in the face of the
challenges of onshore CBM exploration.

5. Results and Discussion

5.1. Model Evaluation. Based on the comprehensive analysis
in Section 3.2, the data ratio between the training and test
datasets in the KELM model was determined to be 7 : 3,
and the optimal kernel function was 3.9. The determined
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Figure 16: Evaluation results of CBM content of well A1.
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Figure 17: Application of CBM content model constructed by KELM method in a new well.
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data proportions were combined with the optimal kernel
function for the training dataset back judging and test data-
set testing, and the results are shown in Figure 15.
Figure 15(a) shows the back-judgment results for the train-
ing data, and Figure 15(b) shows the results of the applica-
tion of the test dataset, with an average relative error of
14.49% and 15.99%, respectively; the training dataset and
the test dataset are evenly distributed on both sides of the
zero-error line, which means the model application effect is
unbiased, and the goodness of fit is 0.83 and 0.82, respec-
tively, indicating the effectiveness of the model constructed
in this paper.

Figure 16 shows well A1 in the study block, with the first
track being the log depth track; the second track being the log
series reflecting lithology, containing CAL, GR, and SP curves;
the third track being the resistivity log series, containing LLD,
LLS, and RXO curves; the fourth track being the porosity log
series, containing DEN, AC, and CNL curves; the fifth track
being the prediction result track, containing gas content curves
evaluated by the KELM method and core experimental data;
and the sixth track being the lithology interpretation track.
The predicted curves in well A1 mostly coincide with the core
experimental data, and the prediction effect is relatively weak
when the core experimental data is low, at which time the
response of GR and DEN logging increases, corresponding to
the gas content curve in decreasing trend when the mud con-
tent and porosity correspondingly decrease, although there is
a certain difference in the value but ensures the consistency of
the changing trend, as the low-value area is not the main devel-
opment block, and the gas content curve of the coal seam pre-
dicted by the KELMmethod is indicative, which also shows the
applicability of themodel in the 3# coal seam of the target block.

5.2. Generalizability Evaluation and Error Discussion. The
demonstration in Section 5.1 demonstrates the validity
and reliability of the model training by evaluating the gen-
eralization of the gas content prediction model by evaluat-
ing a new well in the same workings, the data from which
was not involved in the training and testing of the model.
The CBM content curve predicted by the CBM content
model based on the KELM method is shown in
Figure 17. There are seven core samples for desorption
evaluation of CBM content in the 3# coal seam of this
well, with an average relative error of 27.39%. The differ-
ence between the predicted and actual results at 646.6m
is too large, with a relative error of 87.79%. Without con-
sidering this sample, the average relative error of the
remaining six samples is 17.3%, and the error is consistent
with the level of the test dataset, indicating that the estab-
lished KELM model is generalized in the 3# coal seam of
the target block.

The model application for the new well was analyzed for
sample points with large errors, such as the first sample (at
646.6m) shown from top to bottom in Figure 11, which is
the top sampling point of the 3# coal seam. The correspond-
ing GR and porosity log series response values are high com-
pared to the pure coalbed section, and therefore, the
predicted gas content in this section is low. The second sam-
ple (at 647.55m) is located at the spreading point, and when
combined with the resistivity series logging response, the
intrusion has been observed, and even with the spreading
correction, noise has been introduced, making the judgment
error larger.

This paper discusses and explains the generation of
errors:
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(1) Field disturbances during the acquisition of logging
data during the actual drilling of the well

(2) It is difficult to avoid human-induced noise in the
subsequent preprocessing of logging data, such as
standardization of geophysical logging data response

between wells and dilation correction, which is ben-
eficial to the subsequent model construction but dif-
ficult to avoid small human-induced errors

(3) The process of the CBM content collection in the
laboratory cannot avoid systematic errors, which
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Figure 19: Performance of the three methods in the same dataset: (a) rendezvous plot of predicted results and laboratory results; (b)
cumulative frequency diagram of relative errors of the three methods.
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can usually be accepted. The samples that do not
comply with the experimental rules would be
rejected from the data preprocessing. In addition,
this systematic error can change under different lab-
oratory conditions or when there are large differ-
ences in the sources of CBM content data. When
the laboratory standards are less different, the
obtained experimental data of the CBM content still
have some reference value. It should be noted that
with the development of industry, especially for the
measurement of lost gas content, improved experi-
mental methods may be applied to the measurement
of CBM content. In Figure 3, the composition of the
coalbed methane content has been shown. The per-
centage of lost gas content is low and much lower
than the percentage of adsorbed gas content. The
impact on the experimental improvement depends
on the error of the lost gas content in the sample
determination. When the difference in values is
large, the error in the prediction of the CBM content
also increases, and whether it is still valid for the
actual project depends on the degree of increase in
the error. Similarly, in the actual work block, some
core boreholes are developed after the operating
block has been in production for a longer period of
time. The coal samples from such boreholes usually
yield low results when the CBM content is deter-
mined in the laboratory, and such data are not infor-
mative and cannot be used as supplementary data to
participate in modeling or for model validation

(4) In terms of application, as the KELM method
requires data normalization in data preprocessing,
the geophysical logging data response should be
renormalized when it exceeds the response range of
the training sample, which also indicates that the
geophysical logging data response cannot be stan-
dardized in the face of different lateral spreading
blocks, different depths of the formation, and differ-
ent geological backgrounds, and the CBM content
prediction model must be reconstructed according
to the model construction process

The noise disturbance described for points 1 to 3 is dif-
ficult to be removed after separate reconstruction, and the
noise in the input data can be disregarded, but the noise will
be amplified in the output results. This noise error exists in
the CBM content evaluated using the method in this paper,
which cannot be attributed entirely to the predictive capabil-
ity of the KELM method. The analysis of the evaluation of
the CBM content in the new well demonstrates the general-

izability of the method, while the combination of the error
results shows the validity and reliability of the KELM model.

5.3. Comparison of Methods. In Section 3.2, it is shown that
the KELM method is based on the ELM method and is sim-
ilar to the BPNN method. Therefore, this paper compares
these three methods, using the same ratio (training dataset: test
dataset = 7 : 3) of the same dataset to train the ELMmodel and
BPNNmodel, and the models of the three methods are applied
to the same test dataset for comparison. It can be analyzed in
Figure 18 that some of the samples in the test dataset (e.g., sam-
ples 6, 7, and 9) correspond to experimental values with low
results, and the three methods discriminate some of the sam-
ples and give the correct trend, but there are also errors that
are obvious. The predicted results of the three methods were
analyzed with the experimental results in the rendezvous plot
(Figure 19(a)); for the low-value part of the gas content, some
of the predicted results of the three methods fell outside the
error line of +15%, and since the experimental values are low,
according to the definition of relative error, the relative error
of the experimental low values is higher, which is the main
source of relative error above 30% in the three methods
(Figure 19(b)). For this type of experimental low values, it is
not a “sweet spot” section, and a guideline can be given when
there is a certain trend difference with the high gas content sec-
tion. In addition, in the test dataset, sample numbers 37 and 38
had low predicted results, corresponding to such samples in the
rendezvous plot falling outside the error line of -15%; such
points are mostly affected by the gangue section of the coalbed;
although the samples with high ash yield content in the gangue
section were rejected in the preliminary data rejection, the
gangue on the closer samples also have an impact; the GR curve
and the DEN curve values are high, making the prediction
results slightly lower than the experimental results; the three
methods give a consistent indication that such errors can be
artificially discriminated in practical applications, and the pre-
dicted results of the intercalated gangue section and its vicinity
are not involved in the final statistics. By analyzing the cumula-
tive frequency of the relative errors of the three methods in
Figure 19(b), the KELM method has the most samples when
the relative errors are within 10%, and the maximum relative
errors of the KELM method are lower than the other two
methods, which is the reason why the KELM method has the
lowest relative errors. Table 3 shows the specific calculations
of the mean relative error, root mean square error (RMSE),
and the goodness of fit (R2) for the combined discrimination.
The analysis shows that the KELMmethod has the lowest aver-
age relative error, ELM the second-highest, BPNN the highest
average relative error, and the corresponding RMSE trend are
the same, while for the goodness of fit, KELM is the highest,
ELM the second-lowest, and BPNN the lowest. Among the
three methods, KELM is more suitable; on the one hand, its
accuracy is outstanding; on the other hand, KELM only needs
to find the optimal kernel function when building the model,
compared to ELM and BPNN methods, which are relatively
complex, and the ELMmethod and BPNNmethod have insta-
bility due to the initial weights randomly given, so that the
KELMmethod has application advantages in terms of accuracy
and ease of operation. It should be noted that the ELMmethod

Table 3: Error results of three methods on the same testing dataset.

Method KELM ELM BPNN

Average relative error (%) 15.99 18.75 21.44

RMSE (cm3·g-1) 2.07 2.39 2.87

R2 0.82 0.79 0.77
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Figure 20: (a) Contour map of CBM content of the 3# coal seam in Southern Shizhuang block (eastern area); (b) contour map of the average
effective daily gas production from the 3# coal seam in the Southern Shizhuang block (eastern area).
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and the BPNN method do not guarantee the full performance
of the model due to a large number of hyperparameters at the
time of construction. Similarly, in practical production applica-
tions, the ELMmethod and the BP neural network method are
more cumbersome to update the model as the number of lab-
oratory gas contents of the coal samples in the study block
increases, and the advantages of the KELM method in terms
of easy model construction and fewer hyperparameters will
be more obvious.

5.4. Application and Prospect. By evaluating the CBM content
wells in the Southern Shizhuang block, the CBM content con-
tour map is plotted in Figure 20(a), corresponding to the aver-
age effective daily gas production contour map of the
corresponding block in Figure 20(b). The two plots in
Figure 20 show a certain correlation, and the high gas produc-
tion area often corresponds to the high gas-bearing area, which
can indicate that accurate CBM content prediction can provide
subsequent construction and development providing guidance.
However, the vertical variation of CBM well gas content is
complex, and the two-dimensional contour plot has informa-
tion loss after averaging. Taking the CBM wells in Figure 20
as an example, the stable CBM production data with a long
drainage period and output are selected, the average daily pro-
duction of CBM during the effective production period is cal-
culated, and the rendezvous plot is drawn with the CBM
content of the corresponding wells, as shown in Figure 21. It
can be analyzed from Figure 21 that the level of CBM content
can reflect the average effective daily gas production, especially
since the average effective daily gas production of wells with
lower CBM content levels is also low, but the R2 of both is only
0.5 by linear fitting, which also indicates that the gas produc-
tion of CBMwells is affected by various factors, including frac-
ture modification and human factors such as construction [47].
The exploration and development of onshore CBM need to be

explored more deeply, and the contents of this paper provide a
new way to predict the CBM content, which provides guidance
for the subsequent exploration and development and favorable
area identification of the block.

6. Conclusions

Aimed at the difficulty of gas content evaluation of CBM res-
ervoirs, a method of vertical CBM content prediction based
on the KELM method combined with geophysical logging
data is proposed in this paper. The conclusions of this study
are as follows:

(1) The CBM content evaluation model based on the
KELM method and geophysical logging data is estab-
lished for the 3# coal seam in the Southern Shizhuang
block of the Qinshui Basin as an example, and the
validity and generalization of the model are verified
using the test dataset and the new well, demonstrating
the applicability of the model in the target block for-
mation. The KELMmethod, ELMmethod, and BPNN
method were compared by the same set of data. In
terms of prediction effect, the KELM method was less
disturbed by human factors in the model construction,
and the model stability was higher, which was more
advantageous in practical use

(2) The KELM method also has limitations in its use,
being affected by data variation and having room
for improvement in accuracy, which can be
improved by introducing modules and combining
hyperparameter search methods in the future

The research content of this paper provides a set of
the model construction process and evaluation criteria
for the CBM content, and the constructed model cannot
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Figure 21: Intersection of CBM content and average effective daily gas production.
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be directly applied to other blocks. For different coal
seams and different geological blocks, the CBM content
evaluation model must be constructed based on the actual
core data obtained in conjunction with the process steps
in this paper.

Nomenclature

CBM: Coalbed methane
KELM: Kernel extreme learning machine
ELM: Extreme learning machine
BPNN: Backpropagation neural network
RBF: Gaussian Radial Basis Function
Vg: Coalbed methane content
AC: Acoustic time difference log
DEN: Compensation density log
CNL: Compensated neutron log
CAL: Caliper log
SP: Spontaneous potential log
GR: Nature gamma log
LLD: Deep lateral resistivity log
LLS: Shallow lateral resistivity log
RXO: Flushed-zone resistivity log
MSE: Mean square error
RMSE: Root mean square error
R2: Goodness of fit.
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