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The Knothe time function is a classical method in predicting the ground mining subsidence. Nevertheless, it does not take the
observation data into account in the prediction process. The Kalman filter method can solve this issue at large extent. Taking a
coal mining work face of Xishan Coalfield as an example, this research compares the performance of the traditional Knothe
time function and that of the improved Knothe time function by using the Kalman filter method. The comparison results show
that through an improvement by using the Kalman filter method, the RMSE is improved from 133.4mm to 78.3mm; ME,
from 91.9mm to 3.1mm; and the relative error, from 8.1% to 5.7%. Meanwhile, the improved model has good astringency.
These verify that the improved model has higher accuracy and reliability. Hence, this research presents an effective method in
predicting ground subsidence of mining area by improving the Knothe time function using the Kalman filter method.

1. Introduction

Ground subsidence due to coal mining is a complicated four-
dimensional time-space process [1, 2]. This process leads to
various forms of damage to subsurface facilities, such as build-
ings, roads, and water facilities [3]. Moreover, it relates a series
of problems including environmental deterioration, land
desertification, and economic loss [4]. Consequently, it has
both theory and theoretical values for accurately predicting
the ground subsidence process due to coal mining, which can
eliminate or prevent these damages and problems largely [5, 6].

Time function method presented by Knothe in 1953 is a
widely used model to predict the subsidence process due to
coal mining [7, 8]. As a classical model, it is developed and
improved by many researchers in ground subsidence predic-
tion. Cui et al. [1] proposed the time function model param-
eters in predicting progressive surface subsidence above coal
mining. Hu et al. [2, 9] determined the parameters of the
time function model through the probability integral
method. Taherynia et al. [10] used the Knothe time model
and Geertsma influence function to predict the subsidence
over oil and gas fields. Zhang et al. [3] presented an

improved two-parameter time function model to predict
the ground mining subsidence in Heze City of China. Cheng
et al. [4] established an improved time function model by
analogical reasoning from a phenomenological perspective.
Besides the Knothe time function, many other prediction
models were also developed by the researches [11–15]. Most
of these models can predict the whole subsidence process
completely, while they rarely consider the observation
results at different phases [16, 17]. Still, these models can
provide the state equation for the Kalman filter method.

The Kalman filter method is one of the most widely used
technologies in the data processing field [18]. Even if the
accurate simulation model cannot be acquired fluently, the
Kalman filter can still predict the status of the process in
the past, at present, and in the future [19]. Due to its power-
ful ability, the Kalman filter is widely used in many military
and civilian fields, such as navigation, positioning, surveying,
electron, control, tracking, surface deformation, and sensor
network [20–25]. Furthermore, the Kalman filter method
can predict the status of the process with incorporating the
observation data simultaneously. However, it has difficulty
in determining the state equation.
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In this research, the aim is to present an improved
Knothe time function model for the prediction of ground
mining subsidence by using the Kalman filter method, which
is beneficial for the environment and ecology protection of
the mining area.

2. Study Area and Data Sources

2.1. Study Area. This research selects the ground surface
region over a coal mining workface of Tunlan Minefield,
Xishan Coalfield in Shanxi Province, as the study area. It is
located in the central Shanxi Province and north-central
China (Figure 1).

With a geographical location between 112°05′E and
112°07′E and 37°52′N and 37°53′N, the study area has the
elevation between 1105.7m and 1266.4m. There are a series
of observation points along the strike section and incline
section to monitor the subsidence process during coal mining
activities. The direction of the strike section is from south-
west to northeast, as to that of the incline section, from
northwest to southeast. Figure 1 shows both the strike section
and incline section distributed in undulating topography.

Tunlan Minefield is located in the northwest section of
Taiyuan Xishan Coalfield and the east wing of Malan
Syncline. The workface is in the right flank of lower group
of South Fourth Panel of Tunlan Minefield. The mining
method of the work face is fully mechanized mining, and
the roof management method is full span falling method.

2.2. Data Sources. The main data sources used in this
research are the coal mining status and observation data.

The coal mining status includes the parameters used in
ground subsidence prediction, such as influence radius, min-
ing depth, mining thickness, mining progress, subsidence
coefficient, and inclination angle.

The observation data mainly refers to the observation
points along the strike section and incline section. This
research mainly predicts the observation points along the
strike section. The elevation distribution and the subsidence
status of these points are presented in Figure 2.

Figure 2 shows that there are 43 points along the strike
section. With a horizontal distance of about 1100m, these
points distribute in the undulating topography. For example,
A8 has the lowest elevation value of about 1100m, whereas
A36 has the highest elevation value of about 1225m.

As to the ground subsidence status for these points, some
observation data are lost during the monitoring process, such
as A14 and A30. The subsidence profile is in accord with the
ground subsidence rule due to coal mining generally,
although there are some exceptions. For example, the subsi-
dence values have evident undulations, such as for A20 and
A43. These exceptions may result from complicated factors
including ground surface conditions and coal mining status.

3. Methodology

The probability integral method can predict the subsidence
results to determine the typical points; further, the Knothe
time function model is used to provide the state equation,

which can be improved by using the Kalman filter method.
The final method is the key innovation in this research.

3.1. Probability Integral Method. Developed from stochastic
medium theory, the probability integral method can predict
any point’s subsidence due to the mining activities of the
working face [26, 27]. Referencing the subsidence computa-
tion equations, the inclination, horizontal movement,
horizontal deformation, and curvature can be predicted
accordingly. Among the observation points along the strike
section, five typical points are selected from these prediction
results, as shown in Table 1:

In Table 1, A20 has the highest inclination and horizon-
tal movement values; A24 has the highest horizontal defor-
mation and curvature values; A28 has the x-coordinate of
219.384m, about one time of influence radius (216.667m);
A29 has the highest subsidence value through observation
(-1519.865mm); A36 has the highest subsidence value
through prediction (-1505m).

The prediction of the subsidence process is conducted
for the five typical points in this research.

3.2. Knothe Time Function Model. According to the Knothe
time function model, the relationship between the
ground subsidence value WðtÞ and time t can be defined as
follows [1, 3]:

W tð Þ =W0φ tð Þ, ð1Þ

where

φ tð Þ = 1 − e−c∗t : ð2Þ

In equations (1) and (2),W0 is the maximum subsidence;
c is the time influence parameter, which is used to describe
the subsidence process in time influenced by geological
conditions and mining progress [28–30]. Parameter c can
be computed as the following [17]:

c = −
v
L1

ln 0:02: ð3Þ

In equation (7), v is the advancing rate of the working
face; L1 is the critical mining dimension.

Through investigation, L1 is 100m in this research.
The mining progress is not at a stable velocity. The pro-
pulsion meters are various for different months, which is
shown in Table 2.

In Table 2, the advancing rate is computed by dividing
days by the propulsion meter. The advancing rate varies
remarkably in different months. For example, it is 3.23m/d
in Sep. 2018, while it is 1.78m/d in Oct. 2018. To simplify
the computation process, the advancing rate is regarded as a
constant value for the whole mining process. As the total pro-
pulsion meters are 1819.2m, and the total observation period
is 763 days. Thus, the whole advancing rate can be computed
by dividing the total observation days by the total propulsion
meter, which is about 2.4m/d. Then, the time influence
parameter c can be computed, whose value is 0.0215 d-1.
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Figure 1: Location and elevation distribution of the study area.
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Figure 2: Elevation distribution and subsidence status of the observation points along the strike section.

Table 1: Prediction results for the five typical points.

Points Subsidence (mm) Inclination (mm) Horizontal movement (mm/m) Horizontal deformation (1/km) Curvature (mm/m)

A20 -628 6 402 -0.85 -0.013

A24 -1260 2.87 200 -3.17 -0.048

A28 -1419 -0.57 -26 -0.99 -0.015

A29 -1390 -0.71 -35 -0.2 -0.003

A36 -1505 -0.16 2 -1.53 -0.023
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In this research, the monitoring of the observation
points is conducted at 19 phases from 2018/6/13 to 2020/
7/15, about two years. The mining statuses during the 19
phases are computed in Table 3 as follows.

In Table 3, the column “day” is the duration between this
phase and the last phase. The column “propulsion meter” is
the propulsion progress during these days, which is com-
puted according to the advancing rate in Table 2. The
“day” is divided into several pieces to accord with the
advancing rate in Table 2, and the propulsion meters are
computed in every piece. The final propulsion meters are
acquired by adding the pieces of the propulsion meters
together. The column “advancing rate” is accrued by divid-
ing “day” by the “propulsion meter” column.

From Table 3, we can see that the advancing rate has
some undulation in different periods. It is low at the early
and last phase when the mining activities start and end.

Using 19 phases, the working face can be divided into 18
elements. For the ith mining element, its mining period is ti
and the advancing rate is vi, so the mining length is vi ∗ ti.
For the moment t, the ground subsidence of the mining ele-
ment from 1 to n can be computed as follows:

W1 tð Þ =W0φ tð Þ,
W2 t − t1ð Þ =W0φ t − t1ð Þ,
W3 t − t1 − t2ð Þ =W0φ t − t1 − t2ð Þ,
⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ::

Wn t − t1 − t2−⋯−tn−1ð Þ =W0φ t − t1 − t2 ⋯−tn−1ð Þ:

8>>>>>>>><
>>>>>>>>:

ð4Þ

According to the superposition principle, the subsidence
value of any point at time t can be expressed as

W x, tð Þ = φ tð Þ W xð Þ −W x − v1t1ð Þð Þ + φ t − t1ð Þ W x − v1t1ð Þð
−W x − v1t1 − v2t2ð ÞÞ + φ t − t1 − t2ð Þ W x − v1t1 − v2t2ð Þð
−W x − v1t1 − v2t2 − v3t3ð ÞÞ+⋯+φ t − t1 − t2−⋯−tn−1ð Þ
� W x − v1t1 − v2t2−⋯−vn−1tn−1ð Þð
−W x − v1t1 − v2t2−⋯−vntnð ÞÞ,

ð5Þ

where

Table 2: Propulsion status of the working face in each month of the mining process.

Month Day (d) Propulsion meters (m) Advancing rate (m/d) Month Day (d) Propulsion meters (m) Advancing rate (m/d)

2018.07 31 69.6 2.25 2019.07 31 73.6 2.37

2018.08 31 88.8 2.86 2019.08 31 99.2 3.20

2018.09 30 96.8 3.23 2019.09 30 77.6 2.59

2018.10 31 55.2 1.78 2019.10 31 81.6 2.63

2018.11 30 76.0 2.53 2019.11 30 88.0 2.93

2018.12 31 64.8 2.09 2019.12 31 75.2 2.43

2019.01 31 86.4 2.79 2020.01 31 64.8 2.09

2019.02 28 84.8 3.03 2020.02 29 91.2 3.14

2019.03 31 79.2 2.55 2020.03 31 82.4 2.66

2019.04 30 106.4 3.55 2020.04 30 61.6 2.05

2019.05 31 88.0 2.84 2020.05 31 41.6 1.34

2019.06 30 86.4 2.88

Table 3: Mining statuses during 19 phases for the observation points.

Phase Day (d) Propulsion meters (m) Advancing rate (m/d) Phase Day (d) Propulsion meters (m) Advancing rate (m/d)

2018/6/13 0 0 0 2019/8/5 35 87.23 2.49

2018/7/6 23 13.47 0.59 2019/9/5 31 96.13 3.10

2018/8/3 28 64.72 2.31
2019/10/

15
40 104.15 2.60

2018/8/24 21 60.15 2.86
2019/11/

15
31 86.12 2.78

2018/10/
24

61 159.59 2.62
2019/12/

15
30 80.39 2.68

2019/1/15 83 195.07 2.35 2020/1/15 31 70.17 2.26

2019/3/15 59 167.72 2.84 2020/4/15 91 237.85 2.61

2019/4/15 31 94.08 3.03 2020/5/25 40 64.35 1.61

2019/5/15 30 95.78 3.19 2020/7/15 51 8.05 0.16

2019/7/1 47 134.19 2.86
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W xð Þ = W0
2 erf

ffiffiffi
π

p
r

x
� �

+ 1
� �

: ð6Þ

Using equations (5) and (6), the ground subsidence
process can be predicted accordingly.

3.3. Improved Knothe Time Function Model Using the
Kalman Filter Method. Based on equation (2) and equation
(5), the state equation of the Kalman filter method can be
transformed as [31]

W x, tkð Þ =W x, tk−1ð Þ + 1 − e−c tk−tk−1ð Þ
� �

� e−ctk−1
	

W xð Þ −W x − v1t1ð Þð Þ
+ e−c tk−1−t1ð Þ W x − v1t1ð Þ −W x − v1t1 − v2t2ð Þð Þ
+ e−c tk−1−t1−t2ð Þ W x − v1t1 − v2t2ð Þð
−W x − v1t1 − v2t2 − v3t3ð ÞÞ+⋯e−c tk−1−t1−t2⋯−tn−1ð Þ

� W x − v1t1 − v2t2−⋯−vn−1tn−1ð Þð
−W x − v1t1 − v2t2−⋯−vntnð ÞÞ:

ð7Þ

Using equation (7), the ground subsidence can be pre-
dicted at any time for the typical observation points.
Meanwhile, the prediction results can be rectified by
using the improved method (namely, Kalman filter method
after here).

The equations for the prediction process are

W−
k = A ∗Wk−1 + B ∗Uk, ð8Þ

P−
k = A ∗ Pk−1 ∗ A′ +Q: ð9Þ

Equation (8) is a simplified format of equation (7);W−
k is

the predicted subsidence value at time k; A is the state tran-
sition matrix; Wk−1 is the rectified subsidence value at time
k − 1; Uk and B are the control vector and its coefficient
matrix, respectively. In equation (9), P−

k is the priori error
matrix at time k; Pk−1 is the posterior error matrix at time
k − 1; Q is the covariance of the state equation.

The equations for the rectified process are

Kk = P−
k ∗ Ak ′ ∗ Ak ∗ P−

k−1 ∗ Ak ′ + R
� �−1

, ð10Þ

Wk =W−
k + Kk ∗ yk − Ak ∗W−

kð Þ, ð11Þ
Pk = I − Kk ∗ Akð Þ ∗ P−

k : ð12Þ
In equations (10), (11), and (12), Kk is the gain matrix;

Ak is the coefficient matrix of the observation equation; R
is the covariance of the observation equation; yk is the obser-
vation vector; the meanings of other symbols can be
acquired from the above equations.

According to the observation status, R is 16mm2;
through a series of experiments, Q can be determined as
25mm2. Based on the Kalman filter method, the predicted
and rectified values of the ground subsidence at different

phases can be computed using the equations from (8) to
(12) in an iterative way.

4. Results

The prediction curves acquired by three different ways are
analysed at different phases and for five typical points. Thus,
the error curves are analysed accordingly. Finally, the values
of the error indexes are computed and compared for the five
typical points.

4.1. Prediction Results. Based on the time function method
and Kalman filter method, the prediction results of the two
methods and the rectified results of the Kalman filter
method can be computed for the typical observation points
at different phases. The distribution curves of these results
are shown in Figure 3.

In Figure 3, the rectified values of the Kalman filter
method are taken as the reference values. Thus, the predic-
tion values have a sharp difference for the five typical obser-
vation points. For example, the prediction curves of some
observation points are approximate to the rectified curves,
such as A28 and A29 points, while other points have evident
sharps compared with the rectified curves, such as A20, A24,
and A36.

In addition, the prediction results acquired from the
Kalman filter method have much better astringency than
that from the time function methods, especially for the
observation points A20, A24, A29, and A36.

Generally speaking, the prediction curves from the Kal-
man filter method are much closer to the rectified curves
than that from the time function curves, although occasion-
ally the curves of the time function have better performance,
such as that for A28, A29, and A36 at some phases.

4.2. Error Distribution. The prediction curves in Figure 3
present the prediction quality of the Kalman filter method
and time function method by comparing the rectified curves.
To quantify the quality of the prediction results of the two
methods, the error is computed by taking the rectified values
as the real value.

Through computing the difference between the pre-
dicted values and the rectified values, the error distributions
of the two methods for the five observation points at differ-
ent phases are presented in curve form as shown in Figure 4.

In Figure 4, the “Knothe” refers to the Knothe time func-
tion method. Figure 4 shows that the error values of the pre-
diction results by the Kalman filter usually have lower error
values than that by time function method, although it has
higher absolute values occasionally at a few phases, such as
A28 and A29 at 2019/1/13 and A36 at 2019/4/13.

In addition, the prediction values by the Kalman filter
are gradually approximated to 0mm at last, whereas those
by time function do not have the astringency characteris-
tics. Moreover, the prediction results by time function
method have system errors for some points, such as A20,
A24, and A29.

4.3. Error Index Computation. Figure 4 presents the error
distribution curves of the Kalman filter method and time
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Figure 3: Continued.
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Figure 3: Continued.
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function method. To compute the exact error values, the
mean error (ME) and root mean square error (RMSE)
indexes are adopted in this research. Other error indexes,
such as mean absolute error and standard deviation error,
have similar characters to ME or RMSE. The ME index
represents the difference of the mean values between the
predicted and rectified results, which is an important index
to evaluate the prediction quality. The RMSE index repre-
sents the square root of the ration of the square of the devi-
ation between the predicted value and the rectified value to
the number of observations. The RMSE index is sensitive
to extralarge or extrasmall errors, so it is good at reflecting
the precision of the prediction results.

The ME and RMSE values of the two methods are com-
puted for the five typical observation points, which is shown
as in Figure 5.

Figure 5 shows that all ME values acquired by the Kal-
man filter are lower than those by the time function method.
As to the RMSE, except for A28, the values for the Kalman
filter method are much lower than those for the time func-
tion method, especially for A20 and A24 points. Except for
A29, otherME values are positive. TheME and RMSE values
vary largely for different points: A20 has the highest value;
then for A24 and A36, their values are at the middle level;
A28 and A29 have the lowest values. Therefore, the predic-
tion results have the highest quality for A28 and A29 points,
the middle quality for A24 and A36 points, and the worst
quality for A20 points.

Through computing the average values of error indexes
for the five points, the ME values for the time function and
Kalman filter method are 91.9mm and 3.1mm, respectively,
and the RMSE values are 133.4mm and 78.3mm, respec-

tively. Hence, the prediction results by the Kalman filter
have higher accuracy than those by time function method,
especially for ME index.

5. Discussion

This research presents a new model to predict subsidence
due to coal mining by incorporating the Kalman filter into
the Knothe time function method. Through comparison,
the new model has higher accuracy than the time function
method. The ME is improved from 91.9mm to 3.1mm,
and the RMSE improved from 133.4mm to 78.3mm. More-
over, the error is approximate to 0mm at last, which has
good astringency characteristics. As to the Knothe time
function model, it may have system errors for some points,
such as A20, A24, and A29. Hence, the new model presented
in this research improves the performance of the time func-
tion largely, which has significance in predicting ground
subsidence due to coal mining.

Compared to previous similar researches, Cui et al. [1]
deemed that the average relative error is 8% by using time
function method; Zhang et al. [3] improved the Knothe time
function by considering the velocity, acceleration, and the
proper value of c, and the average relative standard error
was improved from 23% to 4.8%; Cheng et al. [4] improved
the Knothe time function model by analogical reasoning,
and the improved model has average relative standard devi-
ation of 4.9%, far lower than 23.1% of Knothe time function.
In this research, the time function is improved by incorpo-
rating the Kalman filter, and the relative error is improved
from 12.2% to 7.2%, the ME from 91.9mm to 3.1mm, and
the RMSE from 133.4mm to 78.3mm. The typical point

Rectified value
Time function
Kalman filter
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Figure 3: Prediction curves at different time phase for the typical observation points.
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A20 has ground rise at first, which violates the time function
rule. It may be due to undulating topography. By only com-
puting the other four points, the relative error will be
improved from 8.1% to 5.7%. The performance of the time
function is similar to that in Cui et al.’s research [1]. These
aspects prove that the improved model has higher accuracy
and reliability.

This research conducts subsidence prediction by the two
methods by regarding the surface as flat topography. In fact,

it is undulating. The undulating topography can be incorpo-
rated in future researches. Besides the ground subsidence,
there are other deformation factors, such as inclination, hor-
izontal movement, horizontal deformation, and curvature.
These factors can also be used in predicting the mining
progress. Moreover, there are other Kalman filter methods,
such as extended Kalman filter [32, 33], unscented Kalman
filter [34–36], and total Kalman filter [37, 38]. These
methods can be widely used in prediction models.
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Figure 4: Error distribution curves at different time phase for the typical observation points.
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6. Conclusions

Taking a coal mining work face of Xishan Coalfield in
Shanxi Province of China as an example area, this research
presents an effective method in predicting ground subsi-
dence of mining area by improving the Knothe time
function using the Kalman filter method. Meanwhile, the
performance of the traditional Knothe time function and
its improved version is compared in different aspects. The
research results can be concluded as follows:

(1) Incorporating probability integral method, time
function method, and Kalman filter method, an
improved method is presented in predicting ground
subsidence due to coal mining. Probability integral
method is adopted to predict the final subsidence
status and select typical observation points; the time
function method provides the state equations for the
Kalman filter method; based on the probability inte-
gral method and time function method, the Kalman
filter method predicts the ground subsidence by
assimilating the observation values. This research
presents an effective method in predicting ground
subsidence of mining area by improving the Knothe
time function using the Kalman filter method

(2) The performance of the two prediction methods is
compared through prediction curves, error curves,
and error indexes of the five typical observation
points. Through comparison, the prediction results
by the Kalman filter method have remarkably higher
accuracy than those by the time function method. In
addition, the prediction results by the Kalman filter
are gradually approximated to 0mm at last, whereas
those by time function do not have this astringency
characteristic. Moreover, the prediction results by
the time function method have systematic errors
for some points. Thus, the prediction results by the
Kalman filter method have higher reliability
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