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To improve prediction accuracy of top-coal drawing capability in steep seams, principal component analysis (PCA) and the
general regression neural network (GRNN) are combined (PCA–GRNN model) to predict top-coal drawing capability in steep
seams. Nine commonly used influencing factors are selected to establish a predictive index system for top-coal drawing
capability in steep seams. The PCA is used to eliminate correlation and reduce dimensions of various indices, thus obtaining
three linearly uncorrelated principal components (PCs) y1, y2, and y3, which form the input vectors of the GRNN. In this way,
the factors that most affect the top-coal drawing capability in steep seams are found to be floor flatness, dip angle of the coal
seam, and the hardness of the coal seam. The results show that the PCA–GRNN model outperforms the GRNN and random
forest models in prediction results, which indicates that the PCA improves prediction accuracy of the GRNN model. It is
feasible to predict top-coal drawing capability in steep seams by combining or even integrating different analytical models into
one. The proposed PCA–GRNN model can be used to predict top-coal drawing capability in steep seams.

1. Introduction

Top-coal drawing capability refers to the difficulty of draw-
ing of the top part of a coal seam under the mine pressure
and its weight. The selection of an appropriate top-coal cav-
ing technology directly can determine the mining efficiency,
and high top-coal drawing capability is the premise of apply-
ing the technology [1, 2]. In many top-coal caving faces, the
top-coal drawing capability is not evaluated before mining,
which leads to reduced economic benefits. Therefore,
research into top-coal drawing capability cannot only
improve the economic benefit but also provide an important
theoretical basis for mine production [3–9].

At present, several methods have been proposed for
identifying top-coal drawing capability or difficulty, such as
the distance discrimination method, support vector machine
(SVM), Fisher discriminant analysis, and neural network
methods. According to the merits and demerits of these
methods, Liu et al. [10] established a distance discrimination
analysis model for distinguishing difficulty of top-coal cav-

ing in steep seams, which helped the popularization and
application of the roadway caving method in steep seams.
Liu et al. [11] built an SVM model for identifying difficulty
of top-coal caving based on a radial basis function, which
provides a new method for determining the top-coal draw-
ing capability. Long-jun et al. [12] established a Fisher dis-
criminant analysis model for judging top-coal drawing
capability. They selected nine indices including mining
depth of main roof, thickness of coal seam, and Protodyako-
nov coefficient as classification indices of the model, which
allows accurate prediction of top-coal drawing capability in
coal seams under different mining conditions. Wang et al.
[13] evaluated the top-coal drawing capability in fully mech-
anized caving faces using the artificial neural network
method. They not only assessed the extent of top-coal caving
but also predicted the comprehensive technical and eco-
nomic indicators of the working face. Each of these methods
has their own merits and demerits. For example, the distance
discrimination method regards that various indices or fac-
tors pertaining to samples are of equal importance when
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determining the distance, while in fact, these indices or fac-
tors do not play roles of equal importance in determining
the classification of samples. Therefore, if the importance
of various indices or factors is not determined in advance,
the distance discrimination method is likely to overstate
the effect of some less important indices, leading to misjud-
gements in predictions [14]. The SVM is a machine learning
method based on statistical learning theory and optimization
theory that maximizes the geometric spacing for separating
hyperplanes. By introducing kernel functions, the method
can transform nonlinear classification problems into linear
ones in a high-dimensional space. However, the method is
limited to data decomposition itself and ignores the intrinsic
structural compactness of data. This not only results in high
complexity of the algorithm but is likely to lead to errors in
processing noisy data, thus reducing classification accuracy.
The Fisher discriminant analysis is a statistic analysis tech-
nique to identify newly obtained samples according to some
existing quantitative characteristics of observation samples.
The approach maps high-dimensional data points into a
low-dimensional space, to render data points more dense.
However, the matrix inversion and eigenvector calculation
increase the computational workload, and the pairwise
extraction and classification criterion need to be introduced
for classification of multiple classes. The neural network
method not only has the self-learning function but also the
associative memory function. In the case of an onerous com-
putational burden, the use of a feedback artificial neural net-
work designed for a specific problem can give full play to the
high-speed computing power available, so it may seek the
optimal solution rapidly.

The general regression neural network (GRNN) has the
advantages of simple structure, easy training, fast conver-
gence, and strong fault tolerance and is mainly used in pat-
tern classification problems such as fault diagnosis. In fact,
most of the top-coal drawing capability prediction indicators
have certain correlations, so the correlation between the pre-
diction indicators should be eliminated before applying the
GRNN network. Common methods to eliminate the correla-
tion between indicators include limiting the number of indi-
cators, separating overlapping elements, modifying indicator
weights, principal component analysis, and factor analysis.
Considering that there are many prediction indicators used
in this paper, the principal component analysis (PCA) is
used to preprocess the data of the prediction indicators of
top-coal drawing capability, which can not only eliminate
the correlation between the indicators but also reduce the
dimensionality of the indicator data and improve the PNN.
Based on the above theoretical analysis, in this paper, 25
groups of data on the influencing factors of top-coal drawing
cavability are selected, and principal component analysis
(PCA) is used to reduce the dimensionality of the indicators
and convert multiple indicators into a few independent indi-
cators. This eliminates correlation and realizes dimension
reduction of indexes. Then, the general regression neural
network (GRNN) is introduced. The PCA–GNRR prediction
model for top-coal drawing capability in steep seams is
established by combining the PCA and GRNN. In addition,
a random forest model is also used to compare accuracy of

prediction results of various models. In this way, the perfor-
mance of the established model in predicting top-coal draw-
ing capability in steep seams is evaluated, which provides a
basis for improving accuracy of such predictions.

2. Factors Influencing Top-Coal Drawing
Capability in Steep Seams

2.1. Roof Conditions. Roof conditions influence the top-coal
drawing capability mainly through stability of the immediate
roof and the main roof. If the immediate roof can cave fol-
lowing mining, it does not influence the top-coal drawing
capability; if the immediate roof is very hard and does not
cave over a large area, it will bring significantly affect the
working face upon failure of the roof.

In the top-coal caving mining, stress on the main roof is
relieved due to the buffering effect and absorption of the top
coal for weighting, so the working face is less affected and
suffers less damage during weighting, while the range of
influence of the pressure is enlarged. Meanwhile, intense
weighting on the main roof during slicing mining may
induce spalling of the working face [15, 16].

2.2. Floor Conditions. Top-coal drawing capability of a coal
seam is related to two interdependent factors, i.e., the stabil-
ity and flatness of floors. That is, the flatter the floor, the
more stable it is, and the better the top-coal drawing capabil-
ity [17, 18].

2.3. Gas. Gas pressure is one of the causes of breakage of top
coal. A high gas content can soften coal seams, which is con-
ducive to breakage of top coal; however, the roadway caving
method is not applicable to coal seams prone to gas outburst.
Gas accumulation should be paid close attention to in coal
seams with a high gas content [19–23].

2.4. Mining Depth. The mining depth directly influences the
magnitudes of in situ stress and peak abutment pressure in
surrounding rocks of a working face. The abutment pressure
plays a decisive role in breakage of top coal. When ignoring
the influences of the tectonic stress field, the greater the
depth of occurrence of a coal seam, the more readily the crit-
ical failure condition of top coal is met and the higher the
top-coal drawing capability, according to the Griffith
strength criterion [24–26].

2.5. Dip Angle of Coal Seams. For coal seams with a large dip
angle, the self-weight of a coal mass in the vertical direction
is larger than the resultant of other forces acting thereon, so
that coal mass is more likely to cave, which is favorable for
drawing of top coal. If the dip angle reaches 90°, the force
acting along the vertical direction only includes the weight
of broken coal gangue in the goaf above the top coal, so
the coal does not readily cave [27, 28].

2.6. Thickness of Coal Seams. Top coal is subjected to pre-
splitting and damage in the mining process and stores signif-
icant amounts of energy. The energy is released during the
migration of top coal, which breaks coal mass. If the top coal
is too thin, it is difficult to ensure its caving at the tail of
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support and causes advanced breakage of the immediate
roof, which is drawn out together with top coal. As a result,
a large amount of top coal is lost in the goaf. If the top coal is
too thick, it is challenging to ensure sufficient looseness of
top coal in the roof-control zone, so the top coal does not
readily cave in the caving zone. In addition, there will not
be enough room for caving if the top coal is too thick [29].

2.7. Hardness of Coal Seams. The hardness of coal seams is
an important index for evaluating damage resistance of coal
seams and directly influences the failure process and break-
age degree of top coal under compressive stress. Therefore, it
is inversely proportional to the top-coal drawing capability:
the lower the hardness, the higher the capability. The hard-
ness is represented by Protodyakonov’s coefficient [30–32].

2.8. Dirt Bands. The extent of dirt bands is expressed asm/M,
where m and M separately denote the total thickness of dirt
bands in a coal seam and that of the coal seam. Influences of
dirt bands on top-coal drawing capability are shown as fol-
lows: if dirt bands are weaker than the coal mass, they form
a weak plane in coal seams and their presence is conducive
to the breakage, caving, and drawing of top coal, which
improves the top-coal drawing capability. The more, the
thicker, and the softer the dirt bands are, the better the top-
coal drawing capability, whereas dirt bands that are harder
than coal mass are unfavorable for drawing of top coal [33].

3. Principles Underpinning the Methods

3.1. PCA. The PCA is a dimension reduction method in
mathematics that uses orthogonal transform to convert a
series of possibly linearly correlated variables into a set of
linearly uncorrelated new variables or principal components
(PCs). In this way, new variables are used to characterize
data features in a lower dimension. These PCs are linear
combination of original variables and their number is less
than that of original ones. The combination is equivalent
to generation of a new set of observations, which have differ-
ent meanings with original data while contain most features
of original data, show lower dimensions, and therefore are
convenient for further analysis.

The PCA can be spatially interpreted as mapping origi-
nal data into a new coordinate system. The first PC corre-
sponds to the first coordinate axis, which represents the
range of variation of the new variable transformed in a cer-
tain way from multiple variables in the original data; the sec-
ond PC corresponds to the second coordinate axis and
represents the range of variation of the second new variable
transformed in a certain way from multiple variables in the
original data. In a similar fashion, the difference in samples
interpreted by original data is transformed into that inter-
preted by new variables. To remain interpretation of original
data as far as possible, the maximum variance theory or
minimum damage theory is generally used to ensure that
the first PC has the largest variance (able to interpret differ-
ence in original data as much as possible). Each of subse-
quent PCs is orthogonal with the previous one and has the
largest variance only second to the previous one. The PCs

are derived as follows:

y1 = p11x1 + p12x2+⋯+p1mxm,
y2 = p21x1 + p22x2+⋯+p2mxm,
⋮

ym = pm1x1 + pm2x2+⋯+pnmxm:

8>>>><
>>>>:

ð1Þ

The PCs are calculated as follows:

(1) For the matrix X:

X =

X11 X12 ⋯ X1m

X21

⋮

Xn1

X22

⋮

Xn2

⋯

⋱

⋯

X2m

⋮

Xnm

2
666664

3
777775: ð2Þ

After standardization,

Xij′ =
Xij − �Xj

Sj
, ð3Þ

where

�Xj =
1
n
〠
n

n=1
Xij, ð4Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n
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(2) The symmetric correlation coefficient matrix R of
standardized variables is calculated as

R =

r11 r12 ⋯ r1m

r21

⋮

rn1

r22

⋮

rn2

⋯

⋱

⋯

r2m

⋮

rnm

2
666664

3
777775: ð6Þ

The correlation coefficient rjk between variables is

r jk =
∑n

k=1 xki′ − �xj′
� �

xkj′ − �xj′
� �

∑n
k=1 xki′ − �xi′

� �2
∑n

k=1 xkj′ − �xj′
� � ð7Þ

(3) The matrix R is subjected to eigenvalue decomposi-
tion, to calculate eigenvalues λ1, λ2, …, λm and
eigenvectors p1, p2, …, pm
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(4) PCs are calculated as ti : ti = X × pi

(5) Contribution vs and cumulative contribution vt of
each PC are calculated as follows:

vs =
λi

∑m
k=1λk

i = 1, 2,⋯,mð Þ, ð8Þ

vt =
∑i

s=1λs
∑m

k=1λk
i = 1, 2,⋯,mð Þ ð9Þ

In actual application, the first to the kth (k ≤m) PCs cor-
responding to eigenvalues whose cumulative contribution is
greater than 85%, or PCs whose eigenvalues are greater than
1 are generally selected.

3.2. GRNN. The GRNN integrates the density estimation
and Bayesian decision theory based on the radial basis func-
tion (RBF) neural network and substitutes the sigmoid acti-
vation function using an activation function deduced by the
statistical method. The GRNN is also similar to the probabi-
listic neural network (PNN) in terms of structure, both com-
prising the input, model, summation, and output layers. The
difference lies in that the GRNN has two types of neurons on
the summation layer, allowing more comprehensive compu-
tation than the PNN.

The mapping relationship of the GRNN as shown in
Figure 1 is established according to the following steps:

(1) The input layer is responsible for transferring input
variables to the model layer via a linear function;
neurons on the model layer correspond to different
samples and the transfer function pi is

pi = exp −
U −Uið ÞT U −Uið Þ

2σ2

" #
, ð10Þ

where pi denotes the output of the i
th neuron on the hidden

layer and Ui is the learning sample corresponding to the ith

neuron

(2) The output of the model layer is calculated through
summation, in two ways: one is the arithmetic sum-
mation SD:

SD = 〠
n

i=1
pi ð11Þ

The other is weighted summation SN j:

SN j = 〠
n

i=1
γijpi j = 1, 2,⋯, sð Þ, ð12Þ

where γij is the connection weight and is valued as the jth

element in the ith output sample and s represents the dimen-
sion of the output vector of the learning samples

(3) By dividing outputs of the summation layer of each
neuron, the output of each neuron on the output
layer is obtained as

γj =
SN j

SD
j = 1, 2,⋯, sð Þ ð13Þ

3.3. PCA–GRNN Prediction Model for Top-Coal Drawing
Capability in Steep Seams. The flowchart of the proposed
PCA–GRNN prediction model for top-coal drawing capabil-
ity in steep seams is shown in Figure 2. The main calculation
steps are as follows.

Step 1. Selecting evaluation indices for factors influencing
top-coal drawing capability.

Step 2. Collecting case data according to the indices.

Step 3. Zero-mean normalization of data about top-coal
drawing capability to eliminate influences of different
dimensions across indices on the test results, followed by
correlation analysis of normalized data.

Step 4. Using PCA to eliminate correlation and reduce
dimensions of indices, thus determining PCs.

Step 5. Establishing the GRNN model, in which the smooth
factor is input. The model is trained with training samples
until attaining satisfactory results.

Step 6. Inputting testing samples for predicting levels of top-
coal drawing capability in the trained model and using the
evaluation indices to evaluate and compare the prediction
accuracy.

u1 y1P1

P2

Pn

u2

un

SD

SN1

SNT yk

Input layer Model layer Summation layer Output layer

Figure 1: Structure of the GRNN model.
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4. Calculation Process and Results

4.1. Evaluation Indices and Data Pertaining to Top-Coal
Drawing Capability in Steep Seams. Through comprehensive
analysis, the type of main roof (X1), the stability of the
immediate roof (X2), floor flatness (X3), gas content (X4),
mining depth (X5), dip angle of coal seams (X6), thickness
of coal seams (X7), hardness of coal seams (X8), and extent
of dirt bands (X9) are selected as discriminant factors affect-
ing top-coal drawing capability. Therein, the type of main
roof X1 is graded into four levels as insignificant, significant,
intense, and very intense according to the degree of first
weighting. The stability of immediate roof X2 is divided into
four grades, that is, unstable, moderately stable, stable, and
very stable, based on different first caving steps of the imme-
diate roof: less than 8m, 8–18m, 18–28m, and 28–50m. The
floor flatness X3 is graded at four levels as flat, less flat,
rough, and very rough. The gas content X4, mining depth
X5, dip angle of coal seams X6, and thickness of coal seams
X7 take corresponding values; the hardness of coal seams
X8 is represented by the Protodyakonov coefficient; and
the extent of dirt bands X9 is expressed as m/M, that is,
the ratio of thickness of dirt bands to that of coal seams.
The top-coal drawing capability is graded into four levels:
very high (A), high (B), general (C), and poor (D). Table 1
lists 25 groups of data selected in the research.

4.2. PCA Preprocessing. To avoid influences induced by
dimensional differences of sample data, data in the train-
ing set and the test set are standardized and then sub-
jected to PCA. Correlation coefficients of various factors
are listed in Table 2. The absolute value Q of the correla-
tion coefficient reflects the degree of correlation between
two factors. When Q = 0, 0 <Q ≤ 0:5, 0:5 <Q ≤ 0:8, 0:8 <
Q ≤ 1, and Q = 1, two factors are uncorrelated, slightly cor-
related, significantly correlated, extremely significantly cor-
related, and completely correlated, respectively. The
absolute values of correlation coefficients between X1 and
X2, X1 and X5, X2 and X5, X4 and X5, X4 and X8, X4
and X9, X6 and X8, and X8 and X9 are all greater than
0.5, so they are significantly correlated.

The total variances, variance percent, and cumulative
variance of the initial eigenvalues, extraction sums of
squared loadings, and rotation sums of squared loadings of
each PC are listed in Table 3: the first three PCs have eigen-
values larger than 1 and initial cumulative contributions of
40.670%, 62.567%, and 75.280%, respectively, which contain
the majority of information pertaining to the original
factors. Therefore, the first three PCs are selected here as
the comprehensive evaluation indices reflecting top-coal
drawing capability.

Starting

Selecting influencing factors and
indices of top-coal drawing capability 

Collecting case data according to the indices

Data standardization and PCA

Using PCA for dimension reduction and obtaining PCs

Establishing the GRNN

Adjusting the smooth factor

Training the GRNN

Satisfied or not?

End

Inputting prediction samples and grading

Judging the accuracy

Yes

No

Figure 2: Flowchart of the prediction model for top-coal drawing
capability in steep seams.

Table 1: Data about influencing factors of top-coal drawing
capability.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 Actual level

1 4 4 1 28 280 75 4.5 1.2 0 A

2 3 3 1 36 385 58 2.3 1.3 0 A

3 2 2 2 36 425 54 2.1 1.4 0 A

4 3 2 1 39 340 59 2.0 1.1 0 A

5 4 2 1 31 310 70 6.5 1.1 0 A

6 3 1 1 4 340 67 4.5 1.8 0.1 B

7 2 2 2 38 627 78 7.9 1.8 0.05 B

8 2 1 1 38 649 76 5.8 1.8 0 B

9 2 2 2 30 546 72 6.4 1.9 0 B

10 3 2 1 33 527 79 6.8 1.5 0 B

11 3 2 1 3 280 65 3.5 1.7 0.08 C

12 4 3 1 5 302 68 3.6 1.7 0.1 C

13 3 3 2 5 322 63 3.2 1.8 0 C

14 2 2 1 4 328 63 3.8 1.6 0 C

15 4 4 1 12 320 68 2.5 1.5 0 C

16 4 3 1 3 180 85 5.2 2.3 0.1 D

17 4 4 2 4 200 89 4.9 2.0 0.15 D

18 4 3 2 6 168 82 4.8 2.0 0.18 D

19 3 3 2 5 170 83 5.0 2.0 0.23 D

20 4 3 1 5 180 87 2.9 1.8 0.35 D

21 3 2 2 36 405 60 2.4 1.3 0 A

22 3 2 2 25 430 2 3.8 1.1 0 A

23 2 2 1 24 352 54 2.2 1.2 0 B

24 3 3 1 8 368 70 3.0 1.3 0 B

25 3 3 2 10 340 54 2.0 1.3 0 C
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The scoring coefficients of components in each PC are
listed in Table 4. On this basis, the formula for each PC is
derived as

y1 = 0:231X1 + 0:251X2 + 0:022X3 − 0:230X4 − 0:301X5
− 0:007X6 − 0:204X7 + 0:013X8 + 0:150X9,

y2 = −0:017X1 − 0:097X2 − 0:042X3 − 0:028X4 + 0:084X5
+ 0:368X6 + 0:399X7 + 0:350X8 + 0:182X9

y3 = −0:251X1 + 0:014X2 + 0:799X3 − 0:140X4 − 0:013X5
− 0:260X6 − 0:085X7 + 0:222X8 + 0:126X9:

,

ð14Þ

When reducing dimensions used the PCA in the pro-
posed PCA–GRNN model, each of the original influencing
factors contributes to different degrees. According to contri-
butions of original influencing factors and those of PCs after
dimension reduction, the floor flatness (X3), dip angle of
coal seams (X6), and hardness of coal seams (X8) are found
to make the highest contributions (Table 5). Therefore, it is
inferred that they have more obvious influences on top-
coal drawing capability.

4.3. Parameter Determination of the GRNN. In order to
demonstrate the superiority of the PCA in predicting top-

coal drawing capability, the traditional GRNN model is
compared with the model established in the present
research. The PCA–GRNN model takes the comprehensive
evaluation indices y1, y2, and y3 for top-coal drawing capa-
bility as the input vectors, while the GRNN uses the selected
indices X1, X2, X3, X4, X5, X6, X7, X8, and X9 for top-coal
drawing capability as the input vectors. The research finds
that the selection of the smooth factor plays a critical role
in the model performance. If the smoothing factor is too

Table 2: Correlations of various factors.

Factor X1 X2 X3 X4 X5 X6 X7 X8 X9

Correlation

X1 1.000 0.664 -0.198 -0.432 -0.705 0.295 -0.046 0.120 0.437

X2 0.664 1.000 0.081 -0.402 -0.592 0.285 -0.220 0.114 0.259

X3 -0.198 0.081 1.000 0.045 0.078 -0.171 0.092 0.197 0.068

X4 -0.432 -0.402 0.045 1.000 0.717 -0.252 0.151 -0.527 -0.547

X5 -0.705 -0.592 0.078 0.717 1.000 -0.250 0.339 -0.233 -0.601

X6 0.295 0.285 -0.171 -0.252 -0.250 1.000 0.420 0.633 0.498

X7 -0.046 -0.220 0.092 0.151 0.339 0.420 1.000 0.433 0.088

X8 0.120 0.114 0.197 -0.527 -0.233 0.633 0.433 1.000 0.595

X9 0.437 0.259 0.068 -0.547 -0.601 0.498 0.088 0.595 1.000

Table 3: Total variances.

PC
Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total
Variance
percent

Cumulative
variance (%)

Total
Variance
percent

Cumulative
variance (%)

Total
Variance
percent

Cumulative
variance (%)

1 3.660 40.670 40.670 3.660 40.670 40.670 3.306 36.737 36.737

2 1.971 21.897 62.567 1.971 21.897 62.567 2.294 25.492 62.229

3 1.144 12.713 75.280 1.144 12.713 75.280 1.175 13.052 75.280

4 0.870 9.662 84.942

5 0.484 5.379 90.321

6 0.444 4.932 95.253

7 0.177 1.970 97.224

8 0.155 1.719 98.943

9 0.0195 1.057 100

Table 4: Scoring coefficients of PCs.

PCs
0.231 -0.017 -0.251

X1 0.251 -0.097 0.014

X2 0.022 -0.042 0.799

X3 -0.230 -0.028 -0.140

X4 -0.301 0.084 -0.013

X5 -0.007 0.368 -0.260

X6 -0.204 0.399 -0.085

X7 0.013 0.350 0.222

X8 0.150 0.182 0.126

X9 0.231 -0.017 -0.251
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small, the network is likely to be overfitted, while if too large,
a smoothing factor fails to distinguish between various
details. The smooth factor here is selected through use of
the construction method according to the following steps:
inputting training samples to train the original GRNN
model and then setting the smoothing factor to different
values in the range of [0.1, 1.0], with an increment of 0.1.
The relationship between prediction accuracy of the model
for training samples and the value of the smoothing factor
is illustrated in Figure 3. The value of the smoothing factor
corresponding to the highest accuracy is selected.

4.4. Predicted Results. Apart from studying differences of the
GRNN model and the PCA–GRNN model subject to dimen-
sion reduction with PCA in accuracy in the model training
stage, the research also introduces the random forest model
to compare test results of different models. At first, 20
groups (five groups at each level) of training samples are
input as the learning samples to train each model, and then,
five groups of samples to be judged are input to test perfor-
mance of these models.

The test results are illustrated in Figure 4 and Table 6.
For testing samples, the PCA–GRNN model always has
accuracy higher than other models. Among learning sam-
ples, the PCA–GRNN model yields results different from
the actual level in only one learning sample, while its results
in testing samples are same as the actual level. It is evident
that the PCA can improve the prediction accuracy of the
model. The result indicates that the PCA–GRNNmodel pro-
vides a prediction method for accurately determining top-
coal drawing capability.

When comparing with the random forest model and the
GRNN model as shown in Table 7, the GRNN and random

forest models have lower accuracy in the training samples and
prediction samples. Also, PCA–GRNNmodel take less time to
run. Therefore, the application of this model to accurately
identify the cavability of coal seams is beneficial to reduce
the blindness in the promotion work and improve the mining
effect of top-coal caving in steeply inclined coal seams.

Table 5: Calculated contributions of original influencing factors to the established model.

Influencing factors X1 X2 X3 X4 X5 X6 X7 X8 X9
Contributions 0.584 0.324 0.724 0.537 0.375 0.794 0.640 0.974 0.674
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prediction accuracy.
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Figure 4: Comparison of levels predicted using the GRNN model,
the random forest model, and the PCA–GRNN model.

Table 6: Performance test results of each model.

No. Actual level GRNN Random forest PCA–GRNN

21 A A A A

22 A B A A

23 B B C B

24 B B B B

25 C C C C

Table 7: Comparison of the evaluation results of each model.

Parameters GRNN
Random
forest

PCA–
GRNN

Average training accuracy
(%)

92 85 98

Average prediction accuracy
(%)

80 80 100

Time (s) 6.52 9.71 4.15
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In view of the different level of top-coal drawing capabil-
ity, necessary top-coal weakening measures will be taken to
ensure the top-coal discharge rate and effectively prevent
the occurrence of roof disasters.

5. Conclusions

(1) The PCA is used to process data related to factors
influencing top-coal drawing capability, thus trans-
forming nine influencing factors into three PCs. This
reduces dimensions of data, simplifies the prediction
model, and finally improves prediction efficiency
and accuracy

(2) PCA and GRNN are combined to establish the
PCA–GRNN prediction model for top-coal drawing
capability in steep seams, and an appropriate smooth
factor is selected. Comparisons with the GRNN and
random forest models prove that the accuracy of
the PCA–GRNN model is higher

(3) According to analysis of contributions of each
influencing factor to PCs and PCs to the model in
the PCA process, importance of each influencing
factor is calculated and predicted. In this way, the
floor flatness (X3), dip angle of coal seams (X6),
and hardness of coal seams (X8) are found to make
the largest contributions, so it is inferred that they
exert significant influences on top-coal drawing
capability

(4) The combined model PCA–GRNN proposed in the
research can improve the prediction accuracy, while
the prediction results can be further optimized. In
future research, the number of samples will be
increase to improve the generalization ability and
prediction accuracy of the model. At the same time,
considering the influence of multicoal seam mining,
groundwater, and other factors on the cavitation of
top coal, the prediction model will be further
improved
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