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In order to realize dynamic, continuous, and real-time prediction of coal and gas outburst risk in real time in blasting driving face,
an outburst risk prediction method based on the characteristics of gas emission after blasting is proposed. In this study, the causes
of abnormal gas concentration in blasting driving face are analyzed, and the identification method of abnormal gas concentration
based on weighted K-nearest neighbor (weighted KNN) is proposed. The correlation between gas emission characteristics after
blasting and K1 value is analyzed, and the prediction model of outburst risk based on convolutional neural networks (CNN) is
established and applied in Jinjia coal mine in China. The results show that the causes of abnormal gas concentration mainly
include ventilation stop, blasting operation, sensor adjustment, and other abnormalities. The accuracy of the identification
method is 86.1%. Especially, the identification accuracy of blasting operation is 92%. There are strong correlations between the
growth rate, peak value, and decay rate of gas concentration after blasting and K1 value, and the maximum correlation
coefficient is 0.92. Using the prediction model, 28 times of jet holes and 1 small outburst event are predicted successfully, and
the efficiency of the prediction model is 76.39%. By this technology, the utilization rate of gas information is improved, and
the relationship between the change characteristics of gas concentration after blasting and the risk of coal seam outburst is
established, which is of significant for improving the prediction accuracy and risk management ability of coal and gas outburst.

1. Introduction

Coal and gas outburst is one of the most destructive and
harmful dynamic disasters in coal mining. During the min-
ing process, a large amount of coal and gas bursts out from
coal seam in a very short time, accompanied by a strong
dynamic phenomenon, which can cause significant personal
casualties and property losses [1, 2]. With the increasing
complexity of mining geological and technical conditions,
coal and rock dynamic disasters such as coal and gas out-
burst also increase [3, 4]. Coal and gas outburst accidents
caused by coal roadway driving pose a great threat to the
personal safety of miners and the safety production of coal
mine [5]. The technical processes adopted to prevent coal

and gas outburst in the driving process are complex and var-
ious, which seriously affects the driving speed, and easily
lead to the imbalance of mining proportion and the difficulty
of mining replacement [6, 7].

In the major coal-producing countries, a lot of material
and financial resources have been invested to conduct exten-
sive and in-depth research on the prevention and control of
coal and gas outburst ([8–10]). Many achievements have
been made worldwide in the monitoring, early warning,
and prevention of coal and gas outburst, and the corre-
sponding prediction methods and early warning indicators
have been put forward ([11, 12]

In the 1960s, the former Soviet Union took the lead in
putting forward the single index method and comprehensive
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index method for regional prediction of coal and gas out-
burst risk in the world through the study of coal seams with
coal and gas outburst risk [13], which are mainly completed
through the drilling cuttings index. The Donetsk Institute of
Technology Ukraine also used the elastic modulus and shear
modulus of coal to determine the coal and gas outburst risk
of coal seams. Poland mainly used the two indexes of drilling
cuttings and borehole gas analysis to determine the risk of
coal seam outburst. It was considered that when the amount
of coal powder drilling cuttings was greater than 4 g/L and
the borehole gas analysis was greater than 1.18 kPa, the coal
seam has the risk of coal and gas outburst. In Germany, this
index is the desorbable gas content of coal seams, which is
mainly measured by geological borehole sampling, and the
index is used to predict the regional risk of coal and gas
outburst.

In China, the traditional prediction indexes include gas
analysis index Δh2, drilling cuttings S, initial gas emission
velocity q, and comprehensive index R. The popularization
and application of these prediction indicators have produced
good economic and social benefits in a certain period of time
[14], but the amount of information obtained by these static
indicators is limited, which is difficult to reflect the whole
process of prominent evolution [15]. It is urgent to find a
dynamic and continuous outburst risk prediction method
for the risk management and prevention of coal and gas
outburst.

In recent years, more and more scholars have studied the
characteristics of coal and gas outburst, trying to find a
method for accurately predicting outburst risk. Some experts
and scholars apply engineering technologies and geophysical
methods to predict the outburst risk, including the drill cut-
tings index method (the amount of drill cuttings S, the drill
cuttings desorption index K1 or Δh2), the initial velocity of
gas emission from drilling holes, the composite index
method [16, 17], acoustic emission (AE) technology [12,
18, 19], microseismic (MS) technology [20, 21], and electro-
magnetic radiation (EMR) technology [22, 23]. Some
scholars input factors affecting coal and gas outburst into
algorithms and models of machine learning such as Fisher
Discriminant Analysis (FDA) [24] and neural network [25]
to analyze the correlation between various factors and the
risk of coal and gas outburst and realize the prediction of
outburst risk [26, 27]. Some scholars propose several new
parameters, such as temperature [28], radon concentration
[29], and oxygen concentration [30], as the prediction indi-
cators of coal and gas outburst risk.

The above technologies and methods are of great signif-
icance to predicting outburst risk. However, the above
research is mainly conducted for fully mechanized mining
faces. For some blasting mining faces, the risk of the coal
seam is also affected by blasting behavior. On the one hand,
after blasting, the coal structure becomes loose, and the gas
in front of the driving face gushes out, resulting in a rapid
increase of roadway gas concentration, and the gas concen-
tration would exceed the limit. On the other hand, if the
speed of gas gushing out is too fast, it might drive the coal
to come out together, causing coal and gas outburst disas-
ters. At present, the general understanding of the evolution

process of coal and gas outburst is that the gas bearing coal
body deforms and destroys under the action of stress and
gas pressure, which causes the gas to drive the coal body to
gush out, resulting in disasters and accidents. Therefore,
the abnormal gas concentration can predict the risk of coal
seam outburst.

At present, almost all mines are equipped with safety
monitoring systems, which can continuously obtain the
real-time parameters of gas, wind speed, etc. It is found that
when the wind speed at the local fan outlet is relatively con-
stant and the gas sensor is hung correctly, the gas concentra-
tion measured by the gas sensor can reflect the gas
desorption capacity, the disturbance desorption capacity
after blasting, coal seam gas pressure coupled with mining
stress, and other outburst influencing factors. On the one
hand, the abnormal increase of gas concentration after blast-
ing shows that the area has a high outburst risk [31]. On the
other hand, blasting can loosen coal and cause gas release;
the rapid increase of gas concentration after blasting is not
necessarily caused by the strong risk of gas outburst of coal
seam. Therefore, the key to effectively predict outburst is to
accurately judge the abnormal gas emission caused by strong
outburst risk. In the past, workers mainly focused on the
concentration value of gas data and considered that high
concentration is dangerous and low concentration is safe,
resulting that the gas data characteristics not being fully
excavated. So far, there have been few reports on the direct
relationship between the change characteristics of gas con-
centration after blasting and the risk of coal seam outburst.
In order to realize the automatic and intelligent identifica-
tion of coal and gas outburst risk in blasting face, it is neces-
sary to identify blasting events through gas concentration
monitoring data, analyze the correlation between abnormal
gas concentration and coal and gas outburst risk through a
large amount of data, and then make accurate early warning
in time.

Based on a large number of gas concentration monitor-
ing data in safety monitoring systems of Jinjia coal mine, this
paper firstly analyzes the causes of abnormal gas concentra-
tion in blasting driving face and proposes the identification
method of abnormal gas concentration. Then, the correla-
tion between gas emission characteristics after blasting and
the index K1 value reflecting outburst is analyzed, and the
prediction model of coal and gas outburst risk is established.
Finally, the prediction model is applied, and its prediction
results are evaluated. As a supplement to the existing predic-
tion methods, it is of great significance to improve the pre-
diction and risk management ability of coal and gas
outburst accidents.

2. Principle and Process of Gas Abnormal
Identification for Outburst Risk Prediction

2.1. Identification of Abnormal Gas Concentration

2.1.1. Analysis of Abnormal Gas Concentration. The gas con-
centration curve reflects the change of gas concentration
with time. Any fluctuation of the gas concentration curve
reflects some change in downhole environment. In a large
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number of historical data of gas concentration, most of
monitoring data are relatively stable, and the information
contained is relatively scarce. What attracts people’s atten-
tion is often the abnormal data with violent fluctuations. In
order to detect the time series of abnormal gas concentra-
tion, the causes of abnormal gas concentration are analyzed.

Gas monitoring system is a system used to monitor gas
concentration and change to prevent gas accidents. Com-
bined with field observation and the data in gas monitoring
system, the characteristics of gas data corresponding to dif-
ferent types of activities are obtained.

For the blasting driving face, there are four main causes
for abnormal gas time series: gas sensor adjustment, blasting
operation, ventilation stop, and other abnormalities, which
are shown in Figure 1 together with the stationary data.

Stationary data is a frequent pattern in the gas time
series. This series is the gas time series in the period of no
abnormal activity. The observed value of gas concentration
is usually low and has slight fluctuation. When the gas sen-
sor is being adjusted, the gas concentration curve rises
instantaneously and lasts for a short time. When blasting
mining, a large amount of gas will be released from the coal
body that suddenly collapses, and the gas concentration will
increase and then decrease slowly. When the working face is
in the air stop state, the gas concentration will rise sharply
and last for a while because the gas cannot be discharged.
In addition, when the gas concentration is in an abnormal
state, the concentration value varies from large to small.

It should be noted that stationary data does not mean
that it is a safe signal. Whether the value of stationary data
exceeds the alarm value or always shows an upward trend,
it means that the risk is increasing.

In the above four cases, the gas concentration will be
abnormal, but the reasons are different, and specific mea-
sures need to be taken according to the specific reasons,
which cannot be treated indiscriminately. If it is determined
that the gas sensor is adjusted or the gas concentration is
increased due to blasting, it does not need to be treated. If
the gas concentration increases due to ventilation failure,
ventilation needs to be restored as soon as possible. How-
ever, if the result of outburst prevention inspection shows
that the gas is abnormal and there is a risk of outburst, it
is necessary to immediately strengthen ventilation and
drainage, cut off power, and evacuate people. Therefore,
the correct classification and identification of the abnormal
state of gas concentration in the blasting driving working
face are of great significance to coal mine safety production.

2.1.2. Identification Method. In the actual production pro-
cess of coal mine, more attention is paid to the abnormal
state with high gas concentration value. There are different
ventilation and geological conditions in the different mine,
and the values of gas concentration time series in the same
state may also be different. Therefore, it is necessary to deter-
mine the threshold CL according to different mine and road-
way conditions to divide the gas concentration time series
into gas concentration abnormal signal, that is, the gas con-
centration value higher than CL in the whole gas concentra-
tion time series is defined as gas concentration abnormal

signal. Set the gas concentration time series as

C tð Þ = C1 t1ð Þ, C2 t2ð Þ, C3 t3ð Þ,⋯, Cn tnð Þf g, ð1Þ

where ti is time, CiðtiÞ is the gas concentration at ti (%) and
N is the time length of gas concentration time series.

The jth subsequence of CðtÞ is

Cj tð Þ = Cm+1 tm+1ð Þ, Cm+2 tm+2ð Þ,⋯, Cm+p tm+p
� �� �

: ð2Þ

If the gas concentration value in CjðtÞ is continuous and
Ci ≥ CL, the CiðtiÞ in CjðtÞ is defined as gas concentration
abnormal signal.

Gas concentration monitoring is a continuous process.
The generation of gas concentration abnormal signal is
closely related to the change of gas concentration in the early
stage. Therefore, when extracting the characteristics of gas
concentration abnormal signal, the changes of gas concen-
tration before and after gas concentration abnormal signal
should be considered to reflect its characteristics more
comprehensively.

Identify the wave peak of the gas concentration abnor-
mal signal, and intercept the gas concentration data CqðtÞ
of (M +N) min, which includes the gas concentration
abnormal signal CjðtÞ, M min before the peak, and N min
after the peak. CqðtÞ is defined as gas concentration abnor-
mal sequence:

Cq tð Þ = CM , CNf g, ð3Þ

where CM and CN are gas concentration time series with
time length ofM min and N min, respectively. The intercep-
tion process of abnormal gas concentration sequence is
shown in Figure 2.

The identification of abnormal gas concentration in
blasting driving faces can be regarded as a classification
problem. When the gas concentration value exceeds a cer-
tain threshold, determine the abnormal causes according to
the change of gas concentration curve at this time. Feature
extraction is a key step in the design of a classifier. The qual-
ity of features directly affects the classification performance
of the classifier. It can be seen from Figure 1 that the gas
concentration time series curves vary greatly under different
causes. Extract the gas concentration value in CqðtÞ, and cal-
culate the time-domain features representing the curve
change, as shown in Table 1.

Label the extracted 12 features that reflect curve changes.
That is, it can accurately determine which type of sensor
adjustment, blasting operation, ventilation stop, and other
abnormalities belongs to each group of features. In this
paper, the time corresponding to abnormal gas concentra-
tion signal peak is used to compare the sensor adjustment
recording time, blasting registration recording time, and
ventilation stop time (the time when the wind speed is 0).
Considering the influence of error, if the time difference of
comparison is less than 10min, the labels corresponding to
this group of features are sensor adjustment, blasting
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operation, and ventilation stop, respectively; others are clas-
sified as other abnormalities.

As shown in Figure 3, in total, 12 features are extracted
from the abnormal gas concentration sequence and input
into the weighted K-nearest neighbor (weighted KNN) clas-
sifier to realize the identification of abnormal gas
concentration.

2.2. Prediction Process of Coal and Gas Outburst Risk. Based
on a large number of gas concentration data in the monitor-

ing system, an identification method of abnormal gas con-
centration based on weighted KNN is proposed. Based on
the blasting operation in the identification results, the con-
volutional neural networks (CNN) is applied to establish
the prediction model of coal and gas outburst risk to realize
dynamic and continuous prediction of the outburst risk in
front of the blasting working face. The specific process is
shown in Figure 4.

The gas concentration data uploaded by the gas sensor is
analyzed and judged by the method in Section Section 2.1.2.
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If the data is stationary data, no warning will be given. If not,
it will be regarded as the abnormal sequence. The abnormal
features will be extracted from the abnormal sequence, and
then the abnormal gas concentration will be identified by
the method of abnormal gas concentration based on
weighted KNN. And then the gas concentration data will
be converted into 2D image conversion. The 2D image con-
version is used to predict the risk of coal and gas outburst in

the process of coal roadway driving based on the CNN
model, and the prediction results are obtained.

In order to realize dynamic and continuous prediction of
coal and gas outburst risk, the weighted KNN and CNN
algorithms are used to realize the abnormal gas concentra-
tion identification and outburst risk prediction. Weighted
KNN [32] is an improved algorithm based on the K-
nearest neighbor and uses the weight approach to assign a

Table 1: Time-domain features of abnormal gas concentration sequence.

Number Features Meaning Calculation formula

1 Peak value Maximum gas concentration value in Cq tð Þ Cpeak =max Ci tið Þð Þ, i = 1, 2,⋯,m + n

2 Average value
General level and central trend of gas concentration

value in Cq tð Þ �C = 1/m + n〠m+n
i=1 Ci tið Þ, i = 1, 2,⋯,m + n

3
Root mean
square value

Dispersion degree of gas concentration value in Cq tð Þ Crms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/m + n〠m+n

i=1 Ci tið Þ2
q

, i = 1, 2,⋯,m + n

4 Variance Deviation between Cq tð Þ and its average value σ2 = 1/m + n〠m+n
i=1 Ci tið Þ − �C

� �2, i = 1, 2,⋯,m + n

5
Standard
deviation

Dispersion degree of gas concentration value in Cq tð Þ s =
ffiffiffiffiffi
σ2

p

6
Coefficient of
variation

Relative statistics of the dispersion degree of Cq tð Þ Vs = s/�C

7
Peak-to-

average ratio
Extreme degree of Cp in Cq tð Þ Cp = Cpeak/Crms

8 Skewness
Skew direction and degree of Cq tð Þ distribution, digital
feature of the asymmetric degree of data distribution

Sk = 1/m + n〠m+n
i=1 Ci tið Þ − �C

� �3/σ3
	 


, i = 1, 2,⋯,m + n

9 Kurtosis
The sharpness of the peak of the gas concentration

curve
K = 1/n〠m+n

i=1 Ci tið Þ − �C
� �4/σ4

	 

, i = 1, 2,⋯,m + n

10
Integral of a
discrete
sequence

The amount of gas emission during the period
When the wind speed is constant

Q =〠T

i=tCi tið Þ ti+1 − tið Þ, i = 1, 2,⋯,m + n − 1

11 Peak width Width of the wave crest in Cq tð Þ Cw

12
Peak

prominence
Prominence of the wave crest in Cq tð Þ Cp

Note,m and n are, respectively, the number of gas concentration values withinM and N min; Δt is the sampling interval time; t is the sampling start time; and
T is the total sampling time.
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Figure 3: Identification method of abnormal gas concentration.
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larger weight to the point closer to the point to be classified.
Each feature of the new sample is compared with the corre-
sponding feature in the training sample set, and the classifi-
cation label of the most similar data of the sample is
obtained through this algorithm. CNN is a special type of
deep feedforward neural network containing convolutional
computation [33], which is mainly composed of the input
layer, convolution layer, pooling layer, activation layer, full
connection layer, and output layer [34]. The convolution
layer is used to extract the features of input layer, and pool-
ing layer is used for information filtering and feature
selection.

In the training process of CNN, the distribution of input
data is different, and some different values will be generated
after matrix multiplication with weight. The slight change of
the difference values will affect the back layer network, lead
to gradient divergence, and reduce the generalization ability
and training speed of the network. To solve this problem, a
batch normalization (BN) method is proposed [35].

The shape of underground gas signal is affected by many
factors, and the most important one is the gas content in
coal seam, which is an important basis for judging the dan-
gerous of coal and gas outburst. If an abnormal gas concen-
tration is caused by an accident rather than coal seam gas
content, it does not indicate an increased risk of coal and

gas outburst. Therefore, before judging the risk of coal and
gas outburst, it is necessary to eliminate the invalid data of
gas anomaly.

In our work, a comprehensive technology is put forward.
When it is applied, the “weighted KNN” technology is used
to identify valid data, and the “CNN” technology is used to
predict the danger. The above two technologies can be used
simultaneously to make the prediction results more accurate.

3. Prediction of Coal and Gas Outburst Risk by
Gas after Blasting

3.1. Correlation Analysis between Gas Concentration after
Blasting and K1. During coal roadway excavation, the K1
value will be tested and obtained regularly. In this section,
the correlation between the gas emission characteristics after
blasting and K1 value is analyzed to explain the rationality of
predicting outburst risk by using gas emission characteristics
after blasting. The K1 value is the gas desorption amount of
one gram of coal sample within one minute after collection,
and the unit is cm3/g·min1/2. The higher the K1 value is, the
higher the risk of coal and gas outburst is [36, 37].

In order to compare and analyze the specific change
characteristics of gas concentration after blasting under dif-
ferent K1 values, for each identified blasting event, the gas
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monitoring data

Gas concentration
abnormal sequence

Stationary
data

Gas abnormal features extraction

The identification method of
abnormal gas concentration

based on Weighted KNN

< CL%
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The prediction model of
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Figure 4: The process of gas abnormal identification and outburst risk prediction.

6 Geofluids



concentration curve is divided into two stages: The first stage
is the straight-line rising stage, in which the gas concentra-
tion shows a straight-line upward trend, and the gas emis-
sion is mainly affected by the falling coal and coal wall.
The second stage is the slow decline stage, in which the gas
concentration shows a slow decline trend, and the gas emis-
sion is mainly affected by the coal wall. Starting from the
blasting time, a gas concentration value is extracted every
10 s in the first stage and every 5min in the second stage.
In order to reduce accidental error, for the blasting events
with the same K1 value, take the average value of gas con-
centration at the same interval after blasting. The variation
characteristics of the average gas concentration after blasting
with time Δt under different K1 values in the two stages are
shown in Figure 5.

It can be seen from Figure 5(a) that in the first stage
(within 2min after blasting), the gas concentration curve pre-
sents the same characteristics of straight-line rising, and the
larger K1 value is, the larger the growth rate and peak value
of gas concentration are. In the second stage, as shown in
Figure 5(b), the gas concentration shows the same logarithmic
decay characteristic with time, and the larger K1 value is, the
faster the decay rate of gas concentration is, and the longer
the time required to recover to a stable value is.

In order to quantitatively analyze the correlation
between the growth rate, peak value, and decay rate of gas
concentration after blasting and K1 value, the correlation
analysis is carried out. The results are shown in Table 2.

It can be seen from Table 2 that the correlation coeffi-
cients between the growth rate, peak value, and decay rate
of gas concentration after blasting and K1 value are 0.85,
0.92, and 0.79, respectively, which are strongly correlated
with K1 value. At the same time, there are also strong corre-
lations between the growth rate, peak value, and decay rate
of gas concentration. Therefore, it is reasonable to predict
the outburst risk in the front of blasting working face by
using gas emission characteristics after blasting.

3.2. Input and Output Layer of CNN. The convolutional neu-
ral network is a model applied to extract deep image fea-
tures, with the characteristics of local connection, weight
sharing, and pooling. It overcomes the disadvantages of high
cost, low precision, and non-generalization of traditional
manual feature extraction. The original gas concentration
time series is transformed into two-dimensional images to
provide image data input for CNN. As shown in Figure 6,
the gas concentration data identified after blasting is mapped
into an RGB image with a size of 120 × 120 × 3 according to
the time sequence and numerical size. which is used as the
input layer of CNN. Compared with the gas concentration
time series as the input layer, this conversion enriches the
gas concentration characteristics after blasting more
obvious.

The purpose of applying CNN is to predict the risk of
outburst, but there is no unified and fixed index to reflect
outburst. According to the relevant research of Han [38],
the outburst prediction indexes adopted in the area where
the Jinjia coal mine is located are mainly the value of gas
desorption index K1 and Δh2 of drilling cuttings, the volume

of drilling cuttings S, and the initial velocity q of drilling gas
emission. After years of practical experience in outburst pre-
diction in the test mining area, the sensitive index of out-
burst prediction is determined as K1 value. Therefore, the
K1 value is used as the index to reflect the outburst risk in
this paper. For each blasting image, the K1 value is used as
the output layer to reflect the outburst risk in the front of
the driving working face. For blasting images processed by
gas concentration curve, compare the blasting time with
the information recorded by K1 value, and each blasting
image corresponds to the corresponding K1 value. 16 groups
of samples are randomly selected from all image samples.
The blasting images with different K1 values are shown in
Figure 7.

It can be seen from Figure 7 that there are obvious differ-
ences in blasting images with different K1 values. The larger
the K1 value corresponding to the image, the higher the
overall brightness of the image, that is, the larger the gas
concentration value corresponding to each stage, which is
also consistent with the relationship between gas emission
characteristics after blasting and K1 value in Section 4.1.

3.3. Outburst Risk Prediction Model. The normalized data of
the blasting image is used as the input layer of CNN. CNN is
composed of a multilayer convolution filter and subsam-
pling filter alternately, and the image is convolved with mul-
tiple convolution kernels. After convolution, the image
features are uniformly processed by BN, and the pooling
layer adopts max pooling to reduce dimensions. After the
blasting image goes through the process of convolution →
pooling → convolution → pooling → convolution → pool-
ing → convolution, local connection and weight sharing
are adopted to filter out process noise and interference infor-
mation to obtain high-level abstract expression of process
data. The dropout layer is applied to discard neurons from
the network with a probability of 20% to prevent CNN
overfitting.

Different characteristics are learned in a supervised man-
ner to predict the outburst risk. The parameters of the out-
burst risk prediction model based on CNN are shown in
Table 3, and the prediction model establishment process is
shown in Figure 8.

Coal and gas outburst disaster is affected by many fac-
tors, such as stress, coal mechanical properties, and gas.
Any factor can play a role in gas outburst. This paper takes
gas as the main research object. By analyzing the law of char-
acteristic parameters of gas data, we can find out what kind
of gas concentration tend after blasting corresponds to coal
and gas outburst risk, so as to realize real-time monitoring
and identification of danger.

4. Field Applications

4.1. Gas Concentration Data Collection. In our work, the
measured location of this work is located in Jinjia coal mine
in Guizhou Province, China. The average thickness of the
coal seam is 1.2m, and the average f value of the coal seam
firmness coefficient is 0.5~0.6. The average buried depth is
320m. There are ridges and valleys on the surface.
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Therefore, the buried depth of coal seams in different areas
varies greatly. The buried depth at the upper corner of the
cutting hole of the working face is the shallowest.

y = 0.0011x + 0.0305
R2 = 0.7752

R2 = 0.9928

R2 = 0.9378

R2 = 0.9468

y = 0.0018x + 0.044

y = 0.0025x + 0.0535

y = 0.0044x + 0.063

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120

G
as

 co
nc

en
tr

at
io

n 
(%

)

Time from blasting moment Δt (s)

K1= 0.12
K1= 0.24

K1= 0.32
K1= 0.35

(a) The first stage

0

0.05

0.1

0.15

0.2

0.25

0.3

1.5 2.5 3.5 4.5 5.5

ln Δt

G
as

 co
nc

en
tr

at
io

n 
(%

)

R2 = 0.9638

R2 = 0.9409

y = –0.0293x + 0.2189

y = –0.0318x + 0.2177

R2 = 0.9333
y = –0.0334x + 0.2838

R2 = 0.6825
y = –0.027x + 0.2738

K1= 0.15
K1= 0.27

K1= 0.20
K1= 0.33

(b) The second stage

Figure 5: Variation characteristics of gas concentration after blasting under different K1 values.

Table 2: Correlation between the growth rate, peak value, and
decay rate of gas concentration and K1 value.

Correlation
coefficient

K1 value
(cm3/g·min1/

2)

Growth rate
(%/s×10-3)

Peak
value/
%

Decay rate
(%×10-2)

K1 value 1.00 0.85 0.92 0.79

Growth rate 0.85 1.00 0.87 0.72

Peak value 0.92 0.87 1.00 0.84

Decay rate 0.79 0.72 0.84 1.00 RGB image with a
size of 120×120×3

Gas concentration
curve after blasting

Figure 6: Gas concentration data after blasting is mapped into an
RGB image.
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In this paper, we select the historical data stored by the
gas and wind speed sensor of a station in the safety monitor-
ing system of 1138 and 11224 transportation roadways of
Jinjia coal mine in China. The sampling time of 1138 and
11224 transportation roadways is January 1, 2019, to April
30, 2019, and August 1, 2017, to December 31, 2017. The
gas data sample set of 1138 transportation roadway is used
for model training, and that of 11224 transportation road-
way is used for model verification. Jinjia coal mine is a coal
and gas outburst mine. The average gas content of 3# coal
seam of 1138 transportation roadway and 22# coal seam of
11224 transportation roadway are 17.55m3/t and 10.79m3/
t, respectively, and the average gas pressure is 0.97MPa
and 1.80MPa, respectively. The gas content and the gas
pressure are all high. It is easy to cause local gas emissions
and coal and gas outburst during roadway driving.

Gas sensors T1, T2, and T3 should be arranged in the
driving roadway to monitor the gas concentration in real
time. The layout of T1, T2, and T3 is shown in Figure 9. It
can be seen from Figure 9 that the gas sensor T1 is closest
to the blasting driving face and can reflect the change of
gas concentration in front of the blasting driving face in real
time. During the field test, T1 sensor is located 5m in front

of the excavation. Therefore, the monitoring data of gas sen-
sor T1 is used for analysis in this paper.

In the Jinjia coal mine, gas monitoring system is a system
used to monitor gas concentration and change to prevent gas
accidents. The gas monitoring system is mainly composed of
monitoring host, computer network, monitoring software,
transmission interface and transmission channel, under-
ground data acquisition substation, various sensors, and
actuators. These systems work together to form a complete
gas monitoring system. The gas monitoring system monitors
and records the gas concentration at the monitoring site in
real time and visually displays the gas concentration moni-
toring curve on the monitoring screen. The gas concentra-
tion data in the paper is obtained from the gas monitoring
system.

4.2. Field Application of Identification Method. The gas con-
centration data of 1138 transportation roadway are analyzed
to obtain the gas concentration abnormal sequence with the
peak value of no less than 0.15%, 10min before the peak and
30min after the peak. The 12 features of each gas concentra-
tion abnormal sequence are calculated, and the deviation
standardization method is used to map the feature data

K1 = 0.16 K1 = 0.23

K1 = 0.12 K1 = 0.29

K1 = 0.23

K1 = 0.23

K1 = 0.17

K1 = 0.17

K1 = 0.16

K1 = 0.17

K1 = 0.17

K1 = 0.22

K1 = 0.20 K1 = 0.21

K1 = 0.21 K1 = 0.22

Figure 7: Gas concentration images after blasting with different K1 values.

Table 3: The parameters of the outburst risk prediction model based on CNN.

Convolution parameters Value/type Pooling parameters Value/type

Convolution kernel size f = 5 × 5 Pooling kernel size f = 2 × 2
Convolution step length s0 = 1 Pooling step length s0 = 2
Filling style Same padding Filling style —

Number of filling layers p = 2 Number of filling layers p = 0
Activation function ReLU Pooling style Max pooling
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between [0,1], so as to eliminate the dimensional influence
between features.

The feature data set and corresponding cause label con-
stitute the sample data set. The first 80% of the sample data
set is divided into the training set and the last 20% into the
test set. The training and test sets are separately input into
the weighted KNN classifier for continuous training and
optimization to verify the model. In the training process,
the Euclidean distance is used to reflect the distance between
samples, and the Gaussian function is used to increase the
weight. The value of k is 10, which means that the 10 sam-
ples with the smallest distance are selected for comparison.

The model training is verified by 5-fold cross validation.
The confusion matrix of the identification results is shown
in Figure 10.

As the data features of the four abnormal sequences
interact and overlap each other in space, the weighted
KNN has a certain degree of “cause confusion” in identifying
each abnormal cause, that is, a small number of “misclassifi-
cation” phenomena occur in each abnormal cause. It is easy
to classify ventilation stops as a blasting operation or other
abnormalities, especially in identifying ventilation stops.
However, most samples can be correctly classified into the
corresponding causes.
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Figure 8: Prediction model of outburst risk based on CNN.
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Figure 9: Layout of gas sensors in blasting driving face.
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The confusion matrix reflects the advantages and disad-
vantages of weighted KNN in identifying the abnormal gas
concentration. The ROC (receiver operating characteristic)
curve can be used to evaluate the classification performance
of the method as a whole. The ROC curve is the line of each
point with a false-positive rate as abscissa and a true-positive
rate as ordinate. AUC (area under curve) represents the area
under the ROC curve, between 0.1 and 1, which can measure
the generalization performance of the method. Figure 11
shows the ROC curve of the weighted KNN. The current
classifier performance is (0.12,0.85), representing an 85%
true-positive rate and a 12% false-positive rate (Figure 11).
In other words, the probability that weighted KNN correctly
judges the cause of abnormal gas signal is 85% and the prob-
ability of error is 12%. AUC = 0:91, and 0:5 < AUC < 1;
therefore, the proposed weighted KNN method is superior
to random guess and has a certain identification value.

The weighted KNN method trained by the gas concen-
tration data of 1138 transportation roadway is applied to
11224 transportation roadway, and the abnormal gas con-
centration is marked differently according to the different
causes. Typical identification results are shown in Figure 12.

It can be seen from Figure 12 that the identification
results by the proposed method are generally consistent with
the judgment results of manually viewed waveform curves.
In particular, the identification of blasting operation events
is more accurate, which lays a foundation for the prediction
of outburst risk by using the characteristics of gas emission
after blasting.

4.3. Field Application of Prediction Model. The blasting oper-
ation events identified in 1138 transportation roadway are
applied to establish an outburst risk prediction model. The
blasting image and K1 value are mapped to form a sample
data set. The first 80% of the sample data set is divided into
the training set, and the last 20% into the test set, which is
input into CNN for continuous training and optimization.
The trained CNN is applied to 11224 transportation road-
way, and the prediction results are analyzed and evaluated

in combination with small gas dynamic performances such
as jet holes and outburst.

The jet hole is a phenomenon of dynamic manifestation;
coal and gas are ejected from the borehole during the drilling
of coal seam with risk of coal and gas outburst, especially in
soft coal seams under high in situ stress, high gas pressure,
and gas content. The jet hole can be considered micro coal
and gas outburst [17]. According to the Rules for the Pre-
vention and Control of Coal and Gas Outburst [37], the out-
burst mine should determine the sensitive indexes and
critical values for the driving working face prediction
through experiments according to the characteristics and
conditions of each coal seam and serve as the main basis
for judging the outburst risk of the driving working face.
In the practice of outburst prediction in Jinjia coal mine
for many years, the K1 value is taken as the sensitive index
of outburst prediction. According to the Rules for the
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Figure 10: The confusion matrix of the identification results.
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Prevention and Control of Coal and Gas Outburst, the pre-
dictions are carried out in strict reference to the index criti-
cal value of 0.5 cm3/g·min1/2. That is, when the measured K1
value exceeds 0.5 cm3/g·min1/2, there will be an outburst risk
in front of the blasting driving working face, and relevant
outburst prevention measures should be taken.

Based on the characteristics identification results of
abnormal gas concentration after blasting operations in
11224 transport roadway from August to December 2017,
the risk prediction model of coal and gas outburst is applied
to predict the K1 value of each identified blasting event.
According to the prediction results of K1 value and its criti-

cal value, 28 times of jet holes and 1 small outburst event in
the front of 11224 working face are predicted successfully.
Figure 13 selects the gas concentration monitoring curves
and corresponding events of 11224 transportation roadway
in August and December 2017 to analyze the outburst risk
prediction results.

As shown in Figure 13(a), the predicted K1 values are
0.51737, 0.52890, 0.57401, and 0.58149, respectively, in the
four blasting events from August 9 to 10, all exceeding the
K1 critical value of 0.5. The jet holes event occurred during
drilling at the third shift on August 10, while the measured
K1 values on August 8 to 10 were all 0.27, which did not
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Figure 12: Identification results in 11224 transportation roadway.
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exceed the K1 critical value. In a blasting event of the first shift
on August 11, the predicted K1 value is 0.70496, exceeding the
K1 critical value of 0.5. However, there were no outburst
events such as jet holes in the following three days, which is
a failed prediction. In the third shift blasting event on August
13, the predicted K1 value is 0.66774, exceeding the K1 critical
value of 0.5. On August 15, the measured K1 value was 0.52,
and a jet hole occurred during drilling.

As shown in Figure 13(b), on December 8, the blasting
operation was carried out three times in front of the blasting

driving face 11224. The predicted K1 value of the third blast-
ing event is 0.67557, exceeding the K1 critical value of 0.5.
From December 9 to 11, the jet holes event occurred four
times, and the measured K1value on December 10 was
0.52, accompanied by one small outburst event.

4.4. Evaluation of Prediction Results. From August to
December 2017, the jet holes event occurred for 32 times
in the 11224 transportation roadway. See Table 4 for the spe-
cific time of jet holes.

Jet hole

Sensor adjustment

The measured K1 value
exceeds the critical value and jet hole

The predicted K1 value
exceeds the critical valueThe predicted K1 value

exceeds the critical value

Date

G
as

 co
nc

en
tr

at
io

n 
(%

)

08-07 08-08 08-09 08-1108-10 08-12 08-13 08-14 08-15 08-16
0

1

2

3

4

5

0.52890
0.51737 0.57401

0.58149 0.70496 0.66774

Blasting operation
Predicted K1 value

Peak value after blasting
K1 critical value

Gas concentration curve

(a) Jet holes events in August 2017

The predicted K1 value
exceeds the critical value

The measured K1 value
exceeds the

critical value and
small outburst

Jet hole

Blasting operation
Predicted K1 value

Peak value after blasting
K1 critical value

Date

12-04 12-05 12-06 12-07 12-08 12-09 12-10 12-11 12-12

Gas concentration curve

0.67557

G
as

 co
nc

en
tr

at
io

n 
(%

)

0.2

0

0.4

0.6

0.8

1

1.2

(b) Jet holes and outburst events in December 2017

Figure 13: Analysis of outburst risk prediction results.
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The predicted K1 value exceeds the critical value 18
times, applied the established outburst risk prediction
model. The prediction period is set as 3 days. That is, if there
are jet holes or other gas dynamic phenomena within 3 days
after the predicted K1 value exceeds the critical value, the
prediction is considered to success. Among the 18 times
exceeding the critical value, 16 times of prediction are suc-
cessful, and 2 times are failed. Among the 32 times jet holes
events, 28 times are predicted accurately, and 4 times are
missed. In order to objectively evaluate the prediction model
and comprehensively consider the impact of accurate pre-
dictions, failed predictions, and missing predictions, the R
-score method is used to evaluate the outburst risk predic-
tion results. The larger the R is, the better the effect is. Pre-
diction efficiency R [20, 39] is defined as

R = n11
N1

−
n10
N0

, ð4Þ

where n11 , n
1
0 , N1, and N0 are, respectively, the number of jet

holes accurate predictions, failed predictions, occurrences,
and out of the critical value times, and their values are 28,
2, 32, and 18, respectively. According to Equation (4), the
prediction efficiency R is 76.39%.

5. Discussion about Abnormal Gas
Emission during the Evolution of Coal and
Gas Outburst

The occurrence of coal and gas outburst is essentially the
instability and failure of gas bearing coal. In the process of
coal roadway driving, on the one hand, the change of coal
seam stress state and distribution changes the occurrence
state of gas; on the other hand, mining activities change
the pore structure of coal seam, resulting in the change of
gas flow mode in coal seam. The change of coal structure
in front of the blasting driving face during coal and gas out-
burst induced by coal roadway driving is shown in Figure 14.

As shown in Figure 14(a), at the beginning of roadway
driving, the coal seam is in a stable state, and the coal struc-
ture changes little. With the increase of driving distance, the

impact of mining activities on the structure of coal and rock
mass is gradually significant. However, according to the sim-
ulation results above, when the driving distance reaches
3.0m as shown in Figure 14(b), the coal is still stable, and
the coal structure has not changed significantly. When the
roadway driving distance reaches 3.4m as shown in
Figure 14(c), macro cracks appear at about 0.5m in front
of the driving face, and fracture zones are formed and ini-
tially connected, and the coal gas can flow to the roadway
through the fracture zone. When the driving distance
reaches 4m, a large amount of gas gushes out from the deep
coal seam, and the high-pressure gas flow quickly throws the
coal body from the coal seam to the roadway, forming a
large-scale dynamic disaster of coal and gas outburst.

In the process of coal and gas outburst disaster illus-
trated in Figure 14, it has been accompanied by the outward
gas emission of coal seam. If the mining activity does not sig-
nificantly impact on the coal structure in front of the blast-
ing driving face, the evolution of the disaster is in the state
of Figure 14(a) or Figure 14(b), and gas emission is relatively
stable. At this time, the coal seam is safe and can be exca-
vated normally. If the mining activity has a significant
impact on the coal structure in front of the blasting driving
face, the evolution of the disaster is in the state of
Figure 14(c), and gas emission will be different from normal.
At this time, the coal seam is at risk, and measures should be
taken to eliminate the outburst risk.

According to the simulation results of the evolution pro-
cess of coal and gas outburst, during coal roadway excava-
tion, the relationship between gas emission and coal and
gas outburst danger is very close, and different risks would
show different characteristics of gas emission, which pro-
vides a theoretical basis for the technical application of this
paper.

Figure 14 also shows that the process of coal and gas out-
burst is very complex, and there will be false warnings and
missing alarms only by the threshold early warning method.
It is necessary to predict outburst risk according to the gas
emission trend.

The prediction method based on gas characteristics after
blasting has good applicability in coal and gas outburst risk
early warning process of blasting driving face. In addition,

Table 4: Jet holes events in 11224 transportation roadway.

Number Date Shift Number Date Shift Number Date Shift

1 2017.08.10 3rd 12 2017.9.15 1st 23 2017.12.11 1st

2 2017.08.15 3rd 13 2017.9.16 1st 24 2017.12.13 1st

3 2017.08.27 3rd 14 2017.9.23 3rd 25 2017.12.13 1st

4 2017.08.27 3rd 15 2017.9.23 3rd 26 2017.12.14 1st

5 2017.09.01 3rd 16 2017.9.23 1st 27 2017.12.14 3rd

6 2017.09.08 3rd 17 2017.10.15 1st 28 2017.12.16 3rd

7 2017.09.09 2nd 18 2017.10.25 1st 29 2017.12.19 1st

8 2017.09.13 2nd 19 2017.10.31 1st 30 2017.12.20 1st

9 2017.09.13 1st 20 2017.12.09 3rd 31 2017.12.20 2nd

10 2017.09.13 1st 21 2017.12.10 3rd 32 2017.12.21 2nd

11 2017.09.14 1st 22 2017.12.10 1st — — —
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the method proposed in this paper to predict disaster risk
through in-depth analysis of common signal characteristics
has good applicability for complex coal and rock power
disaster monitoring and early warning.

6. Conclusions

At present, there is a lack of reliable real-time prediction
technology for the risk of coal and gas outburst in blasting
faces. An outburst risk prediction method based on the char-
acteristics of gas emission after blasting is proposed to solve
this problem, which has achieved good results in application.
The main conclusions are as follows:

(1) The prediction method of coal and gas outburst risk
can be well applied in blasting driving face; firstly,
the gas concentration anomaly is identified based
on Weighted KNN, and then the outburst risk is pre-
dicted based on CNN. This method can be used to
supplement the existing outburst prediction
methods and assist the traditional prediction indexes
in the dynamic and continuous prediction of out-
burst risk

(2) The accuracy of the identification method of abnor-
mal gas concentration based on the weighted KNN
proposed in this study is 86.1%, of which the identi-
fication accuracy of blasting operation is 92%. It pro-
vides a new idea for determining the causes of gas
concentration exceeding the limit in driving face

(3) There are strong correlations between the growth
rate, peak value, and decay rate of gas concentration
after blasting and K1 value, and the maximum corre-
lation coefficient is 0.92. The blasting images with

different K1 values are obviously different. The larger
the K1 value corresponding to the image is, the
higher the overall brightness of the blasting image
is, the larger the corresponding gas concentration
value is

(4) The prediction model established in this study by
inputting blasting images to CNN achieves a good
predictive effect in coal and gas outburst prediction.
28 times of jet holes and 1 small outburst event in
the front of 11224 working face of Jinjia coal mine
are predicted successfully, and the prediction effi-
ciency of the model is 76.39%

This technology establishes the relationship between the
change characteristics of gas concentration after blasting and
the risk of coal seam outburst, which is significant to
improving the prediction accuracy of coal and gas outburst.
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