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The effective stress equation for unsaturated soil is the most important equation in unsaturated soil mechanics. It has been derived
by many scholars using different methods. However, none of them considered the gradient of the pore water content, which
results in unreasonable force balance equations for different constituent phases in unsaturated soil. To introduce the gradient,
we propose an extended three-phase physical model that includes capillary water, air, and generalized soil skeletons. Based on
this model, three balance equations for these three constituent phases are separately formulated by considering the gradient of
the pore water content. Comparing the result of the superposition of these three balance equations with the total balance
equation, we derive a generalized Terzaghi’s effective stress equation. This equation states that the effective stress is equal to
the total stress minus the neutral stress. In comparison with the classical Bishop’s equation, the generalized Terzaghi’s equation
ensures a smooth and continuous transition from unsaturated to saturated conditions not only in mathematical expression but
also in physical meaning. Furthermore, the different pressure effects of capillary water and adsorbed water, their volumetric (or
areal) effects, and the transformation between them can be considered by adopting the effective saturation of the capillary
water as the effective stress parameter. Therefore, the generalized Terzaghi’s equation can provide a better choice for estimating
the effective stress in unsaturated soils.

1. Introduction

The effective stress equation is the fundamental equation of
soil mechanics and even porous media mechanics [1, 2]. It
has been widely used to address the problems in the fields
of geotechnical engineering [3–5], environmental engineer-
ing [6], energy engineering [7, 8], biomechanics [9], agricul-
tural engineering [10], and materials science [11, 12], among
others [13]. The effective stress equation for saturated soils
was pioneered by Terzaghi [14]:

σ′ = σ − u, ð1Þ

where σ′ is the effective stress, σ is the total stress, and u is
the neutral stress.

For unsaturated soils, Bishop [15] proposed the well-
known Bishop-type effective stress equation:

σ′ = σ − ua + χ ua − uwð Þ, ð2Þ

where ua denotes the pore air pressure, uw is the pore water
pressure, and χ is the effective stress parameter, which
ranges from 0 to 1. In unsaturated soil mechanics, σ − ua is
generally defined as the net stress and ðua − uwÞ as the
matric suction.

Unfortunately, Terzaghi’s effective stress equation is only
an experimental true expression, and the Bishop-type equa-
tion was proposed merely based on macroscopic phenome-
nological intuition. This circumstance means that they lack
a solid theoretical foundation, which prevents us from fully

Hindawi
Geofluids
Volume 2022, Article ID 3971247, 18 pages
https://doi.org/10.1155/2022/3971247

https://orcid.org/0000-0001-7230-7675
https://orcid.org/0000-0002-2806-4052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3971247


understanding the effective stress equation and properly
using it to describe the mechanical behaviour of soils. There-
fore, the effective stress equation should be based on not
only experimental results but also rigorous principles of
mechanics.

To provide a solid mechanical foundation for the above
effective stress equations, tremendous research effort has
been made by using a variety of approaches since the
1960s. These approaches can be roughly grouped into four
categories: (1) particle-based mechanical equilibrium
approaches [16, 17], (2) representative volume element-
(RVE-) based mechanical equilibrium approaches [18–20],
(3) thermodynamics-based approaches [21–24], and (4) dif-
ferential element- (DE-) based mechanical equilibrium
approaches [25–28]. For the first category, Skempton [16]
formulated a balance equation that relates the total stress
to pore water pressure for a saturated system of two particles
in contact. Then, assuming that the effective stress is the
stress that controls the changes in the volume strain or
shearing strength of soils, he obtained two equivalent effec-
tive stress equations. Likos and Lu [17] analysed the equilib-
rium state of a free body taken from a system of two particles
with a water meniscus. Then, they proposed a Bishop-type
effective stress equation. Although the results of the first cat-
egory can provide a mechanical explanation for the effective
stress equation, they were only based on the micromechani-
cal analysis of a system of two particles. Hence, the first cat-
egory can account for neither the interaction forces between
the different phases nor the water content gradient [29] in
unsaturated soils. For the second category, Lu and Likos
[18] introduced three types of interparticle forces to formu-
late mechanical balance equations for the RVEs of unsatu-
rated soils and coin the concept of suction stress, which
serves as a mechanical foundation for better understanding
the effective stress equation from a microscopic particle level
to an RVE level. Nevertheless, the second category also does
not consider the interaction forces and the water content
gradient. In addition, they neglected the stresses that act
on the cross-section of soil particles and on the contact area
between soil particles induced by the pore-fluid pressure in
unsaturated soils. For the third category, there are two differ-
ent subcategories of thermodynamic approaches. One refers
to utilizing Equation (3) of the power input per unit volume
of unsaturated soil to identify the work conjugate stress and
strain variables:

W
·
= uan 1 − Sð Þ ρa

·

ρa
− ua − uwð Þn S

·
+ σij − Suw + 1 − Sð Þua½ �δij
� �

εij
· ,

ð3Þ

where W · is the power input per unit volume of unsaturated
soil, n is the porosity, S is the degree of saturation, ρa is the
pore-air density, σij is the total stress tensor, εij is the strain
tensor, and δij is Kronecker’s delta.

According to Equation (3), a Bishop-type effective stress
tensor σij − ½Suw + ð1 − SÞua�δij conjugate to the strain ten-
sor and a modified suction ðua − uwÞn conjugate to the
degree of saturation can be obtained. However, Equation

(3) can be rearranged to give additional sets of stress and
strain variables that are conjugate to each other. For
instance, when Equation (3) is rewritten as Equation (4),
the net stress tensor ðσij − uaδijÞ conjugate to the strain ten-
sor and the suction ðua − uwÞ conjugate to the generalized
strain quantity ð−n S· + S εii

·Þ can also be obtained

W
·
= uan 1 − Sð Þ ρa

·

ρa
+ σij − uaδij
� �

εij
· + ua − uwð Þ −n S

·
+ S εii

·� �
ð4Þ

The analysis of the principle of work conjugacy indicates
that the choice of stress state variables for unsaturated soils
is phenomenological and somewhat subjective. The other
subcategory employed the principle of virtual work to calcu-
late the free energy of an unsaturated soil. By evaluating the
derivative of the free energy with respect to the volume,
another Bishop-type effective stress equation was obtained
[23]:

σ′ = σ − ua + Se ua − uwð Þ, ð5Þ

where Se is the effective saturation, expressed as Se = ðS − Sr
Þ/ð1 − SrÞ, and Sr is the residual saturation.

However, some rather harsh assumptions must be made
to obtain Equation (5), such as keeping the residual satura-
tion constant and ignoring the contribution of interfaces to
the free energy. Compared with the first and second catego-
ries, the third category has made an obvious improvement
that the effective stress equation can be derived based on a
relatively rigorous thermodynamic theory. Nevertheless,
the third category still neglects the water content gradient.
In comparison with the above three categories, the fourth
category [25–28] was developed in recent years and has
some advantages, such as the following: (1) it is based on
the universally recognized concepts of mechanical equilib-
rium. (2) It explicitly accounts for the interaction forces
between the different phases and the stresses acting on the
cross-section of the soil particles and on the contact area
between the soil particles induced by pore fluid pressure.
(3) The formulated balance equations are based on clear
physical mechanisms and models. Unfortunately, the pore
water content gradient is still neglected in the fourth
category.

The objective of this study is to derive a new general-
ized Terzaghi’s effective stress equation for unsaturated
soils by considering the pore water content gradient. The
gradient is introduced to formulate more exact force bal-
ance equations for different phases in unsaturated soils
by using the DE-based mechanical equilibrium approach.
Based on the more exact force balance equations, a new
generalized Terzaghi’s effective stress equation is derived.
The implications of this new equation are drawn out by
comparing with some existing Bishop-type effective stress
equations.
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2. Evidence for the Pore Water
Content Gradient

2.1. Vertical Spatial-Temporal Distribution of the Pore Water
Content. Many scholars have explored the spatial-temporal
distribution of the pore water content of unsaturated soils
in a large number of different sites by various observation
techniques (e.g., in situ soil-moisture sampling, ground-
penetrating radar, time domain reflectometry, frequency
domain reflectometry, and neutron sensor) [30–32] and
analysis methods (e.g., geostatistics) [33]. These studies have
indicated that the pore water content of unsaturated soils
sometimes changes significantly in vertical and horizontal
profiles. The vertical profile of pore water content with depth
can be divided into different sublayers in terms of the coeffi-
cient of variance from geostatistical analysis [34]: the fast-
changing layer, the active layer, and the relatively stable layer
(as shown in Figure 1). The spatial-temporal distribution of
the pore water content in these different sublayers is usually
influenced by a number of factors such as rainfall infiltra-
tion, surface evapotranspiration, aboveground plant species,
soil mineral components, and microtopographical features.
In general, rainfall infiltration [35], surface evapotranspira-
tion [36], and aboveground plant species [37] have a pro-
found influence on the spatial distribution of the pore
water content in the fast-changing layer. In this layer, the
greater the infiltration rate is, the stronger the evapotranspi-
ration, and the higher the root density is, the more dramat-
ically the spatial distribution of the pore water content
changes because the fast-changing layer is the interface
between the active layer and the atmosphere. Soil mineral
components (e.g., sand, silt, and clay fractions) [38], fine-
root density [39], and microtopographical features [40] gen-
erally play a crucial role in the retention of the pore water
content in the active layer. In this layer, there is a strong pos-
itive correlation between the silt and clay fractions and the
pore water content, but a negative correlation between the
root density and microtopographical features and pore water
content. Compared with the pore water content in the above
two sublayers, the pore water content in the relatively stable
layer usually has a slower and smaller response to external
factors.

2.2. Horizontal Spatial-Temporal Distribution of the Pore
Water Content. A series of laboratory model tests have been
conducted to investigate the horizontal water redistribution
in a horizontal flume filled with homogeneous soils (or
slightly heterogeneous soils) [29, 41]. This flume contains
two parts: one part corresponds to a relatively low saturation
state, namely, the dry part; the other part is the wet part,
which has a higher saturation state. The dry and wet parts
of the flume were originally insulated by using a very thin
(0.044mm) removable metal sheet. When the sheet was
removed, the process of water redistribution was initiated.
The water redistribution led to the variation in the water sat-
uration over time and the observation positions of the flume
(as seen in Figure 2). This model test reveals that the distri-
bution of the water saturation along the flume is mainly
affected by several factors such as the initial saturation con-

ditions on both the dry and wet sides, the hysteretic water
retention curves, the hydraulic conductivity of the soils,
and the driving forces for the flow of pore water.

The results from the field observations and laboratory
model tests mentioned above have demonstrated that the
spatial-temporal distribution of the pore water content
extensively exists in unsaturated soils. This spatial-
temporal distribution can give rise to a pore water content
gradient that is ubiquitous in both the vertical and horizon-
tal profiles. Since the spatial-temporal distribution of the
pore water content is influenced by different factors under
different conditions, the characteristics of the pore water
content gradient are also influenced by the corresponding
factors. Considering that the pore water content gradient
plays an important role not only in the hydrological process
but also in the mechanical response of unsaturated soils, it
should be considered in the formulation of the force balance
equations and in the derivation of the effective stress equa-
tion for unsaturated soils.

3. Interactions between Different Phases and
an Extended Three-Phase Model of
Unsaturated Soils

Unsaturated soil is a multiphase porous medium. How to
separate this multiphase porous medium into different con-
stituent phases is an important issue in the characterization
of the stress state of unsaturated soils. Various attempts have
been made to consider unsaturated soil as different porous
medium models including different constituent phases, such
as the three-phase porous medium model (i.e., air, water,
and soil skeleton) [15], the four-phase porous medium
model (i.e., air, water, contractile skin, and soil skeleton)
[28], and the six-phase porous medium model (i.e., pore
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Figure 1: Dynamic change in the pore water content in the 0-
400 cm soil profile of a typical site under natural rainfall
conditions during various periods from June to November 2002,
from Chen et al. [34].
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air, liquid water, solid water, contractile skin, cement, and
grain skeleton) [26]. The three- and four-phase models,
however, are not able to consider the influences of different
types of pore water on the stress state of unsaturated soils.
In addition, the six-phase model would be too complex for
characterizing the stress state. Therefore, it is necessary to
establish an appropriate porous medium model to character-
ize the stress state of unsaturated soils.

Compared with saturated soils, unsaturated soils intro-
duce pore air (see Figure 3(b)). Pore air initiates the interac-
tions between the pore air, pore water, and soil particles,
which further produce capillarity and changes in the adsorp-
tion phenomena in unsaturated soils. During the process of
interaction, the capillarity and adsorption phenomena
jointly transform the pore water into capillary and adsorbed
water. Capillary water (see Figure 3(c)) usually refers to the
water held in the pores of unsaturated soils by both the sur-
face tension of air-water interfaces and the adsorptive forces
exerted by the soil particle surface, while adsorbed water
represents the water retained on the surfaces of soil particles
through adsorptive forces. Although capillary water exhibits
some different physical and mechanical properties at the
microscopic level in comparison with the pore water in sat-
urated soils, it can still be regarded as a fluid with macro-
scopically isotropic negative pore water pressure. Adsorbed
water, however, manifests a series of distinct characteristics,
such as greater density [42, 43], strongly coordinated struc-
ture [44, 45], higher viscosity [46], and higher shear modu-
lus [47]. Based on these distinct characteristics, adsorbed
water is believed to be a solid-like substance and can thus
serve as a structure to bear and transfer loads. In addition,
an important constituent related to the capillarity in unsatu-
rated soils is contractile skin. It exhibits an appreciable sur-
face tension in its interior to pull soil particles together and
thus contributes to the shear strength and modulus of unsat-
urated soils [48]. Hence, contractile skin can also serve as

another structure to bear and transfer loads. Furthermore,
in addition to the adsorbed water and contractile skin bear-
ing and transferring loads, the pivotal structure in unsatu-
rated soils is the soil skeleton. In general, the soil skeleton
can be described as a structure that is formed by means of
the contact and cementation between soil particles. The con-
tact is associated with the sliding and rolling friction
between particles, and the cementation provides the cohe-
sion between particles. These two different actions allow
the soil skeleton to bear and transfer loads. In this case, the
adsorbed water, contractile skin, and soil skeleton can be
combined as a generalized phase, termed the generalized soil
skeleton (see Figure 3(d)), because they can all bear and
transfer loads.

According to the analysis of the interaction mechanisms
between different phases and their influences on the
mechanical behaviour of unsaturated soils, an extended
three-phase porous medium model is presented (as shown
in Figure 3). According to the extended model, we can con-
sider the complex interactions between different phases to
derive the effective stress equation.

4. Derivation of Generalized Terzaghi’s
Effective Stress Equation considering the
Pore Water Content Gradient

4.1. Volume-Saturation Relations of the Extended Three-
Phase Model. The prerequisite for deriving the effective
stress equation is to define a set of clear volume-saturation
relations of different phases of the extended three-phase
model. Based on the definition of the extended model, the
volumes related to the pore air, capillary water, and general-
ized soil skeleton can be denoted as Va, Vcw , and Vgs,
respectively, in an RVE of unsaturated soil. When the total
volume of this RVE is assumed to be V , the following equa-
tion must be satisfied:

Va +Vcw +Vgs =V : ð6Þ

Based on the extended model, we can combine the vol-
ume of the capillary water and that of the pore air as the vol-
ume of the effective voids:

Va + Vcw = Veff
v : ð7Þ

Then, the volume porosity of the effective voids can be
defined as the ratio of the volume of effective voids to the
total volume of the RVE:

neffv = Veff
v
V

× 100%: ð8Þ

The volume porosities of the three constituent phases
can be calculated as follows:

na =
Va
V

× 100%, ð9Þ
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Figure 2: Measured water saturation distributions at different
times along the flume from Feuring et al. [29].
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ncw = Vcw
V

× 100%, ð10Þ

ngs =
Vgs
V

× 100%, ð11Þ

where na, ncw, and ngs are the pore air porosity, capillary
water porosity, and generalized soil skeleton porosity,
respectively, as shown in Figure 4. Combining Equations
(6), (9), (10), and (11) yields

na + ncw + ngs = 1: ð12Þ

Similarly, the area porosity is usually defined as the ratio
of the area of each phase to the total cross-sectional area of
the RVE. According to the hypothesis proposed by Biot
[49], it is hypothesized that the area porosity is equal to
the volume porosity in a homogeneous porous medium.
Additionally, the volume percentage of the capillary water
within the effective voids is expressed as the effective satura-
tion of the capillary water (Figure 4):

Seffcw = Vcw
Veff

v
: ð13Þ

4.2. Necessity for considering the Pore Water Content
Gradient. Neglecting the pore water content gradient in the
derivation of the effective stress equation could be due to
two causes. One cause corresponds to the confusion between
the RVE of unsaturated soil and the differential element
(DE) used in the mechanical equilibrium approach; the
other cause refers to not realizing the existence of the pore
water content gradient. To clarify the confusion and realize
the importance of the pore water content gradient in the
derivation of the effective stress equation, it is worthwhile
to identify the conceptual differences between the RVE and
DE.

As an example, let us consider a given soil foundation
comprised of a type of soil. It has dimensions of a (length)
by b (width) (a > b) (as shown in Figure 5(a)). When charac-
terizing the mechanical response of this foundation, we are

not capable of accounting for all the microstructures of the
foundation. It is necessary to introduce an RVE to solve this
challenge. To better represent a discontinuous heteroge-
neous soil foundation, the choice of the size of the RVE must
obey the following inequality constraint:

d≪ l≪ b, ð14Þ

where d is the characteristic size of the soil, representing the
maximum particle size of the soil, and is usually referred to
as the interior characteristic size; l is the size of the RVE;
and b is the characteristic size of the foundation, commonly
known as the exterior characteristic size, which depends on
the minimum geometric size of the foundation and the
wavelength of loading. The inequality constraint (14) indi-
cates that the size of the RVE must be small enough relative
to the minimum geometric size, b, of the foundation to
describe a sufficiently close neighbourhood that encom-
passes the centroid of the RVE (see the “P” point in
Figure 5(a)). At the same time, the size of the RVE must
be large enough relative to the maximum particle size, d,
of the soil to contain sufficient statistical information about
the discontinuous heterogeneous soil foundation. If the
appropriate size of an RVE has been defined, the micro-
scopic values of the variables of interest are averaged over
the well-defined RVE. The averaged values, referred to as
the macroscopic values of the variables of interest, are
assigned to the centroid of the RVE. Then, traversing the
entire foundation domain with a moving RVE, we can assign
the averaged values to every point of the entire foundation
domain. In this way, the fields of the macroscopic variables
(see Figure 5(b)) that are differentiable functions of space
coordinates can be acquired to formulate the differential
equations of the variables of interest [50]. On the other
hand, in comparison with an RVE, a DE is defined in the
continuous homogeneous foundation to characterize the
variation of the macroscopic variables with the space coordi-
nates (see Figure 5(b)). For a given macroscopic variable
pertaining to the “P” point (see Figure 5(b)), if two infinites-
imal distances dx and dy are gained from this point, the
macroscopic variable (for example, F) will obtain two

(a) (b) (c) (d)

Soil particle
Adsorbed water

Capillary water
Contractile skin

Pore air

Figure 3: Schematic diagram of an extended three-phase porous medium model: (a) an RVE of unsaturated soil; (b) pore air phase; (c)
capillary water phase; (d) generalized soil skeleton phase including adsorbed water, contractile skin, and soil particles.
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infinitesimal increments ð∂F/∂xÞdx and ð∂F/∂yÞdy along
the x and y directions, respectively.

After having identified the differences between the RVE
and DE, we now reexamine the analyses of the
independent-phase equilibrium conducted by many investi-
gators. Some of them did not distinguish between the RVE
and DE [26, 51], and others ignored the existence of the pore
water content gradient [25–28]. These two problems led
these investigators to calculate the forces acting on the lower
and upper surfaces of the DE of the pore water as uwnwdxdz
and ðuw + ∂uw/∂yÞnwdxdz (see Figure 6(a)), respectively, in
the y-direction, where nw is the porosity of the pore water.
However, when the pore water content gradient is intro-
duced, the corresponding forces should be uwnwdxdz and ð
uw + ∂uw/∂yÞðnw + ∂nw/∂yÞdxdz (see Figure 6(b)) in the y
-direction.

4.3. Derivation of Generalized Terzaghi’s Effective Stress
Equation. The derivation of the effective stress equation is
performed by formulating the force balance equations of
an unsaturated soil DE and its constituent phases DEs (i.e.,
capillary water, pore air, and generalized soil skeleton).
There are two types of forces acting on these DEs. One cor-
responds to surface forces; the other is body forces. Surface
forces that act on the surfaces of each DE arise from external
loads. They are shown as a surface force per unit area; body
forces that act through the centroid of each DE are further
classified as the gravitational force and the interaction forces
between different phases. If an unsaturated soil DE, with
infinitesimal dimensions of dx, dy, and dz, is taken out of
an unsaturated soil mass in equilibrium as the object of equi-
librium analysis, the DEs of the three constituent phases are
also in equilibrium. Based on the equilibrium conditions of
the forces acting on all of the DEs, it is straightforward to
independently formulate the force balance equations for
capillary water DE, pore air DE, generalized soil skeleton
DE, and unsaturated soil DE.

4.3.1. Balance Equation for Capillary Water DE. Before for-
mulating the balance equation for the capillary water DE,
it is indispensable to calculate the surface forces and gravita-

tional and interaction forces that act on it. Each surface force
is equal to the product of the capillary water pressure and
the corresponding area. The gravitational force is computed
as the unit gravity times the volume of the capillary water.
The interaction force is expressed as the interaction force
per unit volume times the corresponding volume. For sim-
plicity, the capillary water pressures acting on the different
surfaces and the gravitational and interaction forces per unit
volume acting on the volume are shown only in the y
-direction in Figure 7. The pore water content gradient is
considered in the formulation of the balance equation for
the capillary water DE. Hence, the forces acting on the lower
and upper surfaces are uwncwdxdz and ðuw + ∂uw/∂yÞðncw
+ ∂ncw/∂yÞdxdz, respectively. Although the area porosity
of the capillary water is equal to its volume porosity within
an unsaturated soil RVE, the volume porosity of the capillary
water is a variable within an unsaturated soil DE. To charac-
terize the variation of the volume porosity of the capillary
water with space coordinates, we construct a Cartesian refer-
ence frame with space coordinates (u, v, w) within the cap-
illary water DE (as shown in Figure 7). In this way, the
volume porosity of the capillary water within the DE can
be characterized as ncwðu, v,wÞ (see Figure 7). Then, the
gravitational force acting on the capillary water DE is calcu-
lated as

Ð x+dx
x

Ð y+dy
y

Ð z+dz
z ncwðu, v,wÞρwgdudvdw. Analo-

gously, the interaction force of the capillary water DE that
is exerted by the generalized soil skeleton is expressed asÐ x+dx
x

Ð y+dy
y

Ð z+dz
z f cwgsyðu, v,wÞdudvdw. It should be noted that

the interaction force between the capillary water and the
pore air does not exist because they are separated by con-
tractile skin in the extended three-phase model.

The equilibrium condition of the capillary water DE
demands that the resultant force should vanish. Summing
these forces in the y-direction yields the force balance equa-
tion for the capillary water DE:

− uw + ∂uw
∂y

dy
� 	

ncw + ∂ncw
∂y

dy
� 	

dxdz

 �

+ uwncwdxdz

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw = 0,

ð15Þ

where ncw is the area porosity of the capillary water DE;
f cwgsyðu, v,wÞ is the interaction force per unit volume between
the capillary water and the generalized soil skeleton, which is
a function of space coordinates (u, v, w) within the capillary
water DE; and ncwðu, v,wÞ is the volume porosity of the cap-
illary water within the capillary water DE. The volume
porosity, ncwðu, v,wÞ, will be equal to the area porosities
ncw of the lower and upper surfaces of the capillary water
DE when point (u, v, w) in the space coordinate system
approaches the lower and upper surfaces, respectively; ρw
is the water density; and g is the gravitational acceleration.

Capillary water

Generalized
soil skeleton

Air

V

Vv
eff  = nv

eff
V

Va
 = naV

Vgs = ngsV

Vcw = ncwV

Vcw = S
eff
cw Vv

eff

Figure 4: Schematic diagram of the volume-saturation relations of
an extended three-phase model.
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Simplifying Equation (15), we can obtain the balance dif-
ferential equation for the capillary water DE:

∂ ncwuwð Þ
∂y

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw = 0:
ð16Þ

Detailed steps of the mathematical operation for Equa-
tion (16) are given in Appendix A for completeness.

4.3.2. Balance Equation for Pore Air DE. The capillary water
and pore air jointly occupy the pore space of an unsaturated
soil DE, which means that the pore air content varies with
the capillary water content. Since the capillary water content
gradient has been considered, the pore air content gradient
should also be considered in the analysis of the pore air

A discontinuous heterogeneous soil

Homogenized by RVE

A mechanically equivalent
continuous homogeneous soil

dy
x

y

RVE

dx

DE

P

P

(a)

(b)

l

l

a

a

b

b

Figure 5: Illustration of the difference between the representative volume element (RVE) and the differential element (DE): (a) an RVE
defined in a discontinuous heterogeneous soil foundation; (b) a DE defined in a mechanically equivalent continuous homogeneous soil
foundation.
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Figure 6: Pore water content and water pressure of the water phase in the y-direction: (a) without consideration of the pore water content
gradient; (b) consideration of the pore water content gradient.
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equilibrium state. Figure 8 depicts the pore air pressure and
the gravitational and interaction forces per unit volume in
the y-direction.

Based on the equilibrium condition of the pore air DE,
the balance differential equation is given in the y-direction:

∂ nauað Þ
∂y

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw = 0,

ð17Þ

where na is the area porosity of the pore air DE; f
a
gsyðu, v,wÞ

is the interaction force per unit volume between the pore air
and the generalized soil skeleton, which is a function of
space coordinates (u, v, w) within the air DE, and naðu, v,
wÞ is the volume porosity of the pore air within the pore
air DE. The volume porosity, naðu, v,wÞ, will be equal to
the area porosities na of the lower and upper surfaces of
the pore air DE when the point (u, v, w) in the space coor-
dinate system approaches the lower and upper surfaces,
respectively; ρa is the air density. Some detailed mathemati-
cal steps for Equation (17) are given in Appendix B.

4.3.3. Balance Equation for Generalized Soil Skeleton DE. To
formulate the force balance equation of the generalized soil
skeleton, we must in advance determine the forces acting
on the generalized soil skeleton DE. Compared with the cap-
illary water DE and pore air DE, the generalized soil skeleton
DE is subjected to more complex forces. These forces can
also be classified into body and surface forces. Body force
refers to gravitational and interaction forces. The interaction

forces are further subdivided into the forces exerted by the
capillary water and by the pore air. Surface forces are gener-
ated not only from the adjacent generalized soil skeleton DE
but also from the capillary water pressure and the pore air
pressure. Of all the forces acting on the generalized soil skel-
eton DE, the forces generated from the capillary water pres-
sure and the pore air pressure are the most difficult to
determine. This difficulty stems from two aspects: how to
determine the magnitudes of the stresses acting on the sur-
faces of the generalized soil skeleton DE and how to identify
the corresponding areas on which these stresses act.

To overcome the difficulty mentioned above, we shall
first resort to a simple case of saturated soil. Specifically,
we consider a system of two idealized spherical soil particles
under saturated conditions without external loads in hydro-
static equilibrium [15, 25] (as shown in Figure 9). In this sys-
tem, we can use the equilibrium condition of the cross-
section 1-1 (see Figure 9(b)) to obtain the following equa-
tion:

σw
sp =

uwAsp
Asp

= uw, ð18Þ

where σwsp represents the stress acting on the cross-section of
the soil particles induced by the water pressure and Asp is the
cross-sectional area of the soil particles.

Similarly, using the equilibrium condition of the cross-
section 2-2 (see Figure 9(c)), we can obtain:

σwc = uwAc
Ac

= uw, ð19Þ

where σw
c denotes the stress acting on the contact area

𝜕uw 
𝜕y

dy+uw
𝜕ncw 
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dy+ncw 
dy

dz

dx
xz

y

uw

v fcw

ncw (u, v, w) 𝜌w g

uw ncw

gsy (u, v, w)

Figure 7: Components for the force equilibrium of capillary water
DE in the y-direction.
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Figure 8: Components for the force equilibrium of the pore air DE
in the y-direction.
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between two idealized spherical soil particles induced by the
water pressure and Ac is the contact area between soil
particles.

Driven by analogy with the above case under saturated
conditions, we now consider a system of two idealized
spherical soil particles under unsaturated conditions without
external loads in equilibrium (as shown in Figure 10). In this
figure, both the contractile skin and the adsorbed water for
simplicity are not shown because we only analyse the
stresses generated by the capillary water pressure and the
pore air pressure in this section. Due to the capillary water
and the pore air together filling the pore space of this system,
the approach that is used to compute the stresses acting on
the cross-section of the soil particles and on the contact area
between the soil particles under saturated conditions cannot
be directly applied to compute the corresponding stresses

under unsaturated conditions. To solve this problem, an
assumption that is similar to the idea of the theory of mix-
tures [52] has been made here. It is assumed that the capil-
lary water and the pore air independently fill the total pore
space of this system in terms of their respective volume
porosities. In this case, the system of two idealized spherical
soil particles under unsaturated conditions can be regarded
as two subsystems (see Figures 10(b) and 10(c)). One subsys-
tem corresponds to a system in which the capillary water,
having a homogenized capillary water pressure ½ncw/ðncw +
naÞ�uw, completely occupies the pore space; the other subsys-
tem corresponds to a system where the pore space is filled
with the pore air with a homogenized air pressure ½na/ðncw
+ naÞ�ua. Based on the results under saturated conditions
(see Figure 9), we can readily calculate the stresses acting
on the cross-section of the soil particles and on the contact

1

2 2

1

uw

uw

Asp

A

Soil particle
Pore water

(a)

11

uw

Asp

Soil particle
Pore water

𝜎wsp

(b)

22

uw

Ac

Soil particle
Pore water

𝜎wc

(c)

Figure 9: Stresses induced by the water pressure: (a) a system of two idealized spherical soil particles in hydrostatic equilibrium, where A is
the cross-sectional area of this system; (b) stress acting on the cross-section of soil particles; (c) stress acting on the contact area between soil
particles.
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area between the soil particles under unsaturated condi-
tions. From Figure 10(b), on the basis of the equilibrium
condition of the cross-section 3-3, the following equation
holds:

σcwsp =
ncw/ ncw + nað Þð ÞuwAsp

Asp
= ncw
ncw + na

uw, ð20Þ

where σcwsp represents the stress acting on the cross-section
of the soil particles generated by the homogenized capil-
lary water pressure.

Likewise, using the equilibrium condition of the cross-
section 4-4 (see Figure 10(b)), we have:

σcw
c = ncw/ ncw + nað Þð ÞuwAc

Ac
= ncw
ncw + na

uw, ð21Þ

where σcw
c denotes the stress acting on the contact area

between the soil particles generated by the homogenized
capillary water pressure.

Based on the equilibrium condition of the cross-section
5-5 in Figure 10(c), the following equation holds:

σasp =
na/ ncw + nað Þð ÞuaAsp

Asp
= na
ncw + na

ua, ð22Þ

where σasp represents the stress acting on the cross-section of
the soil particles generated by the homogenized air pressure.

Similarly, on the basis of the equilibrium condition of
the cross-section 6-6 (see Figure 10(c)), we have:

σa
c =

na/ ncw + nað Þð ÞuaAc
Ac

= na
ncw + na

ua, ð23Þ

where σac denotes the stress acting on the contact area
between the soil particles generated by the homogenized
air pressure.

Next, we extend the above analysis results of a system
of two idealized spherical soil particles under unsaturated
conditions to an unsaturated soil DE. It is therefore
uncomplicated to determine the magnitudes and the corre-
sponding areas of the stresses that are generated by the
homogenized capillary water pressure and by the homoge-
nized air pressure in an unsaturated soil DE. These
stresses acting on the surfaces of the generalized soil skel-
eton DE are shown in Figure 11. In addition, Figure 11
also shows the stress fields and the gravitational and inter-
action forces per unit volume of the generalized soil skel-
eton DE in the y-direction.

Using the equilibrium condition of the generalized soil
skeleton DE, we can obtain the balance differential equation

1

2 2

1 3

4 4

3 5

6 6

5

(a) (b) (c)

Asp Asp Asp

A A A

ua

uw uw

ua

[ncw /(ncw + na)]uw

[ncw /(ncw + na)]uw [na /(ncw + na)]ua

[na /(ncw + na)]ua

Soil particle
Capillary water
Pore water

Figure 10: A system of two idealized spherical soil particles under unsaturated conditions including two subsystems: (a) a system where the
pore space is filled with capillary water and pore air; (b) a subsystem where the pore space is filled with capillary water with a homogenized
capillary water pressure; and (c) a subsystem where the pore space is filled with pore air with a homogenized pore air pressure.
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in the y-direction:

ngs
ncw + nað Þ

∂ ncwuwð Þ
∂y

+
ngs

ncw + nað Þ
∂ nauað Þ

∂y

−
1

dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

−
1

dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ngs u, v,wð Þρgsgdudvdw

+
∂τxy′
∂x

+
∂σy′
∂y

+
∂τzy′
∂z

= 0,

ð24Þ

where ngs is the area porosity of the generalized soil skeleton
DE; ngsðu, v,wÞ is the volume porosity of the generalized soil
skeleton DE, which is a function of space coordinates (u, v,
w) within the generalized soil skeleton DE. The volume
porosity, ngsðu, v,wÞ, will be equal to the area porosities ngs
of the lower and upper surfaces of the generalized soil skel-

eton DE when the point (u, v, w) in the space coordinate sys-
tem approaches the lower and upper surfaces, respectively;
ρgs is the density of the generalized soil skeleton; τxy′ is the

shear stress acting on the x-plane in the y-direction; σy′ is
the normal stress acting on the y-plane; and τzy′ is the shear
stress acting on the z-plane in the y-direction. Some detailed
mathematical steps for Equation (24) are given in Appendix C.

4.3.4. Total Balance Equation for Unsaturated Soil DE. The
total balance equation refers to the force balance equation
of an unsaturated soil DE. For simplicity, only the total stress
fields and the gravitational force per unit volume of the
unsaturated soil DE in the y-direction are illustrated in
Figure 12.

Based on the equilibrium condition of the unsaturated
soil DE, the balance differential equation related to
Figure 12 can be formulated:

∂τxy
∂x

+
∂σy
∂y

+
∂τzy
∂z

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ρ u, v,wð Þgdudvdw = 0,

ð25Þ

where τxy is the total shear stress acting on the x-plane in the
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Figure 11: Components for the force equilibrium of the generalized soil skeleton DE in the y-direction.
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y-direction; σy is the total normal stress acting on the y
-plane; τzy is the total shear stress acting on the z-plane in
the y-direction; and ρðu, v,wÞ is the density of the unsatu-
rated soil.

It should be noted that ρðu, v,wÞ can be calculated by
using the following equation:

ρ u, v,wð Þ = ncw u, v,wð Þρw + na u, v,wð Þρa + ngs u, v,wð Þρgs:
ð26Þ

Substituting Equation (26) into Equation (25), we can
obtain the total balance differential equation for unsaturated
soil DE in the y-direction:

∂τxy
∂x

+
∂σy
∂y

+
∂τzy
∂z

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ngs u, v,wð Þρgsgdudvdw = 0:

ð27Þ

4.3.5. Generalized Terzaghi’s Effective Stress Equation for
Unsaturated Soils. If an unsaturated soil DE is in equilib-
rium, the DEs of its three constituent phases are also in equi-
librium. Furthermore, each phase is assumed to behave like
an independent, continuous, linear, and coincident stress
field in each direction [28]. Hence, the independent balance
differential Equations (16), (17) and (24) for these three con-
stituent phases can be superimposed by the principle of
superposition to form the total balance differential equation

for the unsaturated soil DE:

∂τxy′
∂x

+
∂σy′
∂y

+ 1
ncw + nað Þ

∂ ncwuwð Þ
∂y

+ 1
ncw + nað Þ

∂ nauað Þ
∂y

+
∂τzy′
∂z

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ngs u, v,wð Þρgsgdudvdw = 0:

ð28Þ

On the one hand, the identity ðncw + naÞ + ngs = 1 holds;
on the other hand, the assumption has been made in Appen-
dix C that the value of ∂ngs/∂y is equal to zero. Therefore,
∂ðncw + naÞ/∂y = 0 is valid. Additionally, both capillary water
and pore air are usually considered to be unable to resist
shear stress, and thus, τxy′ = τxy and τzy′ = τzy. Then, Equation
(28) can be rewritten as:

∂τxy
∂x

+
∂σy′
∂y

+ ∂ ncwuw + nauað Þ/ ncw + nað Þð Þ
∂y

+
∂τzy
∂z

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ngs u, v,wð Þρgsgdudvdw = 0:

ð29Þ

Comparing Equation (29) with Equation (27) and
extending the result in the y-direction to the x- and z
-directions, we can easily obtain the following equation:

σ = σ′ + ncw
ncw + na

uw + na
ncw + na

ua: ð30Þ

Substituting Equations (7), (9), (10), and (13) into Equa-
tion (30), the effective stress equation for unsaturated soils
can be obtained:

σ′ = σ − Seffcwuw + 1 − Seffcw
� �

ua
h i

, ð31Þ

where σ′ is the effective normal stress, usually referred to as
the effective stress; σ is the total normal stress acting on the
unsaturated soil, generally referred to as the total stress; ½
Seffcwuw + ð1 − SeffcwÞua� is the neutral stress under unsaturated
conditions, which is similar to the neutral stress in the effec-
tive stress equation proposed by Terzaghi [14] under satu-
rated conditions; and Seffcw is the effective saturation of the
capillary water, which is imposed to vary from 0 (corre-
sponding to the state where the capillary water disappears)
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Figure 12: Components for the force equilibrium of unsaturated
soil DE in the y-direction.
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to 1 (corresponding to the state where the capillary water
reaches its maximum, i.e., water-saturated state). Under a
water-saturated state, Equation (31) can be reduced to Ter-
zaghi’s effective stress equation.

Considering that the form of Equation (31) for unsatu-
rated soils is the same as that of Terzaghi’s effective stress
equation (Equation (1)) for saturated soils (i.e., the effective
stress is equal to the total stress minus the neutral stress),
Equation (31) is called the generalized Terzaghi’s effective
stress equation in this paper.

5. Implications of the Generalized Terzaghi’s
Effective Stress Equation

There are two fundamental differences between the Bishop-
type effective stress equation (Equation (2)) and the general-
ized Terzaghi’s effective stress equation (Equation (31)).
First, they are derived based on different physical models.
The Bishop-type equation is directly built on the soil skele-
ton of unsaturated soils. Although this fact is not explicitly
stated, it can be discerned by carefully exploring the process
of the derivation of the Bishop-type equation. During this
process, investigating the macroscopic shear strength and
deformation behaviour of unsaturated soils, many
researchers [17, 20, 53] argued that the stresses contributing
to the shear strength and deformation acted on the soil skel-
eton. Then, they defined the sum of these stresses as the
effective stress. These stresses are classified into two groups:
microscopic interparticle stresses and macroscopic stresses
[18]. Unfortunately, the contribution mechanisms of these
two groups of stresses on the shear strength and deformation
are not well distinguished. In fact, because some of the
microscopic interparticle stresses (such as those induced by
physicochemical forces, cementation forces, and surface ten-
sion forces) are not transmitted from one soil particle to
another through the soil skeleton, their effects should be
associated with the strength and deformation parameters
rather than the effective stress. However, the generalized
Terzaghi’s effective stress equation (Equation (31)) is built
on the extended three-phase model. Under the framework
of the extended model, the effects of the stresses induced
by physicochemical forces, cementation forces, and surface
tension forces can be viewed as the change in the strength
and deformation parameters instead of the change in the
effective stress. This viewpoint is more consistent with Ter-
zaghi’s soil mechanics and is more convenient to describe
the strength and deformation behaviour of unsaturated soils.
Furthermore, under this framework, the interaction forces
can be taken into account for the solution of hydromechan-
ical coupling problems by means of the balance equations
for these three constituent phases. The second difference
consists in the mathematical forms of Equations (2) and
(31) and the physical meanings of the stresses in them.
Equation (2) is the sum of the net stress and the product
of the effective stress parameter χ and matric suction. The
net stress represents the stress acting on the soil skeleton
induced by external loads. The product was first termed
the suction stress by Lu and Likos [18], which was widely
used to quantify the contributions of the microscopic inter-

particle stresses and matric suction to the effective stress [23,
54–56]. In contrast, Equation (31) is the difference between
the total stress and the neutral stress. The total stress acts on
unsaturated soil containing three constituent phases. The neu-
tral stress is concurrently present in the pore fluid, on the
cross-section of the soil particles, and on the contact area
between soil particles (as shown in Figures 9 and 10). When
the transition of the soil from an unsaturated state to a satu-
rated state occurs, the net stress ðσ − uaÞ and suction stress χ
ðua − uwÞ in Equation (2) are reduced to the total stress σ
and pore water pressure uw (only present in the pore water),
respectively, whereas the total stress and neutral stress in
Equation (31) can be consistently reduced to the total stress
and neutral stress in Equation (1), respectively. Although the
neutral stress in Equation (1) is numerically equal to the pore
water pressure uw, their physical meanings, as stated above,
are entirely different. From the contrast, it is clear that Equa-
tion (2) can only achieve a smooth and continuous transition
in the mathematical form of the effective stress equation
between unsaturated and saturated conditions, while Equation
(31) can do a smooth and continuous transition not only in
the mathematical form but also in the physical meanings of
the stresses in the effective stress equation. Under Equation
(31), almost all classical soil mechanics theories for saturated
conditions, such as the Mohr-Coulomb failure criterion, criti-
cal state soil mechanics, and consolidation theory, can there-
fore be directly applied to unsaturated conditions. In
addition, the effect of the neutral stress on the mechanical
behaviour of unsaturated soils can be considered under Equa-
tion (31), but it cannot be considered under Equation (2).

Accurately quantifying the magnitude of the effective
stress requires reasonable identification of the effects of dif-
ferent types of pore water in unsaturated soils. It is well rec-
ognized that pore water can be divided into two types:
capillary water and adsorbed water [56, 57]. The effects of
capillary water and adsorbed water on the magnitude of
the effective stress lie mainly in three aspects. The first refers
to the pressure effects of these two types of pore water. The
capillary water held in the pores of unsaturated soils can be
regarded as a fluid with macroscopically isotropic negative
pore water pressure. A change in the negative water pressure
can lead to a change in the neutral stress in Equation (31) or
a change in the suction stress in Equation (2) and thus influ-
ence the effective stress. However, the adsorbed water wraps
the surfaces of the soil particles and the pressure of the
adsorbed water mainly induces the volumetric deformation
of the soil particles themselves. The pressure of the adsorbed
water thus does not influence the effective stress. The second
represents the volumetric (or areal) effects of capillary water
and adsorbed water. When adsorbed water is considered as a
component of the generalized soil skeleton, the effective vol-
ume (or area) of the voids of unsaturated soils will decrease
with an increase in the volume (or area) of the adsorbed
water. In this case, the contribution of the volumetric (or
areal) effect of capillary water to the effective stress will
increase [23, 25]. When the adsorbed water is ignored, the
effective volume (or area) of the voids of unsaturated soils
will be equal to the volume (or area) of the voids of unsatu-
rated soils. In this case, the contribution of the volumetric
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(or areal) effect of the capillary water to the effective stress
will decrease [58]. The last represents a transformation
between capillary water and adsorbed water. This transfor-
mation can develop as the degree of saturation of unsatu-
rated soils changes, which also has an important influence
on the magnitude of the effective saturation of the capillary
water or the effective stress parameter, χ, in Equation (2)
and thus influences the effective stress. The above three
effects of capillary water and adsorbed water have been taken
into account in the proposed equation (Equation (31)) by
using the effective saturation of the capillary water, Seffcw .

Comparing Equation (31) with Equation (2), we could
determine that there are three disadvantages of Equation (2).
First, Equation (2) with the effective stress parameter, χ, equal
to the degree of saturation, S, [18, 59] assumes that all of the pore
water pressures contribute to the effective stress and thus overes-
timates the effective stress of unsaturated soils, especially for
fine-grained soils with low saturation [60]. Second, Equation
(2), which uses the effective saturation, Se, as the effective stress
parameter, distinguishes the pressure and volumetric (or areal)
effects of capillary water from those of adsorbed water and thus
somewhat improves the estimation of the effective stress [23, 25,
61]. However, in the process of defining the effective saturation,
the residual saturation used to quantify the volume of water
adsorbed on the surfaces of soil particles or trapped in themicro-
pores is generally supposed to be independent of the degree of
saturation of unsaturated soils. This supposition of constant
residual saturation neglects the transformation between the cap-
illary water and adsorbed water and thus still overestimates the
effective stress. Last, Equation (2), which adopts the capillary
component of the degree of saturation [58], accounts for both
the different pressure effects of the capillary water and adsorbed
water and the transformation between them and hence makes it
possible to better estimate the effective stress, especially for fine-
grained soils with low saturation. However, in the definition of
the capillary component of the degree of saturation, the volu-
metric (or areal) effect of the adsorbed water is ignored, which
could lead to an underestimation of the effective stress. It should
be noted that an opposite conclusion can be drawn from Zhou
et al. [58] that Equation (2) with the effective stress parameter
equal to the capillary component of the degree of saturation
overestimates the effective stress for fine-grained soils with low
saturation, but the overestimation is mainly attributed to adopt-
ing an unreasonable soil water retention model. According to
the above comparisons between Equations (2) and (31), it is
obvious that Equation (31) can account for the different pressure
effects of capillary water and adsorbed water, their different vol-
umetric (or areal) effects, and the transformation between the
two. When the shear strength parameters of unsaturated soils
are assumed to be the same as those of saturated soils, Equation
(31) is preliminarily validated by considering the shear strength
data in the literature [57]. Therefore, the generalized Terzaghi’s
effective stress equation (Equation (31)) is a better choice for
estimating the effective stress.

6. Conclusions and Outlook

An extended three-phase porous medium model is presented,
which consists of capillary water, pore air, and a generalized soil

skeleton. Based on the extendedmodel, the balance equations for
these three constituent phases are formulated by introducing the
water content gradient, which was entirely neglected in previous
studies. Comparing the result of the superposition of these three
balance equations with the total balance equation, a generalized
Terzaghi’s effective stress equation is derived. On the one hand,
the formulated balance equations can consider the interaction
forces between different phases and the stresses acting on the
cross-section of soil particles and on the contact area between
soil particles induced by the capillary water pressure and pore
air pressure. On the other hand, the introduction of the water
content gradient ensures more rigorous mathematical formula-
tions, which can consider the effect of the water content gradient
on the balance equations for these three constituent phases.
Therefore, both the extended model and the formulated balance
equations provide a solidmechanical foundation for the general-
ized Terzaghi’s effective stress equation proposed in this work.

The generalized Terzaghi’s effective stress equation
(Equation (31)) states that the effective stress is equal to the total
stressminus the neutral stress. This statementmeans that Equa-
tion (31) can achieve a smooth and continuous transition from
unsaturated to saturated states not only in the mathematical
form of the effective stress equation but also in the physical
meanings of the stresses. Under Equation (31), classical soil
mechanics theories for saturated conditions can therefore be
directly extended to unsaturated conditions. In addition, the
effects of neutral stress on the mechanical behaviour of unsatu-
rated soils can also be considered under Equation (31). Com-
pared with the Bishop-type equation with the effective stress
parameter equal to the degree of saturation [59], the effective
saturation [23], or the capillary component of the degree of sat-
uration [58], Equation (31) using the effective saturation of the
capillary water as the effective stress parameter can account for
the different pressure effects of the capillary water and adsorbed
water, their volumetric (or areal) effects, and the transformation
between the two. Therefore, Equation (31) can provide a better
choice for estimating the effective stress of unsaturated soils.
This statement is preliminarily validated by considering the
shear strength data in the literature [57] when the shear strength
parameters are assumed to be independent of the degree of sat-
uration. In the future, it is worthwhile to perform a full experi-
mental validation of Equation (31) by considering the variation
of the strength parameters with the degree of saturation, espe-
cially for fine-grained soils with low saturation.

Appendix

A. Balance Equation for Capillary Water DE
Equation Section 1

Expanding and rearranging Equation (15) in Section 4.3.1,
we have

−uw
∂ncw
∂y

dxdydz − ncw
∂uw
∂y

dxdydz −
∂uw
∂y

∂ncw
∂y

dx dyð Þ2dz

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw = 0:

ðA:1Þ

14 Geofluids



Omitting the higher-order term including (dy)2 and
dividing by dxdydz, we obtain

uw
∂ncw
∂y

+ ncw
∂uw
∂y

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

ncw u, v,wð Þρwgdudvdw = 0:

ðA:2Þ

Combining the first and second terms on the left-hand
side of Equation (A.2), we are finally led to the balance dif-
ferential equation for the capillary water DE (see Equation
(16)).

B. Balance Equation for Pore Air DE Equation
Section 2

The equilibrium condition of the pore air DE, as shown in
Figure 8, demands that the resultant force should vanish.
The summation of the forces in the y-direction leads to the
force balance equation for the pore air DE:

− ua +
∂ua
∂y

dy
� 	

na +
∂na
∂y

dy
� 	

dxdz

 �

+ uanadxdz

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw = 0:

ðB:1Þ

Expanding and rearranging Equation (B.1), we have

−ua
∂na
∂y

dxdydz − na
∂ua
∂y

dxdydz −
∂ua
∂y

∂na
∂y

dx dyð Þ2dz

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw = 0:

ðB:2Þ

Eliminating the higher-order term including (dy)2 and
dividing by dxdydz, we obtain

ua
∂na
∂y

+ na
∂ua
∂y

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

+ 1
dxdydz

ðx+dx
x

ðy+dy
y

ðz+dz
z

na u, v,wð Þρagdudvdw = 0:

ðB:3Þ

Combining the first and second terms on the left-hand
side of Equation (B.3), we can finally obtain the balance dif-
ferential equation for the pore air DE (see Equation (17)).

C. Balance Equation for Generalized Soil
Skeleton DE Equation Section 3

The equilibrium condition of the generalized soil skeleton
DE, as shown in Figure 11, demands that the resultant force
should vanish. Summing the forces in the y-direction yields
the force balance equation for the generalized soil skeleton
DE:

− σy′ +
∂σy′
∂y

dy

 !
dxdz + σy′dxdz − τxy′ +

∂τxy′
∂x

dx

 !
dydz + τxy′ dydz

− τzy′ +
∂τzy′
∂z

dz

 !
dxdy + τzy′ dxdy − σcwsp‐Ua

cw
sp‐Udxdz

+ σcw
sp‐La

cw
sp‐Ldxdz − σcw

c‐Ua
cw
c‐Udxdz + σcw

c‐La
cw
c‐Ldxdz − σa

sp‐Ua
a
sp‐Udxdz

+ σa
sp‐La

a
sp‐Ldxdz − σa

c‐Ua
a
c‐Udxdz + σa

c‐La
a
c‐Ldxdz

+
ðx+dx
x

ðy+dy
y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

+
ðx+dx
x

ðy+dy
y

ðz+dz
z

f agsy u, v,wð Þdudvdw

−
ðx+dx
x

ðy+dy
y

ðz+dz
z

ngs u, v,wð Þρgsgdudvdw = 0,

ðC:1Þ

where σcwsp‐U and σcwc‐U denote the stresses acting on the cross-
sections of the soil particles and on the contact areas between
the soil particles of the upper surface, respectively, which are
induced by the homogenized capillary water pressure of the
upper surface; acwsp‐U and acwc‐U represent the corresponding
areas of σcwsp‐U and σcw

c‐U; σ
cw
sp‐L and σcwc‐L denote the stresses act-

ing on the cross-sections of the soil particles and on the con-
tact areas between the soil particles of the lower surface,
respectively, which are induced by the homogenized capillary
water pressure of the lower surface; acwsp‐L and a

cw
c‐L represent the

corresponding areas of σcwsp‐L and σcw
c‐L. σ

a
sp‐U and σa

c‐U denote
the stresses acting on the cross-sections of soil particles and
on the contact areas between soil particles of the upper surface,
respectively, which are induced by the homogenized air pres-
sure of the upper surface; aasp‐U and aac‐U represent the corre-
sponding areas of σasp‐U and σac‐U. σ

a
sp‐L and σa

c‐L denote the
stresses acting on the cross-sections of soil particles and on
the contact areas between soil particles of the lower surface,
respectively, which are induced by the homogenized air pres-
sure of the lower surface; aasp‐L and aac‐L represent the corre-
sponding areas of σasp‐L and σac‐L.

Based on the analysis of Figure 10, we can obtain

σcw
sp‐U = ncw + ∂ncw/∂yð Þdyð Þ

ncw + ∂ncw/∂yð Þdyð Þ + na + ∂na/∂yð Þdyð Þ uw + ∂uw
∂y

dy
� 	

; σcwsp‐L

= ncw
ncw + na

uw,

σcwc‐U = ncw + ∂ncw/∂yð Þdyð Þ
ncw + ∂ncw/∂yð Þdyð Þ + na + ∂na/∂yð Þdyð Þ uw + ∂uw

∂y
dy

� 	
; σcwc‐L

= ncw
ncw + na

uw,
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σasp‐U = na + ∂na/∂yð Þdyð Þ
ncw + ∂ncw/∂yð Þdyð Þ + na + ∂na/∂yð Þdyð Þ ua +

∂ua
∂y

dy
� 	

; σasp‐L =
na

ncw + na
ua,

σac‐U = na + ∂na/∂yð Þdyð Þ
ncw + ∂ncw/∂yð Þdyð Þ + na + ∂na/∂yð Þdyð Þ ua +

∂ua
∂y

dy
� 	

; σac‐L =
na

ncw + na
ua,

acwsp‐U + acwc‐U = 1 − ncw + ∂ncw
∂y

dy
� 	

− na +
∂na
∂y

dy
� 	
 �

; acwsp‐L + acwc‐L = 1 − ncw − nað Þ,

aasp‐U + aac‐U = 1 − ncw + ∂ncw
∂y

dy
� 	

− na +
∂na
∂y

dy
� 	
 �

; aasp‐L + aac‐L = 1 − ncw − nað Þ:

ðC:2Þ

Substituting Equation (C.2) into Equation (C.1), expand-
ing Equation (C.1), and eliminating the higher-order term
including (dy)2, we have

1 − ncw − nað Þ ∂ ncwuwð Þ/∂yð Þdxdydz − ncwuw ∂ ncw + nað Þ/∂yð Þdxdydz
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+ 1 − ncw − nað Þnauadxdz
ncw + nað Þ + ∂ ncw + nað Þ/∂yð Þdy −

1 − ncw − nað Þnauadxdz
ncw + nað Þ

−
ðx+dx
x
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y
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z
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ðx+dx
x

ðy+dy
y
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+
ðx+dx
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y
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z

ngs u, v,wð Þρgsgdudvdw +
∂σy′
∂y

dxdydz +
∂τxy′
∂x

dxdydz

+
∂τzy′
∂z

dxdydz = 0:

ðC:3Þ

Substituting the identity, ngs = ð1 − ncw − naÞ, and divid-
ing by dxdydz, we obtain

ngs ∂ ncwuwð Þ/∂yð Þ + ncwuw ∂ngs/∂y
� �

ncw + nað Þ − ∂ngs/∂y
� �

dy
+
ngs ∂ nauað Þ/∂yð Þ + naua ∂ngs/∂y

� �
ncw + nað Þ − ∂ngs/∂y

� �
dy

−
1

dxdydz

ðx+dx
x
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y

ðz+dz
z

f cwgsy u, v,wð Þdudvdw

−
1

dxdydz

ðx+dx
x
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+ 1
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ngs u, v,wð Þρgsgdudvdw +
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+
∂τxy′
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+
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= 0:

ðC:4Þ

In classical soil mechanics, the soil skeleton is generally
defined as an assembly of soil particles [62], and its porosity
under homogeneous soil conditions can be assumed to be
independent of space coordinates [63, 64]. Since the
adsorbed water is controlled by the adsorptive forces exerted
by the surfaces of soil particles, the porosity of the adsorbed
water can also be assumed to be constant under homoge-
neous soil conditions when space coordinates change. In
addition, compared with the porosity of the soil skeleton,
the porosity of the contractile skin can be ignored. In this
case, the value of ∂ngs/∂y can be assumed to be zero; there-
fore, Equation (C.4) can be simplified as Equation (24).
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