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Cemented backfill coal mining technology is gradually becoming a key technology for green mining of coal resources. And
cemented backfill materials generally have congenital defects such as poor crack resistance, poor durability, and high
brittleness, which restrict the promotion and application of cemented backfill coal mining technology. Due to the complex
stress environment of in situ stress, mining stress, water pressure, and gas pressure, cemented backfill materials need to have
good mechanical properties, and glass fiber is usually used to mix into cemented backfill materials to improve its performance,
but there are many problems including complex testing process, high cost, and long time-consuming in the study of
mechanical properties of glass fiber-modified cemented backfill materials (GFCBM) by laboratory tests. Consequently, this
study proposed and compared four artificial intelligence models to forecast the tensile strength of GFCBM. Firstly, the
laboratory tests of tensile properties of GFCBM under different influence factors were implemented to supply the prediction
model with dataset. The input variables are aeolian sand content, cement content, glass fiber length, and glass fiber content,
and the output variable is the tensile strength of GFCBM. The correlation coefficient (R), mean absolute error (MAE), and root
mean square error (RMSE) are selected to assess the estimated performance of the hybrid intelligent model. The results
indicate that the four hybrid artificial intelligence models show a latent capacity for forecasting the tensile strength of GFCBM,
and according to the order from high to low, the prediction ability of the four prediction models is as follows: ABC-SVM, GA-
SVM, SSA-SVM, and DE-SVM, and the corresponding R values are 0.9555, 0.9539, 0.9413, and 0.9359, respectively. The
research findings are beneficial to promote the application of cemented backfill coal mining technology.

1. Introduction

The surface subsidence, soil erosion, and other ecological
environment damage caused by coal mining have been a
major problem, which seriously restricts the harmonious
development of coal exploitation and ecoenvironment pro-
tection [1, 2]. As a key technology for coal resource green
mining, backfill mining technology uses the supporting
function of backfill body to control the overlying strata
movement and reduce surface subsidence, which has
become one of the important ways to achieve safe, efficient,

economic, and sustainable development of coal resources
[3, 4]. Because of its low cost and mature technology, cemen-
ted backfill mining technology has been extensively used in
mining areas in the Northwest of China [5]. As a typical
cement-based material, cemented backfill materials generally
have congenital defects such as poor crack resistance, poor
durability, and high brittleness. Since the cemented backfill
body has the “arching effect” after it is backfilled into the
goaf, it requires not only sufficient compressive strength,
but also good tensile and shear properties [6]. At present,
simply increasing the amount of cement to make up for
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the above shortcomings not only brings huge economic and
safety costs to the mine but also largely restricts the wider
promotion and application of cemented backfill mining
technology.

Researchers have proposed that adding glass fiber mate-
rials to the cemented backfill materials can increase the
strength, toughness, and ductility of the materials and opti-
mize its mechanical properties [7, 8]. The role of glass fiber
materials in cemented backfill materials can be summarized
as crack resistance, reinforcement, and toughening. The spe-
cific reinforcement effect is related to the orientation, the
ratio of length to diameter, and the volume content of the
glass fiber materials. Qin et al. [9] analyzed the feasibility
of polypropylene fiber fabrics to enhance the mechanical
properties of concrete and compared the compressive
strength and multiscale failure characteristics of ordinary
concrete and fiber-modified concrete, and it is found that
polypropylene fiber fabric is beneficial to improve the com-
pressive strength of concrete. Elkatatny et al. [10] tested
the effect of glass fiber materials on the tensile strength,
porosity, and permeability of cement under high tempera-
ture and high pressure. The results show that glass fiber
materials do not significantly affect the rheology, density,
and water content of cement but can significantly improve
its tensile strength and compressive strength. Yi et al. [11]
studied the internal failure mechanism of cemented backfill
materials with glass fiber through uniaxial compression test
and X-ray computed tomography (CT), and the results indi-
cate that the mechanical strength of cemented backfill mate-
rials with glass fiber is increased by about 70%~90%, and the
glass fiber can effectively prevent the propagation of internal
cracks. It can be seen that the incorporation of glass fiber
materials is able to indeed change the mechanical properties
of cemented backfill materials, and the means of its optimi-
zation process is mainly laboratory test. However, this
method is currently faced with the problems of complex test
process, high cost, and long time-consuming, which restrict
the development of this research. Therefore, how to find
other methods to conveniently obtain the changes in the
properties of glass fiber-modified cemented backfill mate-
rials (GFCBM) is of great significance.

At present, artificial intelligence technology has been
gradually applied in many engineering fields [12, 13]. It
can achieve better prediction results on the basis of compre-
hensive consideration of various influencing factors. Yan
et al. [14] proposed an intelligence model named BPNN-
GA-AdaBoost to predict the change of coal strength after
CO2 injection into coal seam; Han et al. [15] integrated ran-
dom forest and particle swarm optimization algorithm to
evaluate the fracture performance of concrete; Jalal et al.
[16] estimated the swelling strength of expansive soil
through ANN, GEP, and ANFIS methods. It can be seen that
intelligent prediction has been used in various engineering
directions and has achieved excellent results, but currently,
it is still facing the following problems: (1) At present, there
is almost no intelligence model to forecast the tensile perfor-
mance of GFCBM, especially the use of support vector
machine (support vector machine has obvious advantages
in small sample data). (2) There is a lack of comparative

studies on the tensile strength of cemented backfill materials
using different prediction models. Therefore, it is of urgent
significance to implement a comparative study on the intel-
ligent prediction of the tensile properties of GFCBM.

This paper puts forward four hybrid artificial intelligence
models, namely, ABC-SVM, DE-SVM, GA-SVM, and SSA-
SVM, to predict the tensile strength of GFCBM. Among
them, the support vector machine (SVM) is mainly
employed in analyzing the function relation between the
tensile strength of GFCBM and various influence parame-
ters. The dataset of the model is gained through laboratory
tests on tensile properties of GFCBM. The input variables
of the model are aeolian sand content, cement content, glass
fiber length, and glass fiber content, and the output variable
is the tensile strength of GFCBM. The R, MAE, and RMSE
were selected to evaluate and compare the prediction perfor-
mance of these hybrid intelligent model. Finally, the optimal
model for predicting the tensile performance of GFCBM was
obtained. The research findings are beneficial to promote the
application of cemented backfill mining technology.

2. Experiment

2.1. Materials. The aeolian sand and fly ash, together with a
small amount of cement and quicklime, are chosen as the
cemented backfill materials. The aeolian sand is mainly
taken from the mining area in Northern Shaanxi, where
the surface is covered with a large amount of aeolian sand,
and the fly ash comes from the power plant. Glass fiber is
selected as the doped fiber material, mainly considering the
low cost. Among them, the length of glass fiber is 3mm,
6mm, and 15mm, and the maximum tensile strength of sin-
gle glass fiber is 2800MPa. It is often used as the filler of
cement or concrete to improve the strength, impact resis-
tance, tensile strength, bending resistance, and durability of
materials, and it is an ideal multifunctional reinforcing
material. The photograph of glass fiber is shown in Figure 1.

2.2. Preparation Process. Firstly, glass fiber and raw materials
of backfill materials (fly ash, aeolian sand, cement, and
quicklime) were weighed, mixed, and stirred evenly, and
then, water was added for mixing. Then, the mixed mortar
was poured into self-made abrasives and put into the curing
box for curing; eventually, a cube-like concrete specimen is
formed. The size of the abrasive tool is 7:07 × 7:07 × 7:07
cm, and the WAW-1000D servo press machine was selected
to test the tensile strength of the cemented backfill materials
at different ages.

2.3. Experimental Scheme. In current study, the influence of
aeolian sand content, fly ash content, cement content, quick-
lime content, glass fiber length, and glass fiber content on
the tensile strength of cemented backfill materials is mainly
considered. The content of each material refers to the weight
proportion, and the specific design scheme is shown in
Table 1. Among them, there are 4 kinds of cemented backfill
ratios, 3 kinds of glass fiber lengths, 5 kinds of glass fiber
content, and a total of 60 schemes. Each scheme carries
out 3 experiments for a total of 180 experiments.
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The design of the experimental scheme is mainly based
on the results of previous studies. Aeolian sand content,
cement content, glass fiber length, and glass fiber content
are the main variables in this scheme. Therefore, the input
variable of the artificial intelligence prediction model
selects the above variables. Since glass fiber can signifi-
cantly modify the tensile strength of cemented backfill
materials, this study mainly tests the tensile strength of
GFCBM, and it is also the output variable of the artificial
intelligence prediction model.

3. Machine Learning Algorithms

In this study, four artificial intelligence models are used to
predict the tensile properties of GFCBM, which are ABC-
SVM, DE-SVM, GA-SVM, and SSA-SVM. Among them,
SVM is employed in analyzing the function relation between
the tensile strength of GFCBM and various influence param-
eters, and ABC, DE, GA, and SSA are employed in optimiz-
ing the parameters of the SVM.

3.1. Support Vector Machine. Support vector machine
(SVM) [18] is a machine learning means raised by Vapnik.
It can be divided into support vector classification and sup-
port vector regression to solve classification and regression
problems, respectively. As shown in Figure 2, the core idea
of SVM is the conversion from low-dimensional spatial data
points to high-dimensional spatial data points through non-
linear mapping and adopt the principle of structural risk
minimization, and then, classify and predict the data in the
high-dimensional space. SVM can effectively avoid the local

extremum problem, maximize the prediction accuracy, and
prevent the data from overfitting. According to the restricted
sample data, it can obtain the optimal value between model
complexity and forecast accuracy and improve its generali-
zation ability.

The selection of kernel function and related parameter
setting are the key of SVM. In this study, the SVR is
selected, and the widely used RBF kernel function is
adopted, because it is suitable for different samples and
various dimension problems and has strong nonlinear
mapping ability. The hyperparameters (C and g) of the
SVM model are closely related to its predictive ability,
and the optimal solution needs to be gained through opti-
mization algorithms.

3.2. Artificial Bee Colony Algorithm. Artificial bee colony
(ABC) is a new optimization algorithm in view of swarm
intelligence put forward by Vasquez and Garro [19]. The
artificial bee colony algorithm model mainly includes the
following elements: one is the nectar source, that is, the
group goal. The composition of the group is dedicated to

Figure 1: The photograph of glass fiber.

Table 1: Experimental scheme design [17].

Group
Aeolian sand : fly ash:
cement: quicklime (%)

Glass fiber
length (mm)

Glass fiber
content (‰)

1 47.5 : 35 : 12.5 : 5 3, 6, 15 1, 3, 5, 10, 15

2 55 : 35 : 5 : 5 3, 6, 15 1, 3, 5, 10, 15

3 21.5 : 35 : 38.5 : 5 3, 6, 15 1, 3, 5, 10, 15

4 30 : 35 : 30 : 5 3, 6, 15 1, 3, 5, 10, 15

Original space Feature space

Mapping function

Linearly separableNonlinearly separable

Figure 2: The SVM solution principle.
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Figure 3: SSA algorithm flow chart.
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finding the best nectar source and continuously updated
after mining; the second is the composition and division of
the bee colony. The hired bee is dedicated to discovering
and sharing nectar source information with the follower
bees, while the scout bee is dedicated to the update of the
nectar source. It is always transformed from the hired bee
when the quality of the nectar source drops. The third is col-
ony behavior, that is, the recruitment of new bees and the
abandonment of low-value nectar sources.

3.3. Differential Evolution Algorithm. The DE algorithm was
put forward by Yuan et al. [20]. This algorithm solves the
optimization problem by means of the cooperation and
competition of individuals in the whole population and has
a strong global convergence potentiality. The process of DE
algorithm is similar to other evolutionary algorithms,
including mutation, selection, and crossover operations,
but compared with other algorithms, DE algorithm runs sta-
bly, converges quickly and has low complexity. The DE algo-
rithm begins from the initial population, after mutation,
selection, and crossover operations; the best individual is
saved in the new population and then iterates until the ter-
mination condition is met.

3.4. Genetic Algorithm. Genetic algorithm (GA) is a type of
evolutionary calculation, which is a method to imitate Dar-
win’s genetic selection and natural elimination of biotic evo-
lution process [21]. The algorithm is simple, general, and
robust and is suitable for parallel processing. The GA mainly
transfers the better genes to the next generation by the
means of the selection operator and expands the search
range by the means of the crossover operator, and the muta-
tion operator accelerates the convergence speed, so as to
achieve the goal of global search.

3.5. Sparrow Search Algorithm. Sparrow search algorithm
(SSA) is a latest swarm intelligence optimization algorithm,
put forward in 2020 [22]. During the process of foraging
for sparrows, it is compartmentalized into discoverers and
joiners. The discoverers are responsible for finding food in
the population and provide search directions for the whole
population, while joiners use the discoverers’ guidance to
obtain food. In order to obtain food, sparrows can usually
forage for food using two behavioral strategies: discoverer
and joiner. Individuals in the population will be alert to
the other individual behaviors, and attackers in the popula-
tion will compete with high-intake companions for food

resources to increase their predation rate. The specific flow
chart is shown in Figure 3.

4. Methodology

4.1. Dataset Preparation. In current study, the tensile prop-
erties of GFCBM from the experimental test are used as
the dataset for the artificial intelligence. As mentioned above,
there are 180 series of data for training and testing. According
to early research experience [23, 24], compared with other
models such as ANN, SVM has obvious advantages in dealing
with small samples and nonlinear problems. It is unnecessary
to be large for the dataset required for the training and testing
of SVM-basedmodel, and the artificial intelligencemodels can
be well trained and tested by the 180 series of data in this
paper. According to the experimental scheme, the aeolian
sand content and cement content in the GFCBM are variables,
and the glass fiber length and content are also variables. There-
fore, the input variables are aeolian sand content, cement con-
tent, glass fiber length, and glass fiber content, and the output
variable is the tensile strength of GFCBM. Table 2 summarizes
the data statistics for the whole dataset.

In the process of modeling, the whole dataset will be sep-
arated into a training set and a testing set on the basis of a
certain ratio [25]. In this paper, the ratio is selected to be
7 : 3, that is, 126 series of data are selected for the training
set, and the 54 series of data are selected for the testing set.

4.2. Model Establishment. Figure 4 presents four hybrid arti-
ficial intelligence models, that is, ABC-SVM, DE-SVM, GA-
SVM, and SSA-SVM. Among them, SVM is employed in
analyzing the function relation between the tensile strength
of GFCBM and various influence parameters, and ABC, DE,
GA, and SSA are employed in optimizing the parameters of
the SVM. For comparison and analysis purposes, based on
the optimal effect and stable convergence of various machine
learning algorithms, it is better to keep the model parameters
consistent. The kernel function of SVM is RBF radial basis
function, the population size of each algorithm is given with
50, and the maximum number of iterations is given with 100.

4.3. Model Validation and Evaluation. The intelligence
model validation and evaluation is an important link for
the development of the model. In this study, for the sake
of assessing the dependability of the hybrid model effec-
tively, the function relationship between the predicted value
and the measured value is described by the correlation coef-
ficient (R), mean absolute error (MAE), and root mean

Table 2: Basic parameter statistics of the dataset.

Parameter Minimum Maximum Unit Variable

Aeolian sand content 21.50 55 % Input

Cement content 5 38.50 % Input

Glass fiber length 3 15 mm Input

Glass fiber content 1 15 ‰ Input

Tensile strength of GFCBM 0.17 1.23 MPa Output
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square error (RMSE), respectively, [26]. The closer the value
of R is to 1, the better correlation between predicted value
and measured value; the smaller the MAE and RMSE, the
smaller the error between the predicted value and the mea-
sured value. The calculation formula of the three evaluation

indexes is as follows:

R = ∑n
i=1 y∗i − y∗
� �
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Figure 5: The training effects of different prediction model for training set.
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MAE = 1
n
〠
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where n refers to the number of datasets, yi
∗ refers to the

predicted value, yi refers to the measured value, y∗ refers to
the average of the predicted value, and �y refers to the average
of the measured value.

5. Results and Discussion

5.1. Comparative Analysis of Different Prediction Models.
This study mainly analyzes and compares the forecast per-
formance of the above four hybrid artificial intelligence
models in the tensile strength of GFCBM from two parts
of training set and testing set.

Figure 5 shows the training effects of different prediction
model for training set. It can be demonstrated that the four
hybrid artificial intelligence models have obtained good
training effects, and the sample data are essentially near
the ideal fitting line (measured value = predicted value), and
only a few sample points deviate from the fitting line. From
the perspective of the R value, the training effect of ABC-
SVM is the best, its R value is 0.9844, followed by GA-

SVM, SSA-SVM, and DE-SVM, and its R values are
0.9835, 0.9717, and 0.9677, respectively. In general, the
training effects of the four hybrid artificial intelligence pre-
diction models have reached high accuracy.

When completing the model training, the trained model
is used for prediction. Figure 6 shows the prediction effects
of different prediction model for testing set. By analyzing
the data distribution, it is clear that the sample data of test-
ing set is also essentially near the ideal fitting line
(measured value = predicted value). According to the order
from high to low, the prediction ability of the four prediction
models is as follows: ABC-SVM, GA-SVM, SSA-SVM, and
DE-SVM, and the corresponding R values are 0.9555,
0.9539, 0.9413, and 0.9359, respectively. Consequently,
ABC-SVM has the best predictive ability in terms of the ten-
sile strength of GFCBM.

To better analyze and compare different forecast model
performance, the performance indicators of different predic-
tion models are summarized, as shown in Table 3, and it can
be drawn that compared with the other three models, the
prediction accuracy of ABC-SVM hybrid model is higher
in training set and testing set. Its R value is the largest, and
its RMSE and MAE values are also very small. This shows
that the ABC-SVM intelligent model not only gives full play
to the superiority of SVM in handling problems with few
samples but also gives full play to the characteristics of
ABC in hyperparameter optimization. Considering
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Figure 6: The prediction effects of different prediction model for testing set.
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comprehensively, the ABC-SVM intelligent model has better
learning and predictive capabilities. Consequently, this study
suggests using the ABC-SVM intelligent model to forecast
the tensile strength of GFCBM.

5.2. Contributions and Shortcomings. The innovations and
main contributions of this research are as follows: (1) it is
proposed to use artificial intelligence technology to predict
the tensile strength of GFCBM, which effectively avoids the
disadvantages of complex laboratory testing process, long
time-consuming, and high cost; (2) considering that SVM
has many unique advantages in solving small sample and
nonlinear and high-dimensional pattern recognition, it is
proposed to use support vector machine to construct the
prediction model, which solves the defect of small sample
data; (3) systematic comparative research on intelligent opti-
mization algorithms to optimize the performance of SVM
has been carried out.

This study is the initial exploration of artificial intelli-
gence technology to forecast the GFCBM mechanical prop-
erties. In the future, it is necessary to use artificial
intelligence model to forecast the compressive strength and
shear strength of GFCBM. Meanwhile, the dataset of artifi-
cial intelligence prediction model needs to be continuously
enriched, so as to make the better predictive ability.

6. Conclusions

In this research, there are four hybrid artificial intelligence
models to be proposed and compared for predicting the ten-
sile strength of GFCBM, that is, ABC-SVM, DE-SVM, GA-
SVM, and SSA-SVM. The dataset of the model is built
through laboratory tests on tensile properties of GFCBM.
The input variables are aeolian sand content, cement con-
tent, glass fiber length, and glass fiber content, and the out-
put variable is the tensile strength of GFCBM. The R,
RMSE, and MAE are selected to assess the estimated perfor-
mance of the hybrid intelligent model. The main findings are
as follows:

(1) Through laboratory tests of different fly ash content,
aeolian sand content, cement content, quicklime
content, glass fiber length, and glass fiber content
on the tensile strength of GFCBM, it is found that
the glass fiber can effectively change the tensile
strength of cemented backfill materials

(2) The four hybrid artificial intelligence models pro-
posed in this study show a latent capacity for fore-
casting the tensile strength of GFCBM, and ABC,

DE, GA, and SSA have good effects on SVM hyper-
parameter optimization

(3) According to the order from high to low, the predic-
tion ability of the four prediction models is as fol-
lows: ABC-SVM, GA-SVM, SSA-SVM, and DE-
SVM, and the corresponding R values are 0.9555,
0.9539, 0.9413, and 0.9359, respectively. In this
study, ABC-SVM intelligent model is suggested to
forecast the tensile strength of GFCBM
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