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Bridging plugging is the most used method of plugging in unconventional oil reservoirs, and many factors affect the effect of
bridging and plugging. Since the laboratory cannot simulate the actual leakage size of the lost formation and the corresponding
leakage plugging process at the drilling site, the laboratory experiment results cannot reflect the actual leakage plugging
construction effect. Aiming at the problem of frequent fracture leakage during drilling in Chepaizi block, Xinjiang, China, this
paper proposes a set of machine learning methods based on a neural network. Three types of factors and 14 parameters with a
strong correlation with the leakage control effect were screened out. Three categories of factors include construction
parameters, choice of plugging material, and fluid properties of the carrier fluid. The training was carried out based on the
collected field data, the appropriate activation function was set, and the deep well network structure was optimized. By
improving the field plugging measures in the later period, the model was verified by these actual cases, and the results showed
that the established model produced the highest R2 of 0.974, has a good fit, and predicts well.

1. Introduction

In unconventional reservoir formations, leakage is one of the
typical complex problems in the drilling process [1]. Faced
with the problem of downhole leakage, improper treatment
measures will lead to a low success rate of plugging, contin-
uous leakage of drilling fluid, and an increase of lost working
hours on-site and even further lead to wellbore scrapping
(well abandonment) [2–3]. Carboniferous fractures are
developed in the target layer of the Chepaizi block in Xin-
jiang, China, and loss of return and leakage frequently
occurs during the drilling fluid process. Leakage control is
a problem that has always plagued the site. Because the field
engineer cannot understand the details of the underground
lost formation, there is a problem of blindly plugging the

leakage, which leads to the current situation of difficult
one-time plugging. Frequent leakage problems cost a lot of
construction time, and plugging construction takes 15% of
the drilling cycle, which significantly increases the drilling
cost and cannot meet the strategic needs of low-cost devel-
opment [4–5].

The bridging plugging method is the most used in the
construction of the Chepaizi block due to its simple con-
struction process, low cost, and remarkable effect. Bridging
and plugging materials are the key means to restore and
enhance wellbore stress. The loss-stopping material estab-
lishes a dense, high-strength loss-stopping layer to balance
the wellbore liquid column pressure, thereby preventing
the propagation of fractures. Corrective borehole strength-
ening is a method to effectively improve the fracture
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resistance of the rock formation by improving the formation
closure stress and increasing the hoop stress in the near-
wellbore area [6]. In this process, the quality of the plugging
layer is related to various factors. Pump speed, pump pressure,
the formula of bridging and plugging materials, and the vis-
cosity of drilling fluid or particular plugging slurry will all
affect the quality of the plugging layer. Poor quality plugging
layer is the main reason for the failure of plugging [7–10].

Due to the significant difference between the actual situ-
ation of the leakage layer under the formation and the leak-
age channel simulated in the laboratory, there are certain
limitations to the indoor fracture sealing experiment, and it
is impossible to simulate the natural fractures in the forma-
tion, as well as the pumping displacement, and the pressure
is also beyond the reach of laboratory equipment [11]. Lab-
oratory experiments are lacking through the process of
pumping the lost circulation slurry from the wellbore to
the fracture. Therefore, according to laboratory experiments,
it is often possible to obtain better effective plugging formu-
las, but the plugging process in the actual field still cannot
play a good role. Since the laboratory experiment on the for-
mulation of the plugging slurry is different from field plug-
ging, the indoor plugging experiment method clearly
understands the leakage channel [12–14]. However, the site’s
understanding of the underground leakage formation is
vague. However, the loss dynamics, imaging logging data,
and other methods have been adopted to infer the size of
the leakage channel in the downhole lost formation. How-
ever, the cognition of downhole lost formation is limited
within a specific range [15–18]. Therefore, it is not easy to
choose a plugging method suitable for the site.

Machine learning methods are widely used in the explo-
ration and development of the oil field. The large amount of
data generated during the drilling process can solve practical
problems in the field through machine learning. Pang et al.
[19] extracted 22 comprehensive logging parameters from
the drilling process and based on a set of deep learning
mixed density network models, and they could reasonably
predict the leakage problem. Gul and van Oort [20] avoided
the pitfalls of manual measurement by establishing machine
learning and deep learning to predict the filtration perfor-
mance of water-based drilling fluids through fluid properties
such as drilling fluid rheology, density, and temperature.
Diaz et al. [21] used an artificial neural network to predict
the permeability for nine drilling parameters obtained dur-
ing drilling. Mahmoud et al. [22] compared three machine
learning models, trained on 3,162 data sets of 6 (drilling
parameters) and real-time prediction of formation lithology.
Zhu Z et al. [23] predicted the settlement behavior of rod
proppant in fractures through the artificial neural network,
and the data set was from 588 practical laboratory experi-
ments. Aiming at the advantages of machine learning
methods in data processing, it can improve more accurate
guidance for learning more data [24–26]. Machine learning
methods seem to be able to replace the methods recom-
mended by the experience of field engineers. These compu-
tationally intelligent methods can learn from the
experience of plugging projects in this area and give more
reasonable recommended methods [27].

According to the artificial neural network to estimate the
most reasonable plugging formula, this study aims to evalu-
ate the potential of using artificial neural networks to mine
and analyze data from lost circulation plugging construction
in the Chepaizi block, Xinjiang, China, and then build an
intelligent model to predict lost circulation problems while
drilling for the Carboniferous strata in the block. On-site
technicians can use the construction effect of leakage to
make quick and effective decisions in the face of leakage
accidents.

2. The Theoretical Background of
Fracture Plugging

2.1. The Missing Geological Conditions of the Chepaizi Block.
The Chepaizi block is located on the northwestern margin of
the Junggar Basin in Xinjiang, China. During the drilling pro-
cess of the Chepaizi block, there were frequent leakages, mainly
loss-of-return leakage; the loss time of front leakage was mainly
distributed between 30 and 120 hours, and the potential leakage
risk is high; the success rate of a single leakage plugging is low,
and there are many cases of repeated leakage. The leakage situ-
ation in the Chepaizi block generally exists in the Carboniferous
strata. The Carboniferous volcanic rock reservoirs in the Che-
paizi area have developed fractures and have low pressure-
bearing capacity. The Carboniferous volcanic rocks in the Che-
paizi area have developed fractures, mainly oblique fractures,
followed by low-angle fractures, accounting for 60.34% and
21.43% of the total number of observed fractures, respectively.
Core observation shows that the core fracture length is 5-
30cm and the core fracture width is 0.1-0.6mm.

The imaging images can identify fractures with different
angles and filling degrees—Figure 1. The statistics of the Car-
boniferous imaging logging fractures in the Chepaizi area show
that half-filled fractures and unfilled fractures account for 66%
of the total number of identified fractures, with a high degree
of effectiveness. High-angle fractures have the lowest filling
degree, and low-angle fractures have the highest filling degree.

Taking well Che 482 in the Che 471 well area as an
example, according to the characteristics reflected by the
XRMI image data in Figure 2, the fracture types mainly
include mesh fractures, oblique fractures, straight split frac-
tures, induced fractures, filled-semifilled fractures, and
microfractures. The Carboniferous fissures are related to
the direction of faults and can be roughly divided into two
groups, mainly near-EW-trending fissures (consistent with
the average fault trend), followed by near-SN-trending fis-
sures (consistent with the reverse fault trend).

2.2. Fracture Plugging Theory. Fracture leakage is one of the
typically complex problems in the drilling process. There are
currently two common solutions to plugging: active plug-
ging and corrective plugging, depending on whether or not
plugging occurs. In the process of actively strengthening
the wellbore, the fracture tip is isolated from the wellbore
pressure by the plugging material slurry, thereby preventing
the expansion of the fracture. Corrective borehole strength-
ening is a method to effectively improve the fracture resis-
tance of rock formations by improving the formation
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closure stress and increasing the hoop stress in the near-
wellbore area. The most common wellbore-strengthening
theories are ring compression stress enhancement (stress
cage) [28, 29], fracture propagation resistance (FPR) [30],
and fracture closure stress (FCS) [31]. Figure 3 depicts the

role of the plugging material in different wellbore-
strengthening theories [32].

No matter which wellbore strengthening theory is
adopted, it all involves the need to make the loss-stopping
material be carried into the fracture so as to construct the
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Figure 1: Characteristics of Carboniferous fractures in Chepaizi area.
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plugging zone. Loss-stoppingmaterials are appropriately posi-
tioned within the fracture to isolate the pressure transfer in the
fracture and increase the hoop stress in the near-wellbore
region. This behavior is a complex process involving the
migration behavior of particles in the fluid and the contact
behavior between particles and particles and fractures.

The lost circulation material is carried into the fracture
by drilling fluid or a particular lost circulation slurry. The
behavior of fluid and particles in this transport process can
be described by equations (1) and (2). According to the dril-
ling fluid loss model in a single nonsite fracture established
by Li et al. [33], for the non-Newtonian Heba drilling fluid,
the flow velocity equation in the fracture is

V = n
2n + 1

� � w
2

� �1+ 1/nð Þ 1
k

� �1/n
−
dp
dx

−
2n + 1
n + 1

2τy
w

� �1/n
:

ð1Þ

In the formula, n is the flow pattern index (dimensionless),
K is the consistency coefficient (Pa▪sn), τy is the dynamic shear
force (Pa), P is the pressure (Pa) and w is the fracture width.

In the process of two-phase flow of the plugging material
in the fluid, when the fluid in the fracture flows in a laminar
flow state, the total drag force and drag force coefficients on
the particles are equations (2) and (3), respectively:

Fd = CDAp
ρu2

2 , ð2Þ

CD = 24
Rep

, ð3Þ

where Ap is the surface area of the particle (cm2), ρ is the
density of the fluid, (g/cm3), μ is the viscosity of the fluid
(MPa▪s), and Rep is the Reynolds number of the fluid.

Therefore, it can be found that the migration behavior of
the plugging particles in the fluid is related to the density, size,
and shape of the particles and the density, rheological proper-
ties, and velocity of the fluid. The particle size distribution of
the plugging material has a significant impact on the fracture
sealing efficiency. Whitfill [34] proposed that in fractures,
the particle size distribution should be kept at about 50% of
the fracture width, improving the bridging ability of the mate-
rial between fractures. Alsaba et al. [35] also proposed a new
standard; the D50 and D90 of the plugging material should
be equal to or more excellent than 3/10 and 6/5 of the fracture
width, respectively, which can effectively seal the fracture. In
fact, different types of leakage-stopping materials have slightly
different requirements for the particle size distribution of the
leakage-stopping materials under the same fracture width.
Therefore, before designing the particle size distribution of
the leakage plugging material that is most suitable for fracture
plugging, the type of leakage plugging material needs to be
considered. This process needs to be determined through field
plugging experience or some laboratory experiments.

2.3. Experimental Analysis of the Correlation Factors of the
Missing Control Effect

2.3.1. Experimental Apparatus. Figure 4 is a schematic dia-
gram of an experimental setup used to evaluate the plugging
ability of the leakage plugging material to fractures. The device
provides different pressures by pressurizing the fluid through a
high-pressure nitrogen cylinder and can provide a maximum
pressure of 10MPa. The storage device of the plugging slurry
contains a liquid level metering device that can measure the vol-
ume of the plugging slurry that is displaced into the fracture at
each stage. The simulated fractures used were split using cores
from the Carboniferous formation in the Chepaizi block. The
advantage of this natural simulated fracture is that it can better
simulate the roughness and bedding of the actual formation

(a)

pw

(b)

pw P
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Figure 3: Common hypotheses related to mechanical wellbore strengthening. (a) Stress cage. (b) Fracture-closure stress. (c) Fracture-
propagation resistance [32].
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fracture and the corresponding permeability. The length of the
entire fracture is 20cm. The front and rear ends of the clamping
device containing simulated natural fractures are equipped with
pressure sensors to record the pressure of the plugging slurry
when it passes through the fracture. Once the leak-stopping
material forms a good sealing layer in the fracture, the front-
end pressure of the clamping device will rise rapidly. The pres-
sure at this time represents the pressure that the sealing layer in
the fracture can bear. The collection device of the plugging
slurry can record the volume of the plugging slurry in the whole
process. Finally, after the experiment is completed, the position
of the plugging layer in the fracture can be measured by disas-
sembling the natural simulated fracture device.

Based on the experience of on-site construction and labora-
tory experiments, we found that even if the plugging particles
can form a suitable plugin for the fracture because the plugging
position is close to the front end of the fracture or the fracture
opening, it can withstand a high pressure. However, during
the actual drilling process, due to the influence of downhole
pressure fluctuations, the plugging layer at the fracture mouth
fell off again, failing to plug. Therefore, to evaluate the effect
of indoor leakage control more realistically, we evaluate the
pressure-bearing capacity P (MPa) of the fracture sealing layer
and measure the invasion depth L (cm) of the sealing layer in
the fracture. These two aspects are used as the evaluation cri-
teria for evaluating the sealing effect of the fracture.

2.3.2. Influence of Different Factors on the Effect of Plugging
Experiments. The fracture size used in the fracture sealing
experiment is a natural fracture with a size of 5 cm × 30 cm.
The maximum applied pressure in the experiment is 8MPa,
and the carrier fluid used is the drilling fluid used in the field.
The viscosity of the fluid is adjusted by adjusting the amount
of the viscosifier. The displayed viscosity is the apparent vis-
cosity of the drilling fluid. The original pumping pressure of
the drilling fluid with the addition of lost circulation material
was 1MPa. The plugging material is the KZ-4 plugging parti-
cle, which is the most widely used KZ series plugging material
in Chepaizi, with a particle size between 18 and 22mm.

(1) Influence of the fluid properties of the carrier fluid
on the leakage control effect

(2) Influence of pumping factors on leakage control effect

(3) Influence of plugging materials on the effect of leak-
age control

Through laboratory experiments, it is found that the
effect of fracture loss control is not only related to the plug-
ging material but also has a great relationship with the
pumping pressure and fluid properties. Figure 5 shows that
as the viscosity of the carrier fluid increases, the magnitude
of the drag force exerted by the fluid on the particles
increases. When the carried viscosity is greater than

30MPa▪s, the plugging particles can be better carried to
the fracture depth during the migration process, and the
intrusion depth reaches 12 cm. The sedimentation velocity
of the particles is also reduced, which avoids the increase
in concentration caused by excessive accumulation and the
formation of plugs at the fracture openings, which weakens
the plugging quality. When the viscosity continues to
increase, the penetration depth and pressure-bearing capac-
ity no longer change. Figure 6 shows that with the increase
of pumping pressure, although the pressure-bearing capacity
can reach 8MPa, the intrusion depth gradually decreases,
from 12 cm to 1 cm. The reason is that when the particles
and the particles and the wall are hindered, they cannot stay.
The displacement speed of the particles also began to
increase, and the particles could not enter into the fractures
in a proper order, resulting in the chaos of the force chain
between the particles and the fractures, and the fractures
were blocked in advance. Figure 7 shows that when the con-
centration of particles is lower, at 10%, the particles cannot
form a tight seal in the fracture. However, if the particle con-
centration is too high, it is not conducive to the displace-
ment of the particles to the depth of the fracture.

Figure 8 shows the difference in the penetration depth of
the formed plugging layer and the plugging state in different
plugging experiments. Through experiments, it is found that
the greater the invasion depth L (cm) of the plugging layer,
the better the effect of the plugging layer and the greater
the pressure it bears. However, during the experiment, when
the pressure-bearing capacity reached the highest, there was
a significant difference in the penetration depth. It shows
that in the actual plugging process of on-site fractures, the
leakage control effect of fractures has a significant relation-
ship with the pumping parameters of construction, the
properties, and concentrations of leakage plugging materials,
and the properties of the fluid carried.

2.4. Determination of the Relevant Factors of the Leakage
Control Effect of the Chepaizi Block. This study is to conduct
machine learning on the leakage control effect of the Car-
boniferous fractured leakage formations in the Chepaizi
block. The selection of data set types dramatically impacts
the quality of machine learning. LCM particles are pumped
into the reservoir section with the plugging slurry and enter
the reservoir under the action of pressure difference. This
process involves the interaction force between particles and
fluids and between particles and fractures [36]. The suspend-
ing force and drag force generated by the fluid on the parti-
cles will obviously affect the suspension, bridging, and filling
of the particles during the plugging process [37–38]. The
particle size distribution and its own properties of LCM
determine whether the “throat” of the fracture can be just
plugged, so that the fracture channel can be converted into
a porous channel [39]. Based on the results of laboratory
experiments and the experience of on-site leakage accident
handling, a large number of parameters on the site were
screened, and three types of factors that had a strong corre-
lation with the success rate of on-site leakage plugging were
selected, namely, pumping parameters, type, and matching
of plugging materials, the fluid properties of the carrier fluid.
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These three parameters can be further classified, and the
same engineering factors can be divided into pumping dis-
placement and maximum pumping pressure. The choice of
the leakage-stopping material is the concentration of the
leakage-stopping material and the type of the leakage-
stopping material. The materials selected according to the
type of on-site loss-stopping materials are KZ-3, KZ-4, KZ-
5, walnut shell, vermiculite, comprehensive loss-stopping
agent, and LWD-while-drilling agent. The fluid properties
of the carrier fluid are divided into total volume, density,
dynamic shear force, and funnel viscosity.

In the actual drilling process of the Carboniferous strata
in the Chepaizi block, the leakage rate of each time has a cer-
tain difference. In fact, it is difficult to quantify the formation
properties such as water swelling properties and heterogene-
ity. At the same time, we only study the leakage layer of the
Carboniferous in this block, and other factors can be
ignored, so the leakage velocity can be used as the descrip-
tion of missing stratigraphic characteristics. Finally, accord-
ing to the parameters selected in the field, the field leakage
control effect is defined. After each leakage plugging opera-
tion occurs, the actual leakage rate of the formation before
and after the construction was compared. The leakage con-
trol effect is described in the form of a percentage, and the

calculation formula is

E = 1 − V initial
Vafter construction

× 100%: ð4Þ

In the formula, V initial is the formation leakage rate
before the plugging construction. The Vafter construction is the
rate of formation leakage after on-site leakage plugging
construction.

3. Artificial Neural Networks

When plugging the lost formation, the leakage control effect
is affected by more than a dozen engineering parameters.
When the information on the more than 400 times of plug-
ging of more than 100 wells in the Carboniferous in this
block is obtained after that, the neural network is applied
to predict the leakage control effect of this block.

A neural network is a powerful tool for approximating
unknown nonlinear functions [40], which helps solve differ-
ent engineering problems and is now widely used in oil and
gas exploration and development. The basic construction of
a neural network is network construction, transfer function,
and training method [41]. Neural networks build these
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network structures from neurons, including an input layer,
an output layer, and one or more hidden layers. There is
no connection between neurons in the same layer and for-
ward connection between neurons in different layers [42].
The process of information propagation between neurons
is divided into forwarding propagation and backpropaga-
tion. The output layer that does not get the expected value
will say that the signal is transmitted back along with the
originally connected node, and the desired goal is achieved
by modifying the weight value.

We used logistic sigmoid and hyperbolic tangent transfer
functions as activation functions. The logistic sigmoid and
hyperbolic tangent transfer functions are considered to per-
form well for any problem involving fault diagnosis and fea-
ture classification. Logistic Sigmoid and hyperbolic tangent
transfer functions are given by equations (5) and (6). Both
functions are plotted in Figure 9. The model uses the
Levenberg-Marquardt (LM) algorithm to find the extreme
value of the function, which has the advantages of fast and
efficient training and improving the convergence speed of
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ANN.

Sigmoid : σ xð Þ = 1
1 + e−x

, ð5Þ

Hyperbolic tangent : σ xð Þ = ex − e−x

ex + e−x
: ð6Þ

3.1. Data Collection and Preprocessing. Data sets play a cru-
cial role in machine learning. A properly screened data set
will improve the accuracy of predictions, while the introduc-
tion of redundant data sets will affect the prediction results.
At the same time, the amount of data in the data set should
be large enough to provide reliability for decision-making. In
the 50 wells in the Chepaizi block, Xinjiang, China, fractured
leakage occurred in different degrees in the Carboniferous
strata, and each well had 3 to 5 fractured leakage behaviors,
and each leakage plugging process took several times to

block successfully. Therefore, according to the complex acci-
dent handling process in the drilling process recorded on the
site, statistics and analyses are made about the on-site leak-
age plugging effect and various parameters in the actual con-
struction process. Based on the empirical analysis of the on-
site leakage plugging effect and the research on the relevant
factors of the quality of the leakage plugging effect in the lab-
oratory, this study selected the actual leakage rate on-site,
the pump speed, and pump pressure during the construction
process, and the matching and concentration of various
types of leakage plugging materials. As well as the fluid
properties (density, viscosity) of the carrier fluid as the data
set used, these parameters are treated as independent vari-
ables. The leakage control effect is regarded as the dependent
variable, and the leakage rate on-site will decrease to a cer-
tain extent after each leakage plugging construction. In order
to digitize the leakage plugging effect on site, the actual leak-
age control effect is evaluated by taking the percentage
reduction of the leakage rate before and after construction.
When the on-site leakage plugging construction is com-
pleted, the leakage rate remains the same as before and does
not decrease. At this time, the plugging quality is regarded as
the worst, and 0% is used to represent the effect of this plug-
ging construction. When the on-site leakage plugging con-
struction is completed, the leakage rate decreases to 0, and
the leakage plugging material smoothly enters the fracture
to form a plugging layer to prevent the drilling fluid in the
wellbore from leaking from the fracture again. At this time,
the leakage control effect is the best, and the leakage rate
decreases. The rate is 100%, and 100% is used to represent
the effect of this plugging construction. In the 50 wells in
the Chepaizi block, 450 cases (data sets) were collected.

In neural networks, high-valued data tends to increase
the proportion of influence on the model, thus losing the
features of low-valued data [43]. Therefore, it is necessary
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to normalize the data to avoid errors caused by the exces-
sively large value range. Normalization of the data depends
on the transfer function used to build the ANN.

When using logistic Sigmoid functions as the transfer
function, with input and target data in the range (0, 1), use
equation (7) to process the functions:

xni =
xi − xminð Þ

xmax − xminð Þ : ð7Þ

Conversely, when using the TAANSIG transfer function,
the input and target data are processed in the range (-1, 1)

using

xni =
2 xi − xminð Þ
xmax − xminð Þ − 1: ð8Þ

Among them, xni represents the data set of plugging
construction parameters after the standardization process
is completed. xi represents the original plugging construc-
tion parameter data set. xmax indicates the maximum value
of the leakage plugging construction parameter data set,
and xmin represents the minimum value of the leakage plug-
ging construction parameter data set. Table 1 shows the gen-
erated codes for the relevant factors of the missing control
effect.
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Table 1: Generated code for missing control-related parameters.

Column name Overview Code

Leak rate (m3/h) The rate of loss of drilling fluid during drilling 1

Displacement (m3/h) The rate at which the carrier fluid is pumped during the plugging process 2

Pumping pressure max (MPa)
The carrier fluid is pumped to the leakage layer, the pressure generated by the fluid at

this time
3

Concentration (%) The concentration of plugging particles in the overall plugging slurry 4

Addition of KZ-3 (t) Plugging materials used in the field, mineral type granular plugging materials 5

Addition of KZ-4 (t) Plugging materials used in the field, mineral type granular plugging materials 6

Addition of KZ-5 (t) Plugging materials used in the field, mineral type granular plugging materials 7

Addition of walnut shell (t) Plugging materials used on-site, plant-type granular plugging materials 8

Amount of vermiculite (t)
Leakage plugging materials used in the field, mineral type flaky leakage plugging

materials
9

Amount of comprehensive plugging
agent (t)

Composite leakage plugging material mixed with particles, flakes, and fibers 10

Addition amount of LWD agent (t) Particle plugging material with particle size below 1mm 11

Total addition (m3) The overall volume of carrier fluid 12

Density (g▪cm3) The density of carrier fluid 13

Funnel viscosity (s) From the marsh funnel, indicating the viscosity of the drilling fluid 1 4

Actual blocking effect (%)
The ratio of the leakage velocity of the lost formation before and after the plugging

construction
1 5
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Statistical analysis of the construction parameters and
results of the plugging construction to determine the mini-
mum value, maximum value, average value, range, standard
deviation, skewness, and kurtosis of the data to be used. The
data characteristics are shown in Table 2. We got a total of
4500 complete and valid data, including 22 data features.

3.2. Optimization and Evaluation of the Model. When using
an artificial neural network, the statistical data set needs to
be divided, and the standardized data set is randomly
divided into a training data set and a test set. The training
data set is used to tune the network weights and biases and
compute gradients, and the test data set is used to test the
developed model to evaluate its performance independently.

The division ratio is related to the overall size of the data set.
Based on the above, 80% of the data is used for training, and
20% is used for testing [44]. In the collected 450 sets of data
sets, 360 sets of sample data are used for training, and 90 sets
of sample data are used for testing. The training set and test
set are suitable for the learning process, while the test set is
used to test the ability of the model to achieve predictions.

This study used mean square error (MSE), mean abso-
lute error (MAE), and coefficient of determination (R2) as
evaluation indicators. The formula is

MSE = 1
n
〠
n

i

Pact − Ppre
� �2, ð9Þ

Table 2: Statistical analysis and summary of sample data.

Types Minimum Maximum Range Arithmetic mean Std. deviation Skewness Kurtosis

Leak rate (m3/h) 3 100 9 7 51.37692 33.57244 0.430229 -1.35702

Displacement (m3/h) 30 100.8 7 0.8 52.66154 18.32424 1.126849 1.879827

Pumping pressure max (MPa) 5 16 1 1 10.73077 2.739423 -0.02166 0.004141

Concentration (%) 0.05 0.3636 0.3136 0.109792 0.057074 3.442085 15.20886

Addition of KZ-3 (t) 0 2 2 0.461538 0.795698 1.350404 0.010491

Addition of KZ-4 (t) 0 2.5 2.5 0.942308 0.85852 0.238694 -1.44599

Addition of KZ-5 (t) 0 2.5 2.5 0.134615 0.510612 4.24259 18.6555

Addition of walnut shell (t) 0 3 3 1.923077 0.873678 -0.57641 -0.13565

Amount of vermiculite (t) 0 3 3 0.634615 0.915231 1.173339 0.043976

Amount of comprehensive plugging agent (t) 0 3 3 1.423077 1.080352 -0.17773 -1.36465

Addition amount of LWD agent (t) 0 2 2 0.134615 0.471448 3.500587 11.44695

Total addition (m3) 11 80 69 55.42308 13.31042 -1.02063 3.95618

Density (g/cm3) 1.15 1.25 0.1 1.221538 0.022819 -2.32647 5.916531

Funnel viscosity (s) 46 72 26 58.03846 9.500934 0.36903 -1.50663

Actual blocking effect (%) 0.1 1 0.9 0.596923 0.330102 0.280503 -1.75597
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Figure 10: The MSE of an ANN model with different neurons and hidden layers (using the logistic Sigmoid functions).
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MAE = 1
m
〠
m

i=1
Pact − Ppre
� �

, ð10Þ

R2 = 1 −
∑n

i=1 Pact − Ppre
� �2

∑n
i=1 Pact − Paveð Þ2 :

ð11Þ

In the above equation, y is the number of actually lost
circulation solutions; f ðxÞ represents the number of correct
simulated lost circulation solutions using machine learning
methods; n is the total number of data types used for model
evaluation. The proposed model has the highest sum R2 and
the lowest MSE, and MAE can be considered the best model.

4. Results and Discussion

4.1. The Architecture of ANN. The number of hidden layers,
the number of neurons, and the transfer function are the key
parameters that determine the accuracy of ANN, but there is
no definite solution for the selection of ANN architecture. In

order to find an ANN architecture suitable for this predic-
tion model, it is necessary to conduct some experiments to
determine the best configuration for ANN. Previous
research has been done on the selection of the number of
hidden layers and neurons, and some practical suggestions
have been put forward. Boger and Guterman (1997) believed
that hidden nodes should be at least as many as input nodes
to capture 70%~90% of the features. Hecht-Nielsen pro-
posed an empirical relationship between the number of
computational hidden neurons and the number of input
parameters, expressed in equation (11) [45]. Jiang et al. pro-
posed a relational formula to determine the number of neu-
rons in a multilayer hidden layer, and the relational formula
is 12, where K , m1, and m2 are the number of neurons in the
hidden layer, the number of input parameters, and the num-
ber of output parameters, respectively. m3 is an empirical
constant between 1 and 10 [46].

h = 2i + 1, ð12Þ

where h is the number of hidden neurons and i is the num-
ber of input parameters.

K = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 +m2 +m3

p , ð13Þ

where K , m1, and m2 are the number of neurons in the hid-
den layer, the number of input parameters, and the number
of output parameters, respectively. m3 is an empirical con-
stant between 1 and 10.

Based on the above features, we compare the prediction
accuracy of each model by comparing the number of neu-
rons in different hidden layers and the number of hidden
layers. We control the number of neurons between 10 and
100. In order to control the complexity of the model and
simplify the model, the number of hidden layers is set to 1
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Figure 11: The MSE of an ANN model with different neurons and hidden layers (using the TASIG transfer function).

Table 3: Details of the developed artificial neural network
architecture.

Feature Value/model

Number of samples 450

Training algorithm Levenberg-Marquardt algorithm

Hidden layer size 2L ∗ 50N
Tolerance 1 × 10−6

Maximum iteration 2000

Learning rate 0.07

Initial learning rate 0.01

Activation Logistic sigmoid functions

Shuffle TURE
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to 2 layers. Both TASIG and LOGSIG transfer functions
were selected for testing. The prediction accuracy results
obtained through different network structures are shown in
Figures 10 and 11.

By changing the number of neurons in the hidden layer
and the number of hidden layers, different transfer functions
are used to analyze its impact on the performance of the
model [47]. As shown in Figures 10 and 11, the ANN
model’s mean square error (MSE) varies with different
model structures and is used to predict the effect of field
leakage control.

With the increase in the number of neurons, the MSE of
the ANN model shows a downward trend, and it can be

found that the MSE of using two hidden layers is lower than
that of using one hidden layer. When using logistic Sigmoid
function s as the activation function of the hidden layer, as
the number of neurons in the hidden layer continues to
increase, the MSE gradually decreases, then increases, and
then decreases again, until the number of neurons in the
hidden layer reaches 80, and the MSE value of the model
changes slightly. When the number of neurons is 50, the
MSE is the lowest, which is 0.918%, and when using the
TANSIG transfer function as the activation function, using
two hidden layers, neurons with a quantity of 70 produced
the best efficiency with an MSE of 1.08%. But an excessively
high number of neurons have not been found to be more
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Figure 12: Topological structure of the ANN model established.
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efficient and can instead lead to higher error rates or longer
convergence times, especially when training data is limited.
The structure is simplified by comparing the prediction
accuracy of the two structures and considering the reduc-
tion of the number of neurons as much as possible. The
final selected ANN structure is shown in Table 3 and
Figure 12.

4.2. Model Evaluation

4.2.1. Error Function. After determining the ANN model
structure, input the data set. The mean square error (MSE)
was chosen as the loss function. The error function decreases
with increasing epochs during training and testing, as shown
in Figure 13. After 2000 epochs, the loss function no longer
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Figure 13: Variation of loss function during training and testing.
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Figure 14: Model output and actual data: training data set.
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drops significantly and tends to stabilize. This means that
the model does not need to increase the number of training
times to improve its accuracy of the model.

4.2.2. Analysis of Accuracy. After selecting the best structure
of the ANN, the accuracy of the model is characterized by
the coefficient of determination R2. Figures 14 and 15 show
the difference between the predicted leaky control effect
and the actual leaky control effect of the ANN model in
the training and testing phases. The R2 and MAE of the
ANN model for the predicted target and the actual target
for the training set were 0.991 and 0.0071, and the R2 and

MAE for the ANN model for the test data set using 20% of
the data volume were 0.987 and 0.0087, which means that
the model has high accuracy.

4.3. Correlation Analysis of Various Factors. The importance
of individual features obtained from the model is shown in
Figure 16. The figure shows the correlation of the maximum
pumping pressure of the plugging slurry, the displacement,
the formulation of the loss material, and the fluid properties
of the carrier fluid on the actual loss control effect. The leak-
age size is considered to be negatively correlated with the
leakage control effect. The more significant the leakage, the
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Figure 15: Model output and actual data: test data set.
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worse the downhole plugging effect. In the plugging con-
struction parameters, the size of the pumping displacement
is negatively related to the plugging measures, and it is nec-
essary to control the pumping displacement in the actual
operation. The maximum pumping pressure has the stron-
gest correlation with the leakage control effect, indicating
that the maximum pumping pressure plays a great role in

the leakage control effect. Among the leakage plugging mate-
rials, vermiculite and walnut shells have the most obvious
effect. The irregular walnut shell has a higher friction coeffi-
cient with the fracture wall, which plays a better role in plug-
ging in the fracture. The correlation strength of the
concentration of the plugging material in the carrier fluid
on the leakage control effect is second only to the maximum
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Figure 17: Validation of the model by the improved on-site leakage plugging case.

Table 4: Some real cases of fracture leakage plugging in Carboniferous strata in Chepaizi block.

Parameter
Well

A B C D E F G I

Leak rate (m3/h) 36 8 20 32.4 25 20 32.4 7.2

Displacement (m3/h) 40.8 30 50.4 32.4 30 50.4 32.4 40.8

Pumping pressure max (MPa) 16 15 12 12 15 15 16 10

Concentration (%) 36 6 10 22.50 20 30 10 10

Addition of KZ-3 (t) 0 0 0 0 0 0 0 0

Addition of KZ-4 (t) 0 1.3 2 0 0 0 0 1

Addition of KZ-5 (t) 0 0 0 0 0 0 0 2

Addition of walnut shell (t) 2 0.5 3 3 2 3 2 0

Amount of vermiculite (t) 0 0 0 0 1 1 2 0

Amount of comprehensive plugging agent (t) 0 0 2 3 3 2 2 0

Addition amount of LWD agent (t) 2 0 0 3 0 3 0 0

Total addition (m3) 11 30 60 40 30 30 60 30

Density (g▪cm3) 1.21 1.1 1.22 1.14 1.21 1.22 1.13 1.14

Funnel viscosity (s) 50 49 52 48 52 53 53 45

Actual blocking effect (%) 100% 65% 100% 70% 90% 80% 95% 90%

ANN prediction (%) 9 9.81% 6 4.99% 9 7.63% 6 8.21% 9 2.08% 7 8.11% 9 6.12% 9 3.07%
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pumping pressure. It shows that in the case of plugging con-
struction implemented in Chepaizi block, the concentration
of plugging materials needs to be further improved.

4.4. Data Verification of Actual Plugging Cases in the Field
Using the ANN Model. Based on the analysis of the data by
the model and the laboratory experiment research, further
adjustments were made to the on-site leakage plugging for-
mula system, and the corresponding construction parame-
ters were adjusted at the same time. The plugging slurry is
pumped into the lost formation with a displacement of
30~50m3/h in a low-displacement method, and the maxi-
mum pumping pressure is adjusted to more than 10MPa
to better squeeze the plugging slurry into the formation. At
the same time, more flake materials vermiculite and walnut
shells are used as plugging agents on site. At the same time,
the concentration of the plugging material in the carrier fluid
will further improve the leakage control effect of the field
experiment.

Twelve times of plugging construction occurred in the
following three wells. Use these 1 or 2 leak plugging con-
struction data as a validation data set. Through the research
on the actual leakage control effect in the field, as shown in
Figure 17, it is found that the R2 and MAE of the ANN
model for the prediction target of the validation set and
the actual target are 0.974 and 0.0093, indicating that the
modified model has a good fit. Table 4 shows the detailed
data of some cases after the improved plugging measures.
After the adjustment of the plugging measures, the actual
leakage control effect is greater than 65%, which has been
dramatically improved compared with the previous one.

5. Conclusion

The prediction of the leakage control effect of the Carbonif-
erous fractured leakage strata under the current leakage
plugging construction measures in the Chepaizi block is
studied by establishing the ANN model.

The experimental results show that the displacement
pressure, the formulation of the plugging material, and the
fluid properties of the carrier fluid play an important role
in the leakage control effect of the fracture. In this study,
through the analysis of on-site leakage plugging construction
cases from a large number of construction parameters, a
method for predicting the plugging effect of drilling site
leakage plugging is proposed, and a set of ANN models with
good accuracy is established.

The trained artificial neural network model can be well
used to predict the performance of the plugging measures
on the site of the subblocks of the car row. The trained
model can produce predictions in seconds and is an excel-
lent tool for evaluating the effectiveness of on-site leak plug-
ging operations. In the subsequent 12 leakage accidents in
three wells, the improved leakage plugging measures were
applied, and the actual leakage control effect was obtained.
Finally, the obtained data set is input into the model, which
shows that the prediction results are in good agreement with
the field application results, and the coefficient of determina-
tion R2 = 0:97408.

This study provides a convenient and accurate way to
effectively predict the effect of plugging measures in the Che-
paizi block and provides help for the selection of reasonable
construction parameters and optimal plugging slurry formu-
lations. Due to different geological conditions and leakage
reasons, the established model is only suitable for the Che-
paizi subblock, and it still has certain limitations. In the
future, we can try to collect more field data, and we can build
a prediction model that can adapt to a wider range of blocks.

Data Availability

The [DATA TYPE] data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Jianjian Song conceptualized the study and wrote, reviewed,
and edited the manuscript. Lei Pu assisted the data curation,
carried out formal analysis, and wrote the original draft. Lei
Pu and Jun Zhou were responsible for methodology. Lei Pu
and Shanshan Zhou contributed to the project administra-
tion. Jianjian Song and Jun Zhou were responsible for the
resources. Jianjian Song and Mingbiao Xu supervised the
study.

Acknowledgments

We would like to thank the Bakken Laboratory of Yangtze
University for their support. At the same time, I would like
to thank my friend Yuchen Zhang for her help. This research
was supported by the Open Foundation of Cooperative
Innovation Center of Unconventional Oil and Gas, Yangtze
University (Ministry of Education and Hubei Province), No.
UOGBX2022-02 and UOG2022-02.

References

[1] X. U. Chengyuan, J. Zhang, K. A. N. G. Yili et al., “Structural
formation and evolution mechanisms of fracture plugging
zone,” Petroleum Exploration and Development, vol. 48,
no. 1, pp. 232–242, 2021.

[2] L. Zhang, F. Zhou, W. Feng, M. Pournik, Z. Li, and X. Li,
“Experimental study on plugging behavior of degradable fibers
and particulates within acid-etched fracture,” Journal of Petro-
leum Science and Engineering, vol. 185, article 106455, 2020.

[3] R. Li, G. Li, Y. Feng, X. Yang, Y. Teng, and Y. Hu, “Innovative
experimental method for particle bridging behaviors in natural
fractures,” Journal of Natural Gas Science and Engineering,
vol. 97, article 104379, 2022.

[4] Y. Feng, G. Li, and R. Li, “Influence of the lost circulation
material injection method on the fracture plugging: a visuali-
zation experimental study,” in SPE/AAPG/SEG Unconven-
tional Resources Technology Conference, Austin, Texas, USA,
July 2020.

16 Geofluids



[5] L. Zhang, Z. P. Li, F. P. Lai et al., “Integrated optimization
design for horizontal well placement and fracturing in tight
oil reservoirs,” Journal of Petroleum Science and Engineering,
vol. 178, pp. 82–96, 2019.

[6] L. Pu, P. Xu, M. Xu, J. Song, andM. He, “Lost circulation mate-
rials for deep and ultra-deep wells: a review,” Journal of Petro-
leum Science and Engineering, vol. 214, article 110404, 2022.

[7] W. Sui, Y. Tian, Y. Zheng, and K. Dong, “Modeling temporary
plugging agent transport in the wellbore and fracture with a
coupled computational fluid dynamics–discrete element
method approach,” Energy & Fuels, vol. 35, no. 2, pp. 1422–
1432, 2021.

[8] S. U. N. Jinsheng, B. A. I. Yingrui, R. Cheng et al., “Research
progress and prospect of plugging technologies for fractured
formation with severe lost circulation,” Petroleum Exploration
and Development, vol. 48, no. 3, pp. 732–743, 2021.

[9] G. Wang, C. Cao, X. Pu, and Z. Zhao, “Experimental investiga-
tion on plugging behavior of granular lost circulation materials
in fractured thief zone,” Particulate Science and Technology,
vol. 34, no. 4, pp. 392–396, 2016.

[10] G. Wang, H. Du, and Z. Zhang, “Viscous behavior and wall
slip of barite-weighted water-based drilling fluids containing
a high particle fraction,” Journal of Petroleum Science and
Engineering, vol. 159, pp. 773–782, 2017.

[11] Y. Feng, G. Li, Y. Meng, and B. Guo, “A novel approach to
investigating transport of lost circulation materials in rough
fracture,” Energies, vol. 11, no. 10, p. 2572, 2018.

[12] D. Feng, X. Li, X. Wang et al., “Water adsorption and its
impact on the pore structure characteristics of shale clay,”
Applied Clay Science, vol. 155, pp. 126–138, 2018.

[13] X. Yan, Y. Kang, C. Xu, X. Shang, Z. You, and J. Zhang, “Frac-
ture plugging zone for lost circulation control in fractured res-
ervoirs: multiscale structure and structure characterization
methods,” Powder Technology, vol. 370, pp. 159–175, 2020.

[14] X. U. Chengyuan, Y. A. N. Xiaopeng, K. A. N. G. Yili, Y. O. U.
Lijun, and J. Zhang, “Structural failure mechanism and
strengthening method of fracture plugging zone for lost circula-
tion control in deep naturally fractured reservoirs,” Petroleum
Exploration and Development, vol. 47, no. 2, pp. 430–440, 2020.

[15] J. I. A. Lichun, C. H. E. N. Mian, H. O. U. Bing, S. Zhen, and
J. I. N. Yan, “Drilling fluid loss model and loss dynamic behav-
ior in fractured formations,” Petroleum Exploration and Devel-
opment, vol. 41, no. 1, pp. 105–112, 2014.

[16] T. Zhang, F. Javadpour, Y. Yin, and X. Li, “Upscaling water
flow in composite nanoporous shale matrix using lattice Boltz-
mann method,” Water Resources Research, vol. 56, no. 4, arti-
cle e2019WR026007, 2020.

[17] R. Albattat and H. Hoteit, “Modeling yield-power-law drilling
fluid loss in fractured formation,” Journal of Petroleum Science
and Engineering, vol. 182, article 106273, 2019.

[18] M. B. Wang, Y. L. Guo, and W. Q. Chen, “Effect of solid par-
ticles on the lost circulation of drilling fluid: a numerical sim-
ulation,” Powder Technology, vol. 363, pp. 408–418, 2020.

[19] H. Pang, H. Meng, H. Wang, Y. Fan, Z. Nie, and Y. Jin, “Lost
circulation prediction based on machine learning,” Journal of
Petroleum Science and Engineering, vol. 208, article 109364,
2022.

[20] S. Gul and E. van Oort, “A machine learning approach to fil-
trate loss determination and test automation for drilling and
completion fluids,” Journal of Petroleum Science and Engineer-
ing, vol. 186, article 106727, 2020.

[21] M. B. Diaz, K. Y. Kim, H. S. Shin, and L. Zhuang, “Predicting
rate of penetration during drilling of deep geothermal well in
Korea using artificial neural networks and real-time data col-
lection,” Journal of Natural Gas Science and Engineering,
vol. 67, pp. 225–232, 2019.

[22] A. A. Mahmoud, S. Elkatatny, and A. Al-AbdulJabbar, “Appli-
cation of machine learning models for real-time prediction of
the formation lithology and tops from the drilling parame-
ters,” Journal of Petroleum Science and Engineering, vol. 203,
article 108574, 2021.

[23] Z. Zhu, X. Song, G. Li et al., “Prediction of the settling velocity
of the rod-shaped proppant in vertical fracture using artificial
neural network,” Journal of Petroleum Science and Engineer-
ing, vol. 200, article 108158, 2021.

[24] I. Gomaa, S. Elkatatny, and A. Abdulraheem, “Real-time deter-
mination of rheological properties of high over-balanced dril-
ling fluid used for drilling ultra-deep gas wells using artificial
neural network,” Journal of Natural Gas Science and Engineer-
ing, vol. 77, article 103224, 2020.

[25] G. Zhao, Y. Yao, L. Wang, C. D. Adenutsi, D. Feng, and
W. Wu, “Optimization design of horizontal well fracture stage
placement in shale gas reservoirs based on an efficient variable-
fidelity surrogate model and intelligent algorithm,” Energy
Reports, vol. 8, pp. 3589–3599, 2022.

[26] L.Wang, Y. Yao, K.Wang, C. D. Adenutsi, G. Zhao, and F. Lai,
“Data-driven multi-objective optimization design method for
shale gas fracturing parameters,” Journal of Natural Gas Sci-
ence and Engineering, vol. 99, article 104420, 2022.

[27] A. K. Abbas, A. A. Bashikh, H. Abbas, and H. Q. Mohammed,
“Intelligent decisions to stop or mitigate lost circulation based
on machine learning,” Energy, vol. 183, pp. 1104–1113, 2019.

[28] M. W. Alberty and M. R. McLean, “A physical model for stress
cages,” in SPE annual technical conference and exhibition,
Houston, TX, USA, Sepetember 2004.

[29] R. Weijermars, “Stress cages and fracture cages in stress trajec-
torymodels of wellbores: implications for pressure management
during drilling and hydraulic fracturing,” Journal of Natural
Gas Science and Engineering, vol. 36, pp. 986–1003, 2016.

[30] Z. Liu, M. Chen, and G. Zhang, “Analysis of the influence of a
natural fracture network on hydraulic fracture propagation in
carbonate formations,” Rock Mechanics and Rock Engineering,
vol. 47, no. 2, pp. 575–587, 2014.

[31] F. E. Dupriest, “Fracture closure stress (FCS) and lost returns
practices,” in SPE/IADC Drilling Conference, msterdam, The
Netherlands, February 2005.

[32] C. Xu, Y. Kang, L. You, S. Li, and F. Chen, “High-strength,
high-stability pill system to prevent lost circulation,” SPE Dril-
ling & Completion, vol. 29, no. 3, pp. 334–343, 2014.

[33] D. Li, S. Liu, Y. Kang, and Z. Hao, “Dynamic behavior of dril-
ling fluid leakage in naturally# br# fractured formations,” Jour-
nal of Southwest Petroleum University (Science & Technology
Edition), vol. 38, no. 3, p. 101, 2016.

[34] D. Whitfill, “Lost circulation material selection, particle size
distribution and fracture modeling with fracture simulation
software,” in IADC/SPE Asia Pacific Drilling Technology Con-
ference and Exhibition, Jakarta, Indonesia, August 2008.

[35] M. Alsaba, M. F. Al Dushaishi, R. Nygaard, O. M. Nes, and
A. Saasen, “Updated criterion to select particle size distribu-
tion of lost circulation materials for an effective fracture seal-
ing,” Journal of Petroleum Science and Engineering, vol. 149,
pp. 641–648, 2017.

17Geofluids



[36] C. Lin, A. D. Taleghani, Y. Kang, and C. Xu, “A coupled CFD-
DEM numerical simulation of formation and evolution of seal-
ing zones,” Journal of Petroleum Science and Engineering,
vol. 208, article 109765, 2022.

[37] J. Zeng, H. Li, and D. Zhang, “Numerical simulation of prop-
pant transport in hydraulic fracture with the upscaling CFD-
DEM method,” Journal of Natural Gas Science and Engineer-
ing, vol. 33, pp. 264–277, 2016.

[38] G. Wang, M. Dong, Z. Wang, T. Ren, and S. Xu, “Removing
cuttings from inclined and horizontal wells: numerical analysis
of the required drilling fluid rheology and flow rate,” Journal of
Natural Gas Science and Engineering, vol. 102, article 104544,
2022.

[39] G. Wang, Y. Huang, and S. Xu, “Laboratory investigation of
the selection criteria for the particle size distribution of granu-
lar lost circulation materials in naturally fractured reservoirs,”
Journal of Natural Gas Science and Engineering, vol. 71, article
103000, 2019.

[40] V. D. Fachinotti, A. A. Anca, and A. Cardona, “Analytical
solutions of the thermal field induced by moving double-
ellipsoidal and double-elliptical heat sources in a semi-
infinite body,” International Journal for Numerical Methods
in Biomedical Engineering, vol. 27, no. 4, pp. 595–607, 2011.

[41] D. A. Pandya, B. H. Dennis, and R. D. Russell, “A computa-
tional fluid dynamics based artificial neural network model
to predict solid particle erosion,” Wear, vol. 378, pp. 198–
210, 2017.

[42] S. Smith, Digital Signal Processing: A Practical Guide for Engi-
neers and Scientists, Elsevier, Amsterdam, Netherlands, 2013.

[43] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network
design, PWS Publishing Co, Boston, 1997.

[44] X. C. Zhang, J. G. Gong, and F. Z. Xuan, “A physics-informed
neural network for creep-fatigue life prediction of components
at elevated temperatures,” Engineering Fracture Mechanics,
vol. 258, article 108130, 2021.

[45] R. Hecht-Nielsen, “Theory of the backpropagation neural net-
work,” in Neural Networks for Perception, pp. 65–93, Aca-
demic Press, United States, 1992.

[46] Q. Jiang, R. Huang, Y. Huang et al., “Application of BP neural
network based on genetic algorithm optimization in evalua-
tion of power grid investment risk,” IEEE Access, vol. 7,
pp. 154827–154835, 2019.

[47] D. R. Baughman and Y. A. Liu, “Fundamental and practical
aspects of neural computing,” Neural Networks in Bioproces-
sing and Chemical Engineering, pp. 21–109, 1995.

18 Geofluids


	Prediction of the Control Effect of Fractured Leakage in Unconventional Reservoirs Using Machine Learning Method
	1. Introduction
	2. The Theoretical Background of Fracture Plugging
	2.1. The Missing Geological Conditions of the Chepaizi Block
	2.2. Fracture Plugging Theory
	2.3. Experimental Analysis of the Correlation Factors of the Missing Control Effect
	2.3.1. Experimental Apparatus
	2.3.2. Influence of Different Factors on the Effect of Plugging Experiments

	2.4. Determination of the Relevant Factors of the Leakage Control Effect of the Chepaizi Block

	3. Artificial Neural Networks
	3.1. Data Collection and Preprocessing
	3.2. Optimization and Evaluation of the Model

	4. Results and Discussion
	4.1. The Architecture of ANN
	4.2. Model Evaluation
	4.2.1. Error Function
	4.2.2. Analysis of Accuracy

	4.3. Correlation Analysis of Various Factors
	4.4. Data Verification of Actual Plugging Cases in the Field Using the ANN Model

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

