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The accurate prediction of surface settlement caused by large-diameter shield tunneling is crucial for the safety of the tunnel
environment. However, due to the complexity and uncertainty of the rock-machine interaction and groundwater variation, it is
difficult to predict the settlement by developing traditional theoretical methods. Recently, a big number of data obtained from
the Chunfeng shield tunnel in China provides the possibility to predict the settlement using machine-learning methods. In this
study, the equipment parameters, the geological parameters, and the monitored settlements are used to establish the models.
Three machine-learning algorithms (i.e., long-short-term memory (LSTM), random forest (RF), and gated recurrent unit
(GRU)) are used to predict the surface settlement. Three indicators, mean absolute error (MAE), accuracy (ACC), and
coefficient of determination (R2), are selected to evaluate the prediction performance. Results demonstrated that the filtering
and selection of model parameters is vitally important to the accuracy of model prediction. Among the three machine-learning
algorithms, the LSTM algorithm gives the best accuracy in predicting the maximum surface settlement and can effectively
predict the settlement development in different strata.

1. Introduction

The increasing demand of urban underground space devel-
opment has led to large-diameter shield application in
large-scale tunnel construction [1]. In the process of large-
diameter shield construction, it will inevitably disturb the
surrounding strata and result in surface settlement, which
may pose a threat to the safety of the surrounding environ-
ment [2–4]. Therefore, it is necessary to predict the surface
settlement caused by shield construction.

The soil deformation is affected by complex rock-
machine interaction. In addition, because the tunnel changes
the hydraulic connection of groundwater, it is easy to pro-
duce water and soil loss and drainage consolidation, which
further aggravates the surface settlement [5–8]. At present,

the prediction methods of soil settlement mainly include
the empirical method [9–12], theoretical method [13–16],
modeling method [17–21], and machine-learning method
[22–25]. The empirical method has a simple calculation for-
mula and convenient engineering application, but it is diffi-
cult to consider the influence of construction factors. The
physical model of the theoretical method is clear, but it
needs to meet the calculation assumptions, and the scope
of application is limited. The modeling method establishes
the model through numerical simulation and model test,
but it can hardly simulate all the actual situations. The
machine-learning method deeply excavates the internal
potential laws of the data through the self-organizing learn-
ing and can consider a variety of internal and external fac-
tors at the same time [26], which provides an approach for
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the prediction of surface settlement caused by shield tunnel
construction.

In recent decades, with the development of statistical
computing science, various machine-learning algorithms
have been proposed and were widely used in tunneling-
induced surface settlement prediction. Suwansawat and
Einstein [27] used artificial neural networks to develop pre-
dictive relations between shield tunnel characteristics and
surface deformation and proved that machine learning can
become a useful predictive method. Pourtaghi and
Lotfollahi-Yaghin [28] applied different wavelets as activa-
tion functions to predict the maximum surface settlement
due to tunneling and indicated that using wavelets as ANN
transfer functions can enhance the network efficiency.
Kohestani et al. [29] used random forest (RF) for the predic-
tion of maximum surface settlement caused by earth pres-
sure balance shield tunneling; the proposed RF model
shows a better performance than ANN. Chen et al. [30]
approached the nonlinear relationship between maximum
ground surface settlements and various parameters via the
machine-learning method. Besides, other scholars have
achieved outstanding research results [31–34], and the exist-
ing research results demonstrated that the machine-learning
algorithm has great potential in surface subsidence predic-
tion. However, the current research still has the following
problems: (1) The existing studies mainly focus on
ordinary-diameter metro shield tunnel, while there are few
case studies on surface settlement caused by large-diameter
shield construction. (2) The current researches are often lim-
ited to the prediction of the maximum surface settlement,
while there is little prediction on the development process
of surface settlement. (3) The existing prediction models
generally adopt only one machine-learning algorithm; it is
difficult to distinguish which algorithm is most suitable for
surface subsidence prediction.

In this study, based on the big data of the Chunfeng
large-diameter shield tunnel in China, three machine-
learning algorithms were used to explore the prediction
method of the maximum surface settlement. After optimiza-
tion, the prediction model with the highest accuracy was
proposed; then, the development of surface subsidence in
different strata was predicted.

2. Database

The Chunfeng tunnel is located in the southeast of
Shenzhen, China, as shown in Figure 1. The total length of
the tunnel is 5.08 km, among which the shield tunnel section
is 3.58 km, and the excavation diameter of the shield tunnel
is 15.8m. It was the largest diameter shield tunnel in China
when the project started. The shield tunnel section passes
through 29 old buildings, including densely populated areas
such as Shenzhen Railway Station and Guangkun Hotel. Silt
layer, permeable sand layer, and multiple fault zones are
widely distributed along the line. In addition, Chunfeng tun-
nel is close to the Shenzhen River and Buji River; therefore,
the surrounding strata have rich groundwater and a high
seepage coefficient. In this situation, the large shield tunnel-
ing project very easily causes stratum deformation and

building damage. Therefore, it is necessary to predict the
surface settlement and take control measures in time to
avoid the possible risks caused by the induced settlement.

The shield section of Chunfeng tunnel starts from mile-
age K0+756 and has been excavated to mileage K2+100 so
far, and the geological profile of this section is shown in
Figure 2. The strata of the shield tunnel working face are
mostly coarse-grained granite, cataclastic rock, tuffaceous
sandstone, schist, metamorphic sandstone, breccia, and
mylonite. There are 9 fault zones with different shapes and
sizes distributed along the line. Special strata mainly include
the artificial fill layer, muddy cohesive soft soil, weathered
rock, and geological fault. The maximum uniaxial compres-
sive strength of rock reaches 141.44MPa. Strong permeable
layers such as medium sand, gravel sand, and pebble are
locally distributed, and the biggest permeability coefficient
reaches 30m/d.

The factors relevant to shield tunneling-induced surface
settlement can be classified into equipment parameters, geo-
logical parameters, and geometric parameters [30]. In the
process of shield tunneling, the big data was measured auto-
matically by the shield machine, 132 kinds of equipment
parameters were recorded per second, and 16 kinds of corre-
sponding geological parameters and one geometric parame-
ter were also collected in this project. Some equipment
parameters, geological parameters, and geometric parameter
are shown in Table 1. The accuracy of surface settlement
monitoring reaches millimeter level. Data were recorded at
the same time every day. Monitoring points were arranged
along the line above the middle axis of the shield, and the
monitoring work continued until the stratum is stable.

3. Machine-Learning Algorithms

3.1. Long-Short-Term Memory (LSTM) Algorithm. The
LSTM algorithm is a special type of RNN (Recurrent Neural
Network), which can learn long-term dependent informa-
tion, and is suitable for processing and predicting important
events with relatively long interval and delay in time series
[35]. The LSTM algorithm introduces the function of “gate
operation” and adds three control units: an input layer,
one or several hidden layer(s), and an output layer; it can
change the cumulative multiplication in the gradient into
accumulation, which solves the problem of the vanishing
gradient. When the information is inputted to the LSTM
algorithm, control units will judge the information, the
information that conforms to the rules will be left, or it will
be forgotten. By selectively remembering the effective infor-
mation, the problem of long sequence dependence in the
neural network can be solved. The input gate controls the
input activation flow of the storage unit. The forgetting gate
controls whether the information in the previous step is
remembered or forgotten. The output gate is responsible
for transmitting useful information to the next memory
block [36]. Based on the characteristics of the LSTM model
delay unit and feedback structure, the time series array can
be established by using the duration data of the surface set-
tlement at engineering measuring points, and the surface
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settlement at the measuring points along the tunnel can be
predicted.

3.2. Gated Recurrent Unit (GRU) Algorithm. The GRU algo-
rithm is a special type of RNN. GRU was also proposed to
solve the problems of the gradient in long-term memory
and backpropagation like LSTM. It combines the forgetting
gate and input gate into a separate update gate, combines
the cell state and hidden state, and makes some other
changes to make its model simpler than the standard LSTM

model. The GRU algorithm uses the update gate and reset
gate to solve the problem of the vanishing gradient [37].
The reset gate determines how to combine the new input
with the previous memory, and the update gate determines
how many previous memories work.

3.3. Random Forest (RF) Algorithm. The RF algorithm is an
integrated method based on the decision tree first developed
by Breiman [38]. The random forest randomly extracts some
samples from the original samples to generate a new sample
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Figure 2: Chunfeng tunnel geological profile.

Table 1: Parameters of the project.

Data Type Variable

Input

Equipment parameter

Cutter torque, cutter rotation speed, propulsion speed, penetration, total thrust,
cutter extrusion force, roll angle, slope angle, shield tail deviation, notch deviation,

guide mileage, propel cylinder stroke difference, top pressure of slurry silo,
air cushion chamber pressure, slurry inflow, sludge discharge, slurry inlet density,

sludge density, outlet pressure of sludge inlet pump, suction pressure of sludge inlet pump,
inlet pressure of slurry discharge pump, etc. (132 in total)

Geological parameter

Natural moisture content, natural density, uniaxial compressive strength, modulus of elasticity,
void ratio, cohesion, internal friction angle, organic matter content, SPT blow count,
permeability coefficient, groundwater level, specific gravity, liquid limit, plastic limit,

compression modulus, compressibility coefficient (16 in total)

Geometric parameter Cover depth

Output Settlement parameter Maximum surface settlement

Figure 1: Chunfeng tunnel plan.
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set by putting them back. Repeat this operation to generate
multiple sample sets, and each sample set will generate a
decision tree. In the process of generating each decision
tree, when each node branches, some features are ran-
domly selected to participate in the branches of the deci-
sion tree and then recursive branches. In the process of
recursive branches, some features are randomly selected
from the remaining features each time. Then, multiple
decision trees will be generated. When predicting the cat-
egory of new input samples, each tree will produce a pre-
diction result. Finally, the category of new input samples
will be determined via the principle of minority obeying
majority [39].

4. Prediction of Maximum Surface Settlement

4.1. Prediction Model. The prediction model needs to con-
sider the impact of various parameters on surface settlement
during shield tunneling. The maximum surface settlements
along the tunnel are taken as output parameters, and the
corresponding equipment parameters, geological parame-
ters, and geometric parameters are selected as input param-
eters. Through the training sample data, the network
structure and relevant learning parameters are determined,
and a multi-input and single-output nonlinear prediction
model is established to realize the prediction of the maxi-
mum surface settlement along the tunnel. According to the
completed part of the shield tunneling, 446 groups of data
have been obtained, of which 376 groups are used for model
training and 70 groups for surface settlement prediction and
verification.

4.1.1. Original Model of All Parameters. Considering all 132
equipment parameters, 16 geological parameters, and a
geometry parameter, the 149 kinds of parameters are taken
as the input parameters to set up the model.

4.1.2. Optimized Model of Filtered Parameters. In the actual
engineering prediction, it is impossible to consider all the
149 influence parameters. On the one hand, too much
field data collection leads to low prediction efficiency. On
the other hand, too many parameters will complicate the
construction of the neural network model and greatly pro-
long the training time. Meanwhile, the parameters are not
independent of each other, considering that all parameters
may lead to overfitting, which will reduce the accuracy of
model prediction. Therefore, some parameters need to be
eliminated.

(1) Constant Attribute Parameter Filtering. Some of the 149
parameters are constant values, such as tunnel diameter
and tunneling mode; filter out these constant parameters
firstly. Besides, the parameters that vary very little, such as
scouring flow of crusher and suction pressure of sludge
pump, need to be filtered out.

(2) Highly Correlated Parameter Filtering. The parameters
that are strongly dependent on another parameter, which
provide little new information, will reduce the efficiency of

the model. The highly correlated parameters were identified
by the Pearson correlation coefficient. The Pearson correla-
tion coefficient [40] is calculated as follows:

rxy =
n∑xiyi−∑xi∑yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑xi2 − ∑xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑yi2 − ∑yið Þ2
q

, ð1Þ

where rxy is the Pearson correlation coefficient between
parameter x and parameter y and i takes 1, 2,…, n in
sequence.

When the Pearson correlation coefficient between two
parameters is larger than 0.9, it means that the information
contained in the two parameters is highly similar. For exam-
ple, the correlation coefficients between cylinder thrusts of
groups A~F in the propulsion system are greater than 0.9,
indicating that they are highly correlated parameters, so only
one of them can be retained.

After filtering out the constant attribute parameters and
highly correlated parameters, 34 parameters are retained.

4.1.3. Optimized Model of RF Key Parameters. RF is an
ensemble algorithm based on the decision tree. Through
RF, the importance of each parameter to the prediction
results can be evaluated. The bagging method was used to
randomly extract 50 data sets from the original data, and
each data set was inputted to the decision tree. By comparing
the variable importance measure (VIM) of the Gini index
calculated by the decision tree, the importance evaluation
of each parameter is realized.

The Gini index (GI) is the probability of a randomly
selected parameter being misclassified in a data set [31],
and the Gini index of parameters is calculated by

GIm = 〠
k

j=1
pj 1 − pj
� �

, ð2Þ

where GIm expresses the Gini index of the node Nm, pj rep-
resents the probability of the jth parameter being classified
into the data set of node Nm, and k is the number of param-
eters in the data set.

The VIM of the jth parameter of the node Nm is calcu-
lated as Equation (3), which represents the change of the
Gini index after splitting. The VIM of the jth parameter
in the decision tree Ti is the sum of VIM for each node
that the jth parameters appeared, which is calculated via
Equation (4). The VIM of the jth parameter in the random
forest is calculated via Equation (5), which means the sum
of the VIM of each decision tree [31].

VIMGini
j,m = GIm −GIl −GIr , ð3Þ

VIMGini
j,i = 〠

m∈M
VIMGini

j,m , ð4Þ

VIMGini
j = 〠

n

i=1
VIMGini

j,i , ð5Þ
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where VIMGini
j,m represents the VIM of the jth parameter in

the node Nm, GIm means the Gini index at node Nm, GIl
and GIr are the Gini indexes after splitting, VIMGini

j,i
expresses the VIM of the jth parameter in the decision tree
Ti, M is the node set of the jth parameters appearing,
VIMGini

j is the VIM of the jth parameter in the random
forest, and n is the number of decide trees in a random
forest.

By selecting different numbers of parameters that have
the most significant impact on the surface settlement predic-
tion, the input parameters of the neural network model are
further reduced, and then, the prediction model is optimized
to improve the prediction accuracy of surface settlement.
After optimization, the epoch, batch size, and learning rate
were taken as 3000, 25, and 0.003, respectively.

4.2. Performance Evaluation Method. Performance evalua-
tion is generally conducted to assess the applicability and
practicality of the model. In this paper, coefficient of deter-
mination (R2), mean absolute error (MAE), and the custom-
ization performance indicator accuracy (ACC) are selected
to demonstrate the correspondence between predictions
and measurements [30]. The equations of R2, MAE, and
ACC are as follows:

R2 = 1‐∑
N
i=1 yi − ŷið Þ2

∑N
i=1 yi − �yð Þ2

, ð6Þ

MAE = 1
N
〠
N

i=1
yi − ŷij j, ð7Þ

ACC = Ni

N
× 100%, ð8Þ

where yi is the measured value, ŷi is the predicted value, �y is
the average of measured values, Ni is the number of correct
predictions ŷi, and N is the number of predictions.

In Equation (6), the denominator represents the disper-
sion of the measured value, and the numerator represents
the error between the measured value and the predicted
value. Therefore, R2 eliminates the influence of the disper-
sion of the original data on the predicted value. The closer
the value is to 1, the better the model fitting is. Generally,
the prediction fitting is acceptable when R2 is larger than
0.4. MAE indicates the error between the predicted value
and the measured value. ACC is the ratio of the accurate pre-
diction number to the total prediction number. According to
the actual monitoring needs of the project, it is defined that
the prediction is accurate if the error between the predicted
value and the measured value is less than 2mm.

5. Results

According to different models and different input parame-
ters, the predicted 70 groups of validation data are analyzed
as follows. The prediction model construction and optimiza-
tion process of the three machine-learning algorithms are
similar. Due to space limitations, the prediction processes

of the three algorithms are not all described in detail, and
only the LSTM model with the highest accuracy was selected
as the typical case to illustrate the model construction pro-
cess and result analysis.

5.1. Prediction of Original Model with All Parameters. Con-
sidering all 149 parameters, the prediction results obtained
by the LSTM algorithm model is shown in Figure 3.

With the full parameters, the prediction accuracy is
64.3%, and the prediction results of some groups are not
accurate enough. The R2 value is 0.64, which indicates that
the development trend of prediction results is acceptable.
The MAE value is1.59mm; the value is okay but there are
large errors in the prediction results of some groups. The
overall prediction performance is not good enough.

5.2. Prediction of Optimized Model with Filtered Parameters.
34 parameters are retained after filtering out the constant
attribute parameters and highly correlated parameters.
Considering the retained 34 parameters, the prediction
results obtained by the LSTM algorithm model is shown
in Figure 4.

After parameter filtering, the ACC is significantly
improved from 64.3% to 84.3%, and MAE is evidently
reduced to 0.91mm. On the whole, the predicted data are
consistent with the measured data; however, the surface set-
tlement of some sections has nonnegligible errors, such as
groups 20~30 and groups 50~65. That is because of the pre-
dictive model as well as the tunnel environment. It is found
that the tunnel passed through the Baoan overpass at the
location of groups 20~30, and the daily traffic flow had a cer-
tain impact on the surface settlement. The location of groups
50-65 is close to Buji River, and the flow of groundwater has
a significant impact on surface settlement.

5.3. Prediction of Optimized Model with RF Key Parameters.
The corresponding importance of the filtered 34 parameters
is analyzed via RF algorithm, and the results are shown in
Figure 5. According to the importance analysis, the grouting
pressure is the most important parameter. That is because
the grouting pressure directly affects the compactness of
the surrounding soil of the tunnel, thus affecting the forma-
tion deformation and the surface settlement. The slurry
sump pressure is the second important parameter since it
determines the stress state of the excavation surface, which
affects the surface settlement in front of the shield. The
above analysis illustrates that the RF importance analysis
results are reasonable.

Through parameter-filtering analysis, it can be seen that
the selection of parameters has an important impact on the
prediction of surface settlement, and excessive redundancy
of parameters has an adverse impact on the prediction accu-
racy. Therefore, based on the analysis results of the impor-
tance of each parameter from the RF algorithm, gradually
reduce the number of parameters by removing relatively
unimportant parameters. The prediction accuracy of surface
settlement with different numbers of parameters is obtained,
as shown in Figure 6.
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It can be seen from Figure 6 that the accuracy of surface
settlement prediction can be improved through adjusting the
input parameters selected by importance. When the most
important 16 parameters are selected as input parameters,
the accuracy of the prediction obtained by the LSTM algo-
rithm model is the highest, reaching 92.9%, and the MAE
value was less than 1mm, as shown in Figure 7. In this pre-
diction model, 16 input parameters include 13 equipment
parameters, 2 geological parameters, and 1 geometric
parameter. This illustrated that the setting of equipment
parameters was vital to control shield tunneling-induced
surface settlement. The results indicate that the random for-
est is an effective way to identify the most important factors,
enhance the data efficiency, and improve model accuracy.

5.4. Prediction Comparison of Different Algorithms. After
model input parameter filtering and key parameter optimi-
zation, LSTM, GRU, and RF algorithms are used for predic-

tion. The comparison curves of prediction results are shown
in Figure 8. According to the curve distribution, the three
algorithms can predict the surface subsidence well, among
which the predicted results of LSTM and GRU algorithms
are more consistent with the measured value.

Comparing the three evaluation indicators, as shown
in Table 2, the R2 values of LSTM and GRU algorithms
are both 0.86, and the RF algorithm’s R2 value is 0.81,
which is slightly lower than the other two algorithms.
The MAE values of the LSTM and GRU algorithms are
both lower than 1mm, while the RF algorithm’s MAE
value is slightly higher than 1mm. In terms of ACC, the
LSTM algorithm is the highest, the GRU algorithm is
slightly lower, and the RF algorithm is the lowest. Overall,
ACC values of three algorithms are all higher than 80%.
Among them, the prediction performances of LSTM and
GRU are better, while the RF prediction performance is
relatively backward.
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6. Prediction of Surface
Subsidence Development

6.1. Analysis of Surface Settlement Development
Characteristics. The surface settlement monitoring time of
the Chunfeng tunnel covers three stages: the shield machine
excavating close to the monitoring point, passing through
the monitoring point, and driving away from the monitoring
point, and the monitoring stopped when the surface settle-
ment value tends to be stable. The monitoring period of each
point varies from 60 to 110 days.

Before predicting the development of surface settlement
along the tunnel, select the representative point DBC-1058
(located at the tunnel mileage of 1058m above the central
axis of the tunnel), analyze the measured surface settlement
value to reveal the regional surface settlement development
characteristics of Chunfeng tunnel, and provide a compari-
son basis for the prediction results. The variation curve of
surface settlement at point DBC-1058 is shown in Figure 9.
When the shield machine was directly below the monitoring
point, the corresponding date is day 0.

It can be seen from the curve in Figure 9 that the surface
settlement development in the process of shield tunneling
can be divided into three periods.

(1) Initial period. The shield has not reached the moni-
toring point, but the cutterhead and the slurry have
a certain squeezing effect on the front stratum.
When the squeezing force is greater than the in situ
stress, it will cause the uplift of the front stratum;
otherwise, it will produce settlement. In this period,
as the shield machine has not yet arrived, the change
of the ground surface at the monitoring point is
small.

(2) Crossing period. When the shield machine passes
through the monitoring point, the in situ stress
under the monitoring point is released, and there
are inevitable pores between the shield and sur-
rounding soil, resulting in rapid surface settlement.

(3) Consolidation period. Due to the shrinkage of slurry
and the conduction of previous pores, there is still
a certain surface settlement in this period. Then,
the soil gradually consolidates and tends to be stable.
In the process of surface settlement monitoring, con-
sidering the structural construction, trolley opera-
tion, and measurement errors in the tunnel, there
are slight fluctuations in the surface settlement mon-
itoring value.

The settlement characteristics of monitoring point DBC-
1058 was consistent with the engineering practice and
belonged to the classic settlement law, which show that the
data resources collected in this project were reasonable.

6.2. Prediction Model. According to the conclusion in
Section 4, based on the LSTM algorithm, select the most
important 16 parameters as input parameters; the prediction
model has the highest accuracy in predicting surface
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settlement. Therefore, this section selects the most impor-
tant 16 parameters in Figure 6 plus time parameters (the
day when the shield machine passed through this monitor-
ing point is day 0) as input parameters. The corresponding
surface settlement variation compared with that of day 0 is
the output parameter. The input and output parameters of
the model are shown in Table 3.

Among the existing 446 groups of settlement data, each
group includes the surface settlement value development of
the whole periods. Generally, the monitoring lasted for more
than 45 days after the shield machine passes through. In
order to predict the development of the surface settlement
after the shield machine passes through, a model was estab-
lished based on 446 groups of settlement development data
(376 groups for training and 70 groups for prediction). By
predicting the variation of the corresponding surface settle-
ment (compared with day 0) in different days after the shield
crossing, the 45-day development curve of the surface settle-
ment at each monitoring point is obtained. After 45 days,
most monitoring points have entered the final settlement
stability period, so the curves can reflect the diachronic
development law of surface settlement after shield passing
and reflect the impact of shield excavation on surface
settlement.
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Figure 8: Comparison of prediction results of different algorithms.

Table 2: Comparison of prediction indicators of different
algorithms.

Algorithm R2 MAE ACC

LSTM 0.86 0.79 92.9%

GRU 0.86 0.81 91.4%

RF 0.81 1.02 84.3%
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6.3. Results. Through the above basic data and LSTM algo-
rithm, 70 groups of surface settlement values in different
days were predicted, and then, combining different days’ set-
tlement values at each monitoring point, the 70 groups of
surface settlement in 45 days after shield crossing were
obtained. In order to evaluate the prediction performance,
R2, ACC, and MAE are selected as evaluation indicators.

The performance evaluation of the predicted results of
70 groups is shown in Table 4. The average value of R2 is
0.73, indicating that the change trends of the predicted
results are consistent with the measured results. The average
value of ACC is 77.4%, which means the overall prediction
accuracy is high. The average value of MAE is 1.95mm,
and the errors are acceptable. As different monitoring points
are affected by different geological environment and con-
struction conditions, the performances of prediction results
are also different. The accuracy of some monitoring points
is very high, while the accuracy of some monitoring points
needs to be improved. In general, the prediction perfor-
mance meets the needs of guiding field data analysis.

After stratum analysis, 70 groups of prediction points
can be roughly divided into four categories according to
the stratum of tunnel crossing: (1) medium and slightly
weathered rock mixed with fracture zone stratum, (2) upper
soft and lower hard strata (the upper part is medium weath-
ered sandstone and the lower part is slightly weathered sand-
stone), (3) uneven on the left and right strata (there are two

different lithologic strata on the left and right, mainly tuffa-
ceous sandstone and fracture zone), and (4) completely
slightly weathered slate. Next, the typical surface settlement
development curves in four strata are selected to illustrate
the settlement development characteristics. The surface set-
tlement curves of typical monitoring points DBC-1625,
DBC-1735, DBC-1927, and DBC-2120 of four correspond-
ing strata are shown in Figure 10.

6.3.1. Medium and Slightly Weathered Rock Mixed with
Fracture Zone Stratum. The monitoring time of point
DBC-1625 lasted 87 days. When the shield machine reached
this point, the surface settlement value was 1.20mm as show
in Figure 10(a), and the surface is slightly uplifted. From the
perspective of surface settlement development, after the
shield machine passed through the point, the surface settle-
ment decreased rapidly. When the stratum was stable, the
settlement value fluctuated around -24mm. Due to the
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Figure 9: Variation curve of surface settlement at point DBC-1058.

Table 3: Parameters of the prediction model.

Data Type Variable

Input

Equipment parameter

Grouting pressure, sludge sump pressure, grouting quantity,
rotating speed cutterhead, total thrust, propulsion speed, slurry delivery density,

sludge density, air cushion chamber pressure, slurry delivery flow, sludge discharge,
penetration, cutterhead torque (13 in total)

Geological parameter Internal friction angle, cohesion

Geometric parameter Cover depth

Date parameter Date

Output Settlement parameter Surface settlement variation

Table 4: Performance evaluation of prediction results of 70 groups.

Evaluation
indicator

Maximum
value

Minimum
value

Average
value

R2 0.93 0.48 0.73

ACC 91.1% 64.4% 77.4%

MAE (mm) 4.17 0.65 1.95
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fracture zone, the final surface settlement was large. From
the perspective of predicted performance of surface subsi-
dence, the value of R2 reached 0.93, indicating that the
change trend of the predicted results was highly consistent
with the measured results. However, when the stratum was
basically stable, there was a slight gap between the predicted
value and the measured value, resulting in a relatively large
MAE value of 2.07mm.

6.3.2. Upper Soft and Lower Hard Strata. The monitoring
time of point DBC-1735 lasted 91 days. As show in
Figure 10(b), when the shield machine reached this point,
the surface settlement value was -0.9mm, and no large set-
tlement occurred. After rapid settlement, the final surface
settlement value was stable around -14mm. The variation
trend of the predicted value was in good agreement with
the measured value; the R2 value reached 0.92. The accuracy
of the model was very high, reaching 88.9%. The error was
also controlled in a small range, and the MAE value was

1.2mm. Overall, the prediction performance was good in
upper soft and lower hard strata.

It is worth noting that the surface settlement on the 11th
day increased significantly; that is because the stratum was
sensitive and secondary grouting was carried out after the
shield passed to prevent excessive surface settlement.

6.3.3. Uneven on the Left and Right Strata. As shown in
Figure 10(c), when the shield machine reached point DBC-
1927, the surface settlement value was -2.77mm. It illus-
trated that the excavation before this point has caused a cer-
tain settlement. From the perspective of the surface
subsidence development, after the shield machine passed
through the point, the surface settlement decreased rapidly
within 5 days then tended to decrease slowly, and the final sur-
face settlement value fluctuated around -18mm. From the
perspective of predicted performance of surface subsidence,
the value of R2 was 0.71, which was lower than that of point
DBC-1625 and DBC-1735. The MAE value was 1.4mm and
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(a) Typical prediction results in medium and slightly
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Figure 10: Comparison of typical prediction results of surface settlement development in different strata.
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the ACC value was 77.8%, and the predictive value and mea-
sured value fluctuated around the same datum line.

6.3.4. Completely Slightly Weathered Slate Stratum.
Figure 10(d) shows the surface settlement development in
completely slightly weathered slate. When the shield machine
reached point DBC-2120, the surface settlement value was
0.31mm, and it was stable in the initial period. After the shield
machine passed through the point, the surface settlement
decreased rapidly within 4 days then tended to become stable.
The value of R2 was 0.84; the fitting effect was good. The MAE
value was 0.75mm, which was the smallest prediction error
among the four points. The ACC value was high, reaching
88.9%. In general, due to the good stability of slightly weath-
ered slate, there are less uncertain factors, and the model can
predict the development of surface subsidence well.

To sum up, the prediction model considering time fac-
tors proposed in this paper can predict the surface subsi-
dence development in different strata with high accuracy
and small error overall, and the prediction results of the set-
tlement development law accord with the strata characteris-
tic, which can provide guidance for the development and
control of surface subsidence in similar strata during the
subsequent construction of the project.

7. Conclusion

Based on the big data of the Chunfeng large-diameter shield
tunnel, this paper explores the use of machine-learning algo-
rithms to predict the maximum value and development of
surface settlement caused by shield tunneling. The following
conclusions can be obtained:

(1) The accuracy of the maximum surface settlement
prediction can be significantly improved by model
parameter filtering and importance analysis. By
filtering the constant, low variation, and high corre-
lation parameters, the accuracy of the LSTM algo-
rithm model was improved from 64% to 84.3%.
Besides, a RF algorithm was used to analyze the
importance of each input parameter. The model
accuracy was further improved to 92.9% after further
filtering of parameters based on importance

(2) LSTM, GRU, and RF algorithms are all applicable to
the prediction of maximum surface settlement.
Among them, LSTM and GRU have similar predic-
tion performance with high accuracy, while the RF
algorithm has a relatively lower prediction accuracy.
Comparing the optimized prediction models of the
three algorithms, the accuracy of the LSTM algo-
rithm with the most important 16 parameters as
the input parameters is the highest

(3) The development of the surface settlement with time
was obtained using the LSTM algorithm. The predic-
tion curve was basically consistent with the classical
settlement development trend, which illustrated the
rationality of the prediction model. The statistics of
the prediction results show that the average accuracy

was 77.4% and the average error was within 2mm.
In general, the prediction performance satisfies the
needs of engineering practice in the field

(4) The predicted results can reflect the characteristics of
surface settlement development in different strata.
The prediction model proposed in this paper pro-
vides guidance for the control of surface settlement
during the subsequent construction of the project
and provides a reference method for surface settle-
ment prediction of other large-diameter shield
tunneling projects
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