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Tight sandstone reservoirs are affected by various factors such as pore structure, formation water salinity, and siliceous ce-
mentation, which lead to the abnormal phenomenon of high-resistivity water layers and increase the difficulty in identifying gas
and water layers by conventional logging. In this study, the pore types and pore size distribution characteristics of tight sandstone
reservoirs were firstly determined by NMR and high-pressure mercury injection experiments, and then the iterative least-square
method was used to automatically optimize the inversion method of pseudo-capillary pressure curve and search for the optimal
conversion coefficient. Finally, the apparent free water porosity was inversed and the fluid identification standard was obtained
and applied. .e results showed that the reservoirs mainly developed intergranular pores, cutting solution pores, and inter-
granular pores..e pore throats were poorly sorted, and the displacement pressure was high..emedian radius ranged from 0.01
to 0.48 μm, and the main peak range was from 0.02 to 0.06 μm. Pores were of mainly small-hole fine throat type. In the inversion
results of the optimal conversion coefficient, the correlation coefficient between the aperture parameters and the results of high-
pressure mercury injection experiments was greater than 0.93. According to the fluid property identification standard based on
nuclear magnetic apparent free water porosity, the high-resistivity water layers were effectively identified and its coincidence rate
with the final field test was 10.7% higher than that of the conventional method. .is identification method can be used to identify
complex fluids in tight sandstone reservoirs.

1. Introduction

.e P2h formation and P1s formation of the Upper Pa-
leozoic Permian in Tianhuan Sag belong to typical tight
sandstone reservoirs in China [1, 2]. .e water layers in the
area have no unified gas-water interface, and disconnected
water bodies are distributed in the area [3, 4]. In addition,
high formation water salinity, siliceous cementation, high-
resistivity minerals in pores, and other factors [5, 6] lead to
the high resistivity of reservoirs and water layers. .erefore,

it is difficult to identify gas and water layers with conven-
tional logging data.

In this study, the identification method of high-resis-
tivity water layers was developed through the combination
of nuclear magnetic logging data and high-pressure mercury
injection experiments. Firstly, it is necessary to calculate the
pseudo-capillary pressure curve, reservoir pore structure
parameters, and pore size spectrum with nuclear magnetic
logging data..e calculation method of the pseudo-capillary
pressure curve has been extensively explored [7–10]. Shao
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et al. [11] calculated the pseudo-capillary pressure curve with
the two-dimensional sectional area method and improved
the fitting effect of macropores. However, the high-pressure
mercury injection measurements adopted in this method
could only reflect connected pores, whereas the nuclear
magnetic resonance logging (NMR) data could reflect the
total pores. As a result, the pseudo-pore size distribution
curve calculated with nuclear magnetic resonance logging
data and the pore size distribution curve measured with core
data are different in the pore size distribution position and
pore shape. Based on the similarity comparison method, Liu
et al. [12] transformed the T2 spectrum integral curve of
nuclear magnetic resonance logging data into the nuclear
magnetic capillary pressure curve. .is transformation
method provided only simple mathematical statistical results
without theoretical basis and adopted the same linear
conversion scale coefficient for all types of core samples, thus
resulting in poor fitting results in small apertures. Wang
et al. [13] analyzed the sectional area method and similarity
comparison method, adopted different methods to sepa-
rately fit various reservoirs with different quality, and
achieved the better fitting results of large and small pores.
However, in this method, it is necessary to artificially judge
the reservoir quality based on porosity and permeability
parameters..emethod has strong subjectivity and depends
on the regional core experiment statistics, so it is not suitable
for new blocks or new exploration wells.

Based on the previous methods [13–16], with the it-
erative least-square method, the conversion coefficient
corresponding to the minimum area difference and the
maximum correlation coefficient was iteratively and au-
tomatically searched to calculate the pseudo-capillary
pressure curve in the study. Based on the absolute error
between the pseudo-capillary pressure curve and the core
capillary pressure curve, the inversion method of the
pseudo-capillary pressure curve was optimized. .e sta-
tistical result of the absolute errors of N rock samples was
obtained, and the average conversion coefficient of W

group with the minimum absolute error was used as the
regional optimal conversion coefficient. .en, the optimal
pseudo-capillary pressure curve was used to calculate the
nuclear magnetic porosity and pore structure parameters.
.en, the capillary bound water porosity and free water
porosity were determined by the comprehensive analysis of
gas test data, maximum pore throat radius, nuclear mag-
netic porosity, and clay bound water porosity. Finally, with
the apparent free water porosity and deep lateral porosity,
the crossplot was prepared to determine the gas-water
division criteria and identify gas reservoirs and high-re-
sistivity water layers..is method utilized the sectional area
method and similarity comparison method more com-
prehensively. It could automatically search for the optimal
conversion coefficient and calculate the pseudo-capillary
pressure curve in real time without artificially dividing the
reservoir quality, thus avoiding the errors caused by sub-
jective factors to a certain degree. .e complex fluid
identification parameters required in traditional fluid
identification methods are converted into the apparent free
water porosity in the study.

2. Regional Geological Background

.e study area is located in Qingshimao and Gaoshawo
regions in the northern section of Tianhuan Sag, Ordos Basin.
It is close to the thrust belt on the western margin and the
Northern Shaanxi Slope, and Sugri Gas Field is located in the
southeast of the study area (Figure 1)..e Upper Paleozoic in
Tianhuan Sag is the sedimentary system composed of a set of
marine-continental transitional facies and develops C2b
formation, P1t formation, P1s formation, P2h formation, and
P2s formation from bottom to top [3, 17, 18]. In the study
area, large stable regional slopes formed since the Paleozoic
Era provide good structural conditions for the formation of
natural gas. .e channel sand bodies of P1s formation and
P2h formation are the main gas-producing sections, and the
sand bodiesmainly contain lithic quartz sandstone and quartz
sandstone. On gentle slopes, there are no characteristics of
bottom water or edge water and even complex gas-water
relations such as “gas-water inversion” are formed [19–21].

3. Pore Structure Experiment and Analysis of
Tight Sandstone Reservoirs

3.1. Pore Structure Characterization Experiments. An argon
ion scanning electron microscope (FE-SEM) was used for
the qualitative characterization of pores [22]. According to
the scanning electron microscope analysis method of rock
samples in SY/T5162-2014, the samples were placed in
polishing instrument (JEOL, IB-09010CP), polished for
about 10 h to obtain a polished surface (1000 μm× 500 μm),
and analyzed under a cold field emission scanning electron
microscope (JEOL-JSM 7500F) equipped with an EDAX
energy spectrometer.

.e CO2/N2 adsorption and high-pressure mercury in-
jection experiment was performed for the quantitative
characterization of pore structure [23]. According to the
determinationmethod of full pore size distribution of shale in
NB/T14008-2015, the mercury injection part was performed
with a mercury pore tester (Micromeritics AutoPore IV 9520)
and the adsorption part was completed with a specific surface
and porosity meter (JW-BK22). According to the gas ad-
sorption BET method for determining the specific surface
area of solid materials in GB/t19587-2004 with the Bru-
nauer–Emmett–Teller (BET) equation, the BET straight line
diagram was plotted in the relative pressure range of 0.05 to
0.35 to obtain the BET specific surface area [24]. .e pore
volume characteristics were calculated using the Bar-
ret–Joyner–Halenda (BJH) method [25]. .e transverse re-
laxation time curve of NMR technology was used to explore
the pore size distribution trend. .e absolute pore size was
calculated by comparing the pore size distribution obtained
with mercury injection method with the NMR spectrum.

3.2. Pore Structure Analysis. According to the thin section
analysis and statistics of reservoir samples of sections P2x8
and P1s in the study area, in the south and west of Sugri Gas
Field (Figures 2 and 3), the clastic content in Section P2x8
was 83.97% and the clastic components were mainly quartz
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(59.56%), rock debris (18.42%), and feldspar (2.09%). In
Section P1s, the clastic content was 81.9% and the clastic
components were mainly quartz (64.07%), rock debris
(17.59%), and feldspar (0.25%) (Figure 3(a)). .e pores were
mainly debris dissolved pores, intergranular pores, and
intracrystal pores (Figure 3(b)). .e lithology of the study

area is mainly rock debris quartz sandstone with inter-
granular pores and rock debris dissolved pores.

.e T2 spectra of nuclear magnetic resonance logging
data obtained from 50 samples of 23 wells such as Well L57
and Well L59 and the statistical analysis of core mercury
injection experimental data are summarized below. .e
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Figure 1: Geographic position and stratum subdivision of the study area.

Figure 2: Analysis results of microscope images of polished thin sections in the study area. (a) Well Li40, 4038m P2x8, intergranular pores
and intracrystal pores; (b) Li46, 4225m P2x8, intracrystal pores; (c) Li53, 3981m P2x8, intergranular pores, dissolved pores, and intracrystal
pores; (d) Well Li55, 3814m P2x8, intergranular pores, dissolved pores, and intracrystal pores; (e) Well Li57, 3784m P2x8, dissolved pores
and intracrystal pores; and (f) Well Li57, 3798m P2x8, intergranular pores and intracrystal pores.
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displacement pressure distribution range of P2x8 sandstone
section was 0.03 to 60MPa with the average of 5.73MPa and
the main peak range of 0.5 to 1MPa (Figure 4(a)). .e
median pore throat radius range was 0.01 to 0.48 μmwith the
average of 0.09 μm and the main peak range of 0.02 to
0.06 μm (Figure 4(b)). .e sorting coefficient range was 0.13
to 5.33 with an average of 2.27 and the main peak range of 1
to 4 (Figure 4(c))..e skewness distribution range was −2.29
to 2.59 with an average of 0.61 and the main peak range of −1
to 0 and 1 to 2 (Figure 4(d)). .e reservoir was characterized
by the significant micro-heterogeneity, the poor pore throat
sorting effect, the high displacement pressure, and the small
median radius of throat..roats were mainly small-hole fine
throat type, thus resulting in incomplete displacement of
formation water by oil and gas migration and the high
content of residual formation water.

3.3. Relationships between Pore Structure, Fluid Properties,
Permeability, and Productivity. Pore characteristics affect
fluid properties, permeability, and gas productivity in res-
ervoirs [26–29]. Figure 5 shows the distribution of nuclear
magnetic resonance T2 spectrum of three cores. From left to
right, the proportion of small holes decreased and the
proportion of large holes increased. .e proportion of
bound water porosity decreased, indicating that the pore
structure of cores from left to right was gradually improved
in turn. .e sample permeability was greatly increased from
0.16×10−3 μm2 of the No. 16 sample to 30.441× 10−3 μm2 of
the No. 6 sample, and the gap was nearly 200 times. .e
difference indicated that pore structures significantly af-
fected the reservoir seepage capacity. .e better the pore
structure, the higher the corresponding reservoir perme-
ability. .e comparative analysis of mercury injection test
and gas test results of samples indicated that with the im-
provement of pore structure, gas production gradually in-
creased and water production gradually decreased.

4. Inversion Method of Apparent Free Water
Porosity Based on NMR Logging

According to the free water porosity inversion process
(Figure 6), N typical core samples with different pore sizes
were selected to conduct the high-pressure mercury

injection experiment and obtain the core capillary pres-
sure curve. .en, based on the nuclear magnetic logging
data, the T2 distribution of rock samples at the corre-
sponding depth was obtained through exponential solu-
tion and then the nuclear magnetic reverse cumulative
spectrum was calculated to characterize mercury injection
saturation [13, 30]. Based on the regional reservoir
characteristics, the initial boundary value between large
and small apertures was set and the pseudo-capillary
pressure curve was calculated in sections. Based on the
capillary pressure curve in the rock core, the area dif-
ference of the capillary pressure curve and the correlation
coefficient were calculated. .en, the boundary value was
transformed according to the step size, and the least-
square automatic iteration was used to search for the
minimum area difference and the maximum correlation
coefficient between the core capillary pressure curve and
the pseudo-capillary pressure curve [31–33]. By calcu-
lating the pseudo-capillary pressure curve of each rock
sample and comparing it with the core capillary pressure
curve, the absolute error between the two curves was
calculated. .e absolute errors of all rock samples were
counted, and the regional optimal conversion coefficient
was found to calculate the pseudo-capillary pressure
curve. .e reservoir pore structure parameters and pore
size spectrum were inversed with the optimal pseudo-
capillary pressure curve and calibrated with the experi-
mental data of high-pressure mercury injection.

.en, the crossplot of the nuclear magnetic maximum
pore throat radius calculated with the optimal pseudo-
capillary pressure curve, nuclear magnetic porosity, and gas
test data was used to determine the lower limit of free water
pore diameter. Assuming that only bound fluid existed
under this lower limit, the capillary bound water porosity
was calculated. With water saturation Sw calculated by the
Archie formula and the total porosity of nuclear magnetic
logging, the total water content porosity ϕw was calculated.
Clay-bound water porosity provided by NMR inversion ϕcbw

was used to inverse free water porosity. Finally, the crossplot
analysis of nuclear magnetic free water porosity, undis-
turbed formation resistivity, and gas test data was per-
formed, and the gas and water discrimination standard was
established with free water porosity to distinguish gas and
water in tight reservoirs.
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Figure 3: Statistical diagram of clastic composition and pore types of H2x8 and P1s in the study area. (a) Statistical histogram of detrital
composition of H2x8 and PIs. (b) Statistical histogram of pore type distribution.
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4.1.9eoretical Basis of Inversion of Pseudo-Capillary Pressure
Curve from NMR Logging Data. .e original data of NMR
logging consist of the T2 relaxation attenuation curve
composed of hundreds of spin echoes. .rough multi-
exponential fitting of spin echo string, the T2 relaxation
time of various types of pores and the proportion Pi of
pores in total pores can be solved from the equation of total
magnetization signal (M(t), t � 1, 2, 3, . . . , n) measured by
rock NMR. .is is commonly known as T2 distribution
[34, 35].

M(1) � 􏽘
m

i

Pi · e
t(1)/T2i + ε(1),

M(2) � 􏽘
m

i

Pi · e
t(1)/T2i + ε(2),

M(n) � 􏽘
m

i

Pi · e
t(1)/T2i + ε(n),

t(j) � j · TE, j � 1, 2, 3, . . . , n,
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Figure 4: Statistical diagrams of pore structure parameters of the P2x8 tight sandstone reservoir in the study area. (a) P2x8 displacement
histogram. (b) P2x8 histogram of median pore throat radius. (c) P2x8 sorting coefficient histogram. (d) P2x8 skew distribution histogram.
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where Pi is the proportion of the i-th type of pores in the
total pore, %; T2i is the T2 relaxation time of the i-th type of
pores, %; TE is the echo interval time, %; and ε(j) is the
random noise (j � 1, 2, 3, . . . , n).

For water-wetted phase rocks, T2 the transverse relax-
ation time can be simplified as follows [13, 36]:

1
T2

� ρ2
S

V
� Fs

ρ2
rpor

, (2)

where ρ2 is the relaxation rate of rock surface, μm/ms; (S/V)

is the pore specific surface area, μm−1; rpor is the pore radius,
μm; and Fs is the dimensionless geometry factor of pores (3
for spherical pores and 2 for cylindrical pores).

.e core capillary pressure curve of rock samples was
obtained from the high-pressure mercury injection ex-
periments. After applying pressure to mercury, when the
mercury pressure was equal to the capillary pressure of the
pore throat, mercury could overcome the resistance to
enter the pore. .e capillary pressure curve of the ex-
perimental rock core was obtained with the pore volume
percentage of mercury and the corresponding pressure.
.e pseudo-capillary pressure curve is calculated using
equation (3) under the condition of known T2 distribu-
tion. .e envelope area ratios of the measured mercury
injection curve and the pseudo-capillary pressure curve at
different pore sizes on both sides of the initial value of the
large-small pore size boundary were respectively
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calculated as the longitudinal scale conversion coefficients
of the large and small pore size scales [11–13].

pc � C ·
1

T2
, (3)

D1 �
􏽐

N1
j�M1SHg,j

􏽐
M
i�1 Am,i

, (4)

D2 �
􏽐

M1
j�1SHg,j

􏽐
N
i�M Am,i

, (5)

Initial value of large and small aperture scale boundary �
C(P)

T2 cuoff
, (6)

where pc is the mercury inlet pressure, MPa; C is the di-
mensionless conversion coefficient between capillary pressure
curve and T2 spectrum; D1 is the dimensionless conversion
coefficient of longitudinal small aperture part; D2 is the
conversion coefficient of longitudinal large aperture part;
SHg,j is the mercury saturation increment of the j-th com-
ponent of the mercury injection curve, %; N1 is the total
number of components of mercury injection curve; N is the
total number of components of the pseudo-capillary pressure
curve after transverse scale conversion of T2 spectrum; Am,i is
the amplitude of the i-th component of the pseudo-capillary
pressure curve after transverse scale conversion from T2
spectrum, %; M1 is the number of mercury injection com-
ponents corresponding to the inflection point of aperture size
boundary; M is the component number of the pseudo-
capillary pressure curve after transverse scale conversion ofT2
spectrum corresponding to the inflection point of aperture

size boundary; and T2 cuoff is the T2 cutoff value obtained
through core centrifugation experiment. A point is obtained
from the sum of T2 distribution amplitude of rock sample
before centrifugation, so that the sum of amplitude of each
point on the left side of the point is equal to the sum of T2
distribution amplitude after centrifugation. .e obtained
point is taken as the T2 cutoff value point [12, 37].

.e sectional area method (6) and correlation coefficient
method (7) were used to calculate the area difference and
curve correlation coefficient between the core capillary
pressure curve and the pseudo-capillary pressure curve,
respectively. .e iterative least-square method was used to
automatically iteratively search the T2 spectrum corre-
sponding to the minimum area difference and the maximum
correlation coefficient, and the conversion coefficients
C, D1, and D2 of the pseudo-capillary pressure curve were
then retrieved [13]:

􏽚
Pmax

Pmin

SHg
(P) − SHg

Pc( 􏼁􏼔 􏼕dP⟶ min , (7)

􏽐 SHg
(P) − SP􏼔 􏼕 SHg

Pc( 􏼁 − SPc
􏼔 􏼕

���������������������

n · SHg
(P)

2
− 􏽐 SHg

(P)􏼔 􏼕
2

􏽲

·

�����������������������

n · SHg
Pc( 􏼁

2
− 􏽐 SHg

Pc( 􏼁􏼔 􏼕
2

􏽲 ⟶ max , (8)

where SHg
(P) is the reverse cumulative mercury saturation

of T2 spectrum, %; SHg
(Pc) is the mercury saturation

measured experimentally, %; SP is the mean value of discrete
points of cumulative mercury inlet saturation as a function
of mercury displacement pressure, %; and SPc

is the mean
value of discrete points of mercury injection saturation as a
function of mercury displacement pressure obtained from
core experiments, %.

For each core, the optimal conversion coefficient iter-
ated by the sectional area method and the correlation
coefficient method corresponds to the pseudo-capillary
pressure curve. .e pseudo-capillary pressure curve is
compared with the core capillary pressure curve, and the
absolute errors ΔPS and ΔPr of the two curves are calcu-
lated. .e sectional area method or the correlation coef-
ficient method is selected for each rock sample based on

8 Geofluids



absolute errors. .e average value of W group conversion
coefficients with the smallest absolute error is taken as the
regional optimal conversion coefficient.

ΔPS �
Pis − Picore

Pis

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
· 100,

ΔPr �
Pir − Picore

Pir

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
· 100,

(9)

where ΔPS and ΔPS are the absolute errors between the
pseudo-capillary pressure curve and the core capillary
pressure curve respectively inversed by the sectional area
method and the correlation coefficient method, %; Pis and
Pir are the proportion of the i-th type of pores in the total
pores in the pseudo-capillary pressure curve respectively
inversed by the sectional area method and the correlation
coefficient method, %; and Picore is the proportion of the i-th
type of pores in the total pores in the capillary pressure curve
measured by core experiments, %.

.e pseudo-capillary pressure curve is inversed with the
regional optimal conversion coefficients C, D1, and D2, and
the pore structure parameters are inversed with the pseudo-
capillary pressure curve.

.e maximum throat radius rmax is calculated as follows
[13]:

rmax �
r(i)ΔSHg(i) + r(i − 1)ΔSHg(i − 1)

SHg(i) + ΔSHg(i − 1)
ΔSHg(i), (10)

where ΔSHg(i) is the mercury saturation of the i-th com-
ponent of the pseudo-capillary pressure curve,%; SHg(i) is
the cumulative mercury saturation of the i-th component of
the pseudo-capillary pressure curve,%; and r(i) is the i-th
throat radius component, μm.

.e displacement pressure pth is calculated as

pth �
0.735
rmax

. (11)

.e calculation formula of median pressure p50 is

p50 �
pc(i + 1) − pc(i)

SHg(i + 1) − SHg(i)
50 − SHg(i)􏽨 􏽩 + pc(i). (12)

.e calculation formula of median radius r50 is

r50 �
0.735
p50

. (13)

NMR total porosity (ϕt) is defined as the sum of porosity
of all T2 components (ϕi):

ϕt � 􏽘 ϕi. (14)

.e calculation formula of clay-bound water porosity is

ϕe � 􏽘
T2 >T2 clay

ϕi, ϕcbw � ϕt − ϕe, (15)

where ϕe is the effective porosity and defined as the total
porosity minus the bound water porosity of clay; and T2 clay
is the boundary value between capillary pores and clay
pores.

4.2. Calculation of Apparent Free Water Porosity and
Construction of Fluid Identification Standard

4.2.1. Determination of the Lower Limit of Free Water Pore
Diameter. A crossplot was prepared with nuclear magnetic
porosity, nuclear magnetic maximum pore throat radius,
and gas test data to determine the lower limit of free water
pore diameter. Assuming that only bound fluid exists under
this lower limit, the clay-bound water porosity is inversely
calculated with nuclear magnetic resonance logging data
based on this lower limit.

Figure 7 shows an example of crossplot analysis of NMR
porosity, NMR maximum pore throat radius, and gas test
data including 254 gas test data of wells Li40, Li57, Li55, and
Li59 in the study area. .e crossplot results showed that the
gas reservoir data were mainly distributed in the area with
R> 0.2 μm. .erefore, it is assumed that the pore space with
the throat radius less than 0.2 μm only contains bound fluid
and R� 0.2 μm is taken as the lower limit of free water pore
diameter. In the lower right part of the crossplot, the po-
rosity is relatively large and the corresponding pore throat
radius is relatively small. .e gas test showed that it was
mainly a gas-water layer.

4.2.2. Calculation Model of Apparent Free Water Porosity.
Firstly, water saturation Sw is calculated by the Archie
formula and the total water porosity ϕw is calculated from
the total porosity of NMR logging data (equation (13))..en,
clay-bound water porosity ϕcbw is inversed based on the
optimal conversion coefficient found with NMR logging
data to calculate capillary-bound water porosity ϕbvi

according to the determined lower limit of free water pore
diameter. Finally, apparent free water porosity (ϕffw) can be
calculated using equation (17):

ϕw � ϕt · Sw, (16)

ϕffw � ϕw − ϕbvi − ϕcbw. (17)

4.2.3. Establishment of Fluid Criteria. Based on the nuclear
magnetic apparent free water porosity calculated by the
model, a crossplot was made with the original formation
resistivity and gas test data to determine the identification
standard of fluid types. Figure 8 shows the subdivision
standard of the study area: gas layer (apparent free water
porosity ϕffw < 1.0), gas-water layer (1.0≤ϕffw ≤ 2.0), and
water layer (ϕffw > 2.0).

5. Application Example and Analysis Results

5.1. Calibration ofModel Core Experimental Data. .e high-
pressure mercury injection experimental data of 4 rock
samples of Well L57 and 3 rock samples of Well L59 in the
study area were collected. After the least-square automatic
iteration and the calibration with the mercury injection
test data, the conversion coefficients were determined as
C � 8.27 (8.1∼8.6), D1 � 7.27, and D2 � 9.85. Figure 9
shows the core calibration results of Well L57, and
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Figure 10 shows the core calibration results of Well L59.
After core calibration, the pore structure parameters
inversed by the calibrated model were compared with the
core mercury injection experimental data. .e correlation
coefficients of median pressure (Figure 11(a)), displace-
ment pressure (Figure 11(b)), and median radius
(Figure 11(c)) are between 0.925 and 0.989 and proved the
reliability of the inversion model.

5.2. Fluid Discrimination and Comprehensive Evaluation of
Tight Sandstone Reservoirs. .e established fluid discrimi-
nationmodel based on apparent free water porosity was used
to identify the gas and water layers in Well Li40 in the study
area. .e result diagram is shown in Figure 12. .e 9th
channel shown in Figure 12 is the original interpretation
conclusion of fluid identification according to the conven-
tional curve crossplot method, whereas the 8th channel is the
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new interpretation conclusion based on the free water po-
rosity curve calculated by the model in this paper. .e 7th
channel is the nuclear magnetic T2 spectrum, and the sixth
channel is the pseudo-capillary pressure curve obtained in
this study..e fifth channel is the pore size spectrum of tight
sandstone reservoirs obtained by inversion, and the fourth

channel is the pore median radius obtained by inversion..e
third channel is the pore size distribution curve obtained by
inversion, and the second channel shows the porosity
corresponding to different pore sizes. .e first channel
shows the porosity proportions of different pore fluids.
Based on the crossplot of deep lateral resistivity and acoustic
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time difference, the No. 44 reservoir in Well Li40 was
interpreted as a poor gas layer. However, the apparent free
water porosity was greater than 2% and the average resis-
tivity was greater than 30Ωm. .erefore, the reservoir was
newly interpreted as a high-resistivity water layer. Based on
the crossplot, the No. 46 reservoir was interpreted as a poor
gas reservoir. However, the apparent free water porosity was
less than 1%, so the reservoir was newly interpreted as a gas
reservoir. In order to verify whether the interpretation
conclusions were correct, the two interpretation results were
compared based on the gas test data, which were the most
accurate discrimination basis for the fluid properties of
reservoirs. According to the gas test data, the No. 44 res-
ervoir did not produce gas and its daily water production
was 14.4m3/d, suggesting that it was indeed a water layer.
.e high resistance might be ascribed to the poor pore
connectivity and the high quartz content (Figure 13). .e
No. 46 reservoir had a daily gas production of 70342m3/d
and zero water production, suggesting that it was indeed a
gas reservoir. .e fluid discrimination model constructed
based on apparent free water porosity in this paper accu-
rately identified gas reservoirs and high-resistivity water
layers, which were easily wrongly identified with the con-
ventional logging curve crossplot method.

.e interpretation results of Well Li46 are shown in
Figure 14. .e porosity and pore structure of the No. 40
reservoir (Figure 15(a)) was better than the No. 41 reservoir
(Figure 15(b)). .e No. 40 reservoir had larger pores and

better connectivity (Figure 14), indicating that the quality of
the No. 40 reservoir was better than the No. 41 reservoir..e
apparent free water porosity at the bottom of the No. 40
reservoir was 1.0% to 2.0%, so it was interpreted as the gas-
water layer. In the No. 41 reservoir, apparent free water
porosity was less than 1.0%, so it was interpreted as a gas
reservoir. According to the results of gas test data, daily gas
production and daily water production of the No. 40 res-
ervoir were, respectively, 71726m3/d and 8.3m3/d, so it was
interpreted as the gas-water layer. .e No. 41 reservoir had a
daily gas production of 52124m3/d and zero water pro-
duction, so it was interpreted as a gas reservoir. .e in-
terpretation conclusion based on the gas test data was
consistent with the interpretation conclusion obtained with
the apparent free water porosity and crossplot method.
.erefore, the apparent free water porosity fluid identifi-
cation model is more reliable.

In order to further verify the reliability of the model, the
crossplot method of deep lateral resistivity and acoustic time
difference and the apparent free water porosity method were
used to identify the gas and water layers of the other 28
reservoirs in the study area, and the obtained results were
compared with the interpretation conclusion of gas test data.
.e coincidence rate of the interpretation conclusion was
statistically calculated..e coincidence rate of interpretation
obtained with the crossplot method was 71.4%. .e coin-
cidence rate of the interpretation results of the apparent free
water porosity method reached 82.1% (Table 1).
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Figure 12: Interpretation results of Well Li40 based on NMR free water porosity.

Figure 13: Microscope images of polished thin sections of the core samples obtained at different depths (4102m (a) and 4103m (b)) of Well
Li40.
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Figure 15: Microscope images of polished thin sections in the No. 40 reservoir at the depth of 4225m (a) and the No. 43 reservoir at the
depth of 4241m (b) of Well Li46.
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Figure 14: Interpretation results of Well Li46 based on NMR free water porosity.

Table 1: Statistical table of the interpretation coincidence rate of the fluid discrimination model in the study area.

Well Layer
Free water
porosity
(φffw)

Interpretation
conclusion of

crossplot method
(%)

Interpretation
conclusion of
apparent free
water porosity

method

Test results
Interpretation
coincidence of

crossplot method

Interpretation coincidence of
apparent free water porosity

method
Gas

(m3/d)
Water
(m3/d)

E82 P2x8 0.41 Gas layer Gas layer 22338 0 √ √

E51
Upper
part of
P2x8

0.22 Gas layer Gas layer 43374 0 √ √

E40 P2x8 0.66 Gas-water layer Gas layer 101195 7.5 √ √

E60
Upper
part of
P2x8

0.74 Gas layer Gas layer 50591 1.8 √ √

E46 P2x8 0.18 Gas layer Gas layer 57630 0 √ √
E80 P2x8 0.57 Water layer Gas layer 24921 48 × √
E47 P2x8 0.65 Gas layer Gas layer 22955 30 √ √

E70
Lower
part of
P2x8

1.24 Gas layer Gas-water layer 2020 14.4 × √

E52
Upper
part of
P2x8

2.38 Water layer Water layer 902 4.8 √ √

E84
Upper
part of
P2x8

1.76 Water layer Water layer 534 23.5 × ×

E78 P2x8 3.49 Water layer Water layer 109 35 √ √

S175
Upper
part of
P2x8

0.86 Gas layer Gas layer 113083 0 √ √
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.e above results showed that the apparent free water
porosity-based fluid identification method proposed in this
paper could identify the high-resistivity water layers in tight
reservoirs in the study area to a certain degree and improve
the accuracy of fluid identification in tight reservoirs in the
study area.

6. Conclusion

In the study, the traditional fluid identification method was
improved on the basis of previous studies. .e improved
method made good use of the segmented area method and
the similarity comparison method and could automatically
search for the optimal conversion coefficient and calculate
the pseudo-capillary pressure curve in real time.Without the
step of artificially dividing the reservoir quality, the method
converted complex fluid identification parameters into a
parameter of apparent free water porosity. To a certain
degree, the improved method avoids the errors caused by
subjective factors and has stronger applicability.

.e correlation coefficient between the pore diameter
parameters retrieved from the pseudo-capillary pressure
curve calculated according to the optimal conversion co-
efficient, and the results measured by high-pressure mercury
injection experiments was greater than 0.93. .e two curves
were consistent in both large and small pores, and there was
no bifurcation anomaly, which generally occurred in pre-
vious studies.

Based on the identification standard of gas and water
layers in the nuclear magnetic free water porosity model, the
high-resistivity water layer was largely identified and the
coincidence rate of the interpretation results with final field
test data was 10.7% higher than that of the conventional
logging curve interpretation method.
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