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The understanding of solute transport in rock fractures is of great importance in many engineering fields. In this study, two
groups of experiments on artificial and natural single fractures with different fracture apertures and roughness were conducted
to investigate the changes of solute transport regimes. The time fractional advection–dispersion equation (tFADE) as a
promising model was applied to describe the anomalous transport. The performance of the classical advection-dispersion
equation (ADE) and tFADE was compared according to the fitting precision of breakthrough curves (BTCs). The responses of
the fitting parameters in the tFADE to the experimental conditions were also discussed. The results indicated that the non-
Fickian transport more likely occurred in the short distance transport, and the larger Peclet number (Pe) led to the increase of
the exponent of the power-law function in the phase of concentration decline. The tFADE was superior to ADE in capturing
the non-Fickian transport especially the tailing behavior. The fractional order of time α in the tFADE was the key parameter to
describe the anomalous transport process, and its responding mechanisms of were revealed: the best-fit α decreased with the
increase of flow velocity and the decrease of the fracture aperture. The roughness of the single fracture which leads to a
complex flow field had a significant effect on the best-fit α. The findings of this study can help for better understanding the
effectiveness and physical significance of the tFADE.

1. Introduction

Solute transport in fractured rocks is of great significance
to the underground engineering such as tunnel excavation,
shale gas development, and CO2 geological storage. Due to
the variable geometry and hydraulic conditions in the geo-
logical environment, the accurate quantitative prediction of
solute transport in the fracture is an important research
with great challenges [1, 2].

In order to predict the solute transport process in frac-
tured media, mathematical models have been developed

and applied in the laboratory investigation and numerical
simulation [3–5]. The acknowledged advection–dispersion
equation (ADE), derived from Fick’s law, has been used
to describe solute transport in fractures for years [6].
However, many laboratory researches claimed that
medium heterogeneity deeply affects the transport of sol-
ute in the fracture, resulting in the limitation of the
ADE model in describing the early arrival or tailing
behavior which is typical non-Fickian behavior [7–9]. In
single fractures, the geometry structure of walls and iner-
tial effects of flow are mainly considered as the causes of
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the non-Fickian phenomena [10, 11]. That is, the rougher
fracture and higher velocity of the flow lead to the differ-
entiation of the main flow paths and recirculation zones
which affect the transport process deeply and cause the
failures of the ADE (Figure 1) [12, 13]. Moreover, non-
Fickian phenomena are common in nature [14]. Thus,
quantitative capture of non-Fickian phenomenon at a
laboratory scale contributes to the study of solute trans-
port in a natural scale [15].

To improve the precision accuracy of pollutant trans-
port and capture the non-Fickian transport, several math-
ematical approaches have been developed [16, 17]. Based
on a transition rate approach, continuous time random
walk (CTRW) which includes the Fokker-Panck equation
with a memory equation has been widely used to capture
solute transport in both the fracture system and heteroge-
neous porous media [18, 19]. Nowamooz et al. [20] inter-
preted the tracer transport in the original fractures with
the equivalent-stratified model and the continuous time
random walk (CTRW) and analyzed the advantages and
disadvantages of the two models. Though CTRW can cap-
ture the transport process well, the physical relationship
between the transport velocity and the average fluid veloc-
ity is not clear enough and the parameters of CTRW are
relatively more than those of other models which result
in the difficulty in simulation. Improved on the ADE,
several mathematical approaches can also capture the sol-
ute transport process with a certain degree of accuracy like
the mobile-immobile (MIM) model and fractional
advection-dispersion equation (FADE) [21, 22]. Qian
et al. [23] used the single-rate MIM model, ADE, and
advection–dispersion equation with retardation (ADE-R)
to fit the sodium chloride transport in the filled fracture
and test the precision of the MIM. The results showed that
MIM can capture the anomalous transport process well
including early arrival and tailing behaviors. The
equivalent-stratified method can quantify the degree of
fracture heterogeneity, but the goodness of fit for the sol-
ute transport process of short-distance transportation is
low. By adding a fractional-order operator to time in the
traditional ADE, the time fractional advection-dispersion
equation (tFADE) can describe the solute remaining in
an immobile domain [24, 25]. Hence, the tFADE has the
potential to describe the tailing behavior caused by the
geometry structure of the single fracture. On the other
hand, the spatial fractional advection-dispersion equation
(sFADE) has been used in describing solute transport for
many years which can describe the solute transport at dif-
ferent transport distances [3, 4, 9]. Benson et al. [26]
regarded FADE as a predictive tool with certain precision
by fitting the transport in a relatively homogeneous sand-
box. Huang et al. [27] simulated the atrazine transport in
a sand column by numerical approach and found that the
FADE can capture well the non-Fickian transport espe-
cially the tailing behaviors. Hence, the FADE is a promis-
ing approach to describe the solute transport process in
the fracture system with a complex interference factor.
However, the physical significance of the fractional order
is still unclear.

In summary, the capture of non-Fickian transport still
remains to be further researched. The effectiveness of the
FADE to the simulated solute transport process under dif-
ferent conditions at the laboratory scale needs to be
proved. Researches on the physical significance and influ-
ence factors of the parameters in the FADE are necessary.
Hence, systematical studies of the FADE for describing the
solute transport in a single fracture are still a requisite
[28]. It can provide strong theoretical support for the
wider application of the FADE.

This study is aimed at analyzing the cause of the non-
Fickian transport process in single fractures, testing the fit-
ting precision of the tFADE under different experimental
conditions, and investigating the effect of the flow rate,
fracture aperture, and roughness in granite fractures and
plexiglass fractures on the parameters of the tFADE.

The research steps are organized as follows. First, the
theoretical background of solute transport is introduced
in Section 2. Then, 2 groups of solute transport experi-
ments are performed in Section 3. Third, the experimental
results and fitting results with ADE and tFADE are
described, as well as the comparison of the fitting of the
two models and discussion of the influence of experimen-
tal conditions on the fitting accuracy and the parameters
of the tFADE. Finally, the conclusion and limitation of
this study are summarized in Section 5.

2. Theoretical Background of Solute Transport

The fractional operator has been developed in many fields
for years [29]. Mehdinejadiani and Fathi [30] simulated
water table profiles using the space fractional Boussinesq
equation. Jafari et al. [31] developed a fractional Glover-
Dumm equation to simulate the groundwater flow under
heterogeneous unconfined aquifers. The fractional-
derivative operator of the FADE can be used to describe
anomalous diffusion for its nonlocality [32]. Many studies
have shown that the FADE can describe the abnormal
transport of particles [4, 33, 34]. The time fractional
advection-dispersion equation (tFADE) is an upgrade
based on the ADE by replacing a fractional derivative
from 0 to 1 to the first time derivative, arising from the
power law of the time distribution of particles [35, 36].
The basic form of the tFADE is as follow:

∂αC x, tð Þ
∂tα

= −V
∂C x, tð Þ

∂x
+D

∂2C x, tð Þ
∂x2

, ð1Þ

where C is the concentration of the solute (mol/L), D is
the dispersion coefficient (m2/s), V is the advective veloc-
ity (m/s), t is the time (s), x is the spatial coordinate of
the solute along the direction of flow (m), and α (dimen-
sionless) is the order of fractional differentiation. The
smaller value of α explains the more remarkable solute
retention in the fracture. In addition, when the α value
is 1, the tFADE recedes to the ADE. The dispersion coef-
ficient D in the tFADE is different from that in the ADE,
because the fractional operator describes the partially local
velocity rather than the mean velocity.
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The numerical solutions of equation (2) are obtained
by finite difference approximation, and the initial and
the boundary conditions of solute transport are shown
as follows:

C x, tð Þjt=0 = 0 x > 0,

C x, tð Þjx=0 =
C0 0 ≤ t ≤ t0ð Þ,
0 t0 ≤ t≤+∞ð Þ,

(

lim
x⟶+∞

C x, tð Þ = 0,

ð2Þ

where t0 represents the duration of solution injection and
C0 represents the injected concentration and, in this
study, C0 is set to 1 for the normalized concentration.

To evaluate the fitting accuracy of the tFADE, the coeffi-
cient of determination (r2) and root mean square error
(RMSE) were calculated. The coefficient of determination r2

can express the goodness of fit by calculating the proportion
of variability in the dependent variable that can be explained
in the FADE, and the range of r2 is from 0 to 1. RMSE is a
non-negative number which reflects the measure of dispersion
of an observation [37]. It should be mentioned that the
normalized concentration is used in this study, so both param-
eters are dimensionless. In the experiments, the closer r2 near
to 1 and the smaller RMSE represent the better fitting result.
The mathematical expressions of r2 and RMSE are as follows:

r2 = 1 −
∑N

i=1 Cio − Cieð Þ2
∑N

i=1 Cio − �Cio

� �2 ,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
N

i=1
Cio − Cieð Þ2

vuut ,

ð3Þ

in which Cio is the observed concentration, �Cio is the average
value of the observed concentration, and Cie is the simulated
concentration.

In this study, two important dimensionless numbers are
used. The Reynolds number (Re) is a classic quantity to
describe the ratio of inertial effect to viscous effects on the
field flow, and the Peclet number (Pe) is defined as the ratio
of the convection, and the diffusion can be used to describe
the importance of convective flux. The larger Pe indicates
the more significant convective transport [38]. The compu-
tational expressions are shown as follows:

Re =
ρvd
μ

, ð4Þ

Pe =
vd
Dm

, ð5Þ

where ρ is the fluid density (1 × 103 kg/m3), v is the average
flow velocity, d is the apparent fracture aperture, μ is the
dynamic fluid viscosity (1:01 × 10−3 Pa·s), and Dm is the
molecular diffusion coefficient.

The residence-time distributions (RTDs), effective met-
ric for evaluate the features of non-Fickian transport, are
developed by the nonlocal dispersion theory [39, 40]. In this
study, RTDs were calculated for the solute transport in the
granite fracture and plexiglass fracture to examine the fea-
tures of tailing behavior. RTDs were derived from the time
derivative of BTCs of the step injection for its resident con-
centration time series, and the residence time distribution
can be expressed as follows [41]:

R tð Þ = dcs
dt ′

, ð6Þ
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Figure 1: Schematic of the tailing behavior caused by roughness of single fractures. (a) A partition chart for the flow in the single fracture
[12]. (b) A microscopic picture of particle flow in the fracture [13]. (c) A breakthrough curved in which the tailing behavior can be noticed
and ADE fails to capture the transport process.
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t ′ = Qt
V f

, ð7Þ

where t ′ is a dimensionless time called pore volume, Q is the
flow rat e(cm3/s), and V f is the volume of the fracture (cm3).
It should be noted that a single instantaneous injection was
simulated in our study and the BTCs can be converted from
the single instantaneous injection to the step injection [42].

dCs

dt ′
= Cp, ð8Þ

where the Cs and Cp represent the concentration obtained in
response to the step injection and pulse injection, respec-
tively. According to equation (8), equation (9) can be trans-
formed into

Effluent
capture Flowmeter

Sampling

Hydraulic access

Constant head
tank

Peristaltic
pump

Constant head
tank

Storage
tank

Discharge

ΔH

Flow distribution
chamber

Flow direction

Figure 2: Experimental setup for the BBF transport in a single plexiglass fracture.

Table 1: Summary of experimental parameters.

Experiment Pattern Width (cm) Length (cm) Mechanical aperture (mm) Relative roughness

Group 1

Pattern 1 12 59

1.71 0.09

1.71 0.09

1.71 0.09

2.60 0.1

2.60 0.1

2.60 0.1

Pattern 2 13 69

2 0.34

2 0.34

2 0.34

3 0.23

3 0.23

3 0.23

Group 2

Pattern 1

60 15

4 1

5 0.8

6 0.67

4 1

5 0.8

6 0.67

Pattern 2

2 0

3 0

4 0

2 0

3 0

4 0
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dCs

dt
=

Q
V f

Cp: ð9Þ

3. Experimental Apparatus and Procedure

3.1. Experimental Apparatus. In this study, two groups of
experiments in a single fracture under different experi-
mental conditions were conducted and each group
involved two patterns.

The schematic diagram of the laboratory setup are
shown in Figure 2. Three main parts including a recharge
flume, a discharge flume, and a single fracture are assem-
bled in group 1. Both the recharge flume and the dis-
charge flume consist of a water pipe for the control
device and an overflow launder. Three hydraulic gradients
for each pattern in group 1 are designed by adjusting the
height of the recharge flume with the constant position
of the discharge flume. The steady flow rates are calculated
by a chronograph and a measuring cylinder after the water
head is stable. Sampling analyses are taken at certain inter-
vals to monitor the change of solute concentration. Each
experiment was repeated three times.

Brilliant blue FCF (BBF), an ionic molecule, was used
in several solute transport experiments as a conservative
tracer recently for its nontoxicity, mobility, and low
adsorption [43–45]. To measure the concentration of
BBF in the fracture, the standard curve is calculated by
configuring a series of concentrations of BBF solutions
and measuring the absorbance. The value of absorbance

of the sample is measured at 630nm by a spectrophotom-
eter SP-754 (Shanghai Precision and Scientific Instrument)
in group 1 and 752N (Shanghai Precision & Scientific
Instrument Co. Ltd., China) in group 2.

Two patterns of fractures were contained in group 1.
The natural and rough fracture was made up of two gran-
ite plates 59 cm long and 12 cm wide. The average aperture
of the natural fracture is calculated by measuring the
width of 110 points with a vernier caliper because of
unobvious depressions, and projections are present on
the granite plate, and the apertures of 1.71 and 2.60mm
are set. Another pattern is made up of two parallel plexi-
glass plates, which were 69 cm long, 13 cm wide, and
1 cm thick. 1 of which is smooth, and the other is rough,
evenly inlaid with 1 cm × 1 cm × 0.3 cm blockages spaced
1 cm apart to improve roughness. The fracture aperture
was adjustable, and three sets of planes were made to
obtain different fracture apertures with 2 and 3mm. The
sampling point was set at the end of the fracture.

Group 2 consists of a peristaltic pump, a single fracture,
and a discharge flume. A flow distribution device was pro-
vided at the entrance of the fracture. A peristaltic pump
was set as 55 and 100 rpm before each experiment of group
2. The hydraulic gradient was made constant by the overflow
flume in every single experimental process. The sampling
point was set at the center point of the fracture. The cross-
section of the fracture was narrow, and the ratio of the
length to the width of the fractures was large both in groups
1 and 2. Hence, vertical flow can be neglected and the one-
dimensional transport was considered in this study.

The device is leakproof? 

Step 2: prevent water leakage and stabilize the
 physical model and fill the experimental device 

with pure water to displace air. 

Step 4: Release a pulse of BBF solution and 
sampling at the sampling point for measuring the

concentration. 

Step 5: Adjust the parameters of ADE and tFADE 
to simulate the transport process and

analysis the errors of the models. 

Errors and best-fitted
paramters of the models

Yes

No

Step 1: assemble a single fracture and
experimental installations.

Step 3: Set the height of the discharge flume and
measure the flow rate when the flow is stabilized.

Figure 3: Flowchart for measuring errors and best-fit parameters of ADE and tFADE.
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Three smooth fractures with average apertures of 2, 3,
and 4mm were prepared by mounting two plexiglass
plates horizontally. Each plate was set to be 60 cm long,
15 cm wide, and 1 cm thick. The single rough fracture
was composed of a smooth plate and a rough plate formed
by cutting a slot with 4mm wide and 4mm deep spaced
every 4mm on the side of the plexiglass plate. The space
between the two plates is the same as that of the smooth
fracture but the average apertures of rough fractures were
4, 5, and 6mm.

In group 1, pattern 1 represents the granite fracture and
pattern 2 represents the plexiglass fracture. And in group 2,
pattern 1 represents the rough fracture and pattern 2 repre-
sents the fracture with a smooth surface. The summary of
experimental models parameters can be seen in Table 1.

3.2. Experimental Procedure. The tracer experiments and
simulations included the following steps which can also
be seen briefly in Figure 3. The experimental apparatus
was installed to ensure a watertight seal according to the
design. The glass cement was used to prevent water leak-
age and stabilize the physical model. Water was continu-
ously pumped into the fracture, and ensure that the air
was expelled completely. The height of the recharge flume
was adjusted by maintaining the height of the discharge
flume to control the hydraulic head before injecting the
BBF solution in group 1. When the flow rate stabilized,

the BBF solution was injected through the injection
syringe in an instant pulse while the chronograph begins
to count. 5ml of BBF solution with the concentration of
0.1 g/l was injected every single experiment. In group 2,
the speed of the peristaltic pump was adjusted before add-
ing the BBF solution and the dosage and concentration of
the BBF solution were 2ml and 0.15 g/l every time. Sam-
ples were taken at sampling points regularly till the BBF
solution passed through the device completely. Each sam-
pling volume was 3ml to minimize quality loss effect, and
the absorbance was determined to obtain the concentra-
tion. After each test, the plates were detached from the
fracture and rinsed thoroughly with water. ADE and
tFADE were conducted to simulate the transport process
by adjusting the parameters of the models till the accuracy
could not be improved.

4. Results and Discussion

4.1. Flow Fields and Transport Processes in the Single
Fractures. The flow fields can deeply affect advection and
mechanical dispersion. To quantify the flow regime and
transport pattern, Re and Pe are calculated by equations
(4) and (5) and listed in Table 2. Noted that the Dm for
BBF is set as 6 × 10−6 cm2/s according to Kone et al.
[46]. The flow regime in this study is considered as the
laminar flow because Re ranged from 5.0 to 11.6 which

Table 2: Values of the Re and Pe versus Darcy’s velocity (V) with different fracture patterns.

Experiment Pattern Number Q (ml/s) V (mm/s) Re Pe

Group 1

Pattern 1

1 0.6 2.924 5.0 8333

2 1 4.873 8.3 13888

3 1.4 6.823 11.6 19446

4 0.6 1.923 5.0 8333

5 1 3.205 8.3 13888

6 1.4 4.487 11.6 19444

Pattern 2

1 0.6 2.308 4.6 7693

2 1 3.846 7.6 12820

3 1.4 5.385 10.7 17950

4 0.6 1.538 4.6 7690

5 1 2.564 7.6 12820

6 1.4 3.590 10.7 17950

Group 2

Pattern 1

1 0.825 1.375 5.5 9167

2 0.825 1.1 5.5 9167

3 0.825 0.917 5.5 9170

4 1.5 2.5 10 16667

5 1.5 2 10 16667

6 1.5 1.67 10 16700

Pattern 2

1 0.825 2.75 5.5 9167

2 0.825 1.83 5.49 9150

3 0.825 1.375 5.5 9167

4 1.5 5 10 16667

5 1.5 3.33 10 16650

6 1.5 2.5 10 16667
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is obviously less than 100 [47]. The Pe for the experiments
ranges from 7693 to 19446 which are over 4000, indicating
that molecular diffusion and transverse dispersion in the
laboratory experiments can be negligible, and advection
and mechanical dispersion in the flow direction made
the main contribution [18, 48, 49].

To analyze the transport processes of the solute, the
RTDs are calculated under different Pe as equation (6).
Figure 4 shows the RTDs for BBF transport in the granite
fracture with the aperture of 1.71mm (Figure 4(a)) and the
RTDs for that in the smooth fracture with the aperture of
2mm (Figure 4(b)).

When the solute transport follows Fick’s law, the BTC
should present Gaussian distribution and the corresponding
RTD will tend to be symmetric as shown in Figure 4(a). On
the contrary, the tailing behaviors can be observed as the
power-law drop in the RTDs if the non-Fickian transport
occurs as shown in Figure 4(b).

If the solute transport process follows Fick’s law, the
value of RTD after the peak will drop sharply rather than
following the power law. To evaluate the degree of tailing
behavior, the RTD value after the peak is fitted with power
function of time and the r2 is calculated. As seen in
Figure 4(a), the three RTDs all present nearly inverted
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Figure 4: The corresponding RTDs for the single fracture in pattern 1 of group 1 (a) and pattern 1 of group 2 (b) with different Pe.
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Figure 5: Fitting BTCs for the BBF transport using tFADE and ADE in the granite fracture with flow velocities.
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“U”-shaped curves indicating that the RTDs follow Gauss-
ian distribution and the power-law tailing behavior does
not happen. With the increase of Re and Pe, the r2 of
the power-law function increases. It indicates that the
transport pattern is changing into non-Fickian transport.
Fitting results with power function in Figure 4(b) show
the obvious power-law decay of RTDs. The larger Re
and Pe, controlled by adjusting the flow velocity, lead to
the larger fitted exponent increase which indicates the
heavier tail. This phenomenon is consistent with the study
of Dou et al. [50]. The increasing exponents may be due
to the growth of the recirculation zones and eddy which
lead to multirate exchange processes with the increasing
Re [13]. The increase of Re and Pe will lead to the hetero-
geneity of the flow field, thus affecting the migration of
solute and making the tailing behavior more obvious.

The convection plays a dominant role in the transport
process in this study, which is controlled by the velocity
field. It has been revealed that the RTDs tend to be more
symmetric and follow a Gaussian distribution with the
increase of travel distance which leads to the scaling effect
[37, 48]. The traveling distance and the structure of the
velocity field may be the main cause which leads to the
difference of BTCs in the two groups of experiments. It
should be mentioned that time is taken as the x-coordi-
nate instead of the analyzed pore volume because the sam-
pling method is used to measure the concentration of BBF
in this study and the early arrival behavior was hard to be
observed accurately. The tailing behavior as the typical
characteristic of the subdiffusion was mainly discussed in
this paper.

4.2. Model Comparison in the Weak Non-Fickian Transport
Case. In order to evaluate the precision of the tFADE,
the ADE and the tFADE are employed to fit the measured
BTCs of BBF transport. Figure 5 shows the measured and
fitted BTCs in group 1. To better observe the capacity of
capturing the tailing behavior of the tFADE, logarithmic
coordinates are set. A more gradual drop can be noticed
in the BTC fitted by the tFADE than those fitted by the
ADE. The relatively slow drop is controlled by the
fractional-order α. The declining α delays the arrival of
the peak at the same time. In the case of Fickian transport,
the advantages of the tFADE are not obvious.

The associated values of RMSE and r2 for the ADE and
the tFADE are summarized in Table 3. The coefficient r2

value is greater than 0.9, and RMSE is less than 0.1, illustrat-
ing the satisfactory precision of both the tFADE and the

ADE in fitting BBF transport. The fitting errors of the
tFADE are close to those of the ADE.

4.3. Model Comparison in the Anomalous Transport Case. To
compare the performance of the tFADE in capturing the
BBF transport in a single smooth or rough fracture, the
BTCs for transport are fitted by the two models. The fitted
BTCs for the fracture with an average aperture of 4mm
are shown in Figure 6, and the log charts are shown in
the inserts. Tailing behaviors can be observed in the BTCs,
and a more obvious phenomenon can be found in the
rough fracture. The roughness elements enhance the retar-
dation of BBF transport, which leads to subdiffusion. The
difference between the fitting results of the tFADE and
ADE is obvious. Though the ADE can capture the peak
of the measured BTCs approximately, it cannot be used
to capture the latter half of BTCs. In contrast, the tFADE
can capture the trends of the measured BTCs overall and
the tailing behaviors can be accurately described.

Besides the global error, the errors of the measured
BTC are also calculated after the peak value using the
two models. As shown in Table 4, the tFADE is more
effective than the ADE in the rough fractures by compar-
ing the r2 and RMSE values. The tFADE is a precise
model to capture solute transport in the fracture when
non-Fickian transport happens especially in the fracture
with complex morphology. Comparing the error in the
phase of concentration decline, the precision of the tFADE
is obviously improved for the rough fracture, which indi-
cates the advantage of the tFADE in capturing the tailing
behaviors.

The errors of the tFADE and ADE in the experiments
of group 2 are presented in Figure 7. The circular and
square markers represented the errors for the rough and
smooth case, respectively. The dotted line is drawn as a
reference for the accuracy comparison between the two
models. Most of the points are distributed in the upper left
part in the dotted line, indicating that the fitting accuracy
of the tFADE is better than that of the ADE. As shown in
Figure 7, the circular markers distribute on the left of the
square markers indicating that the superiority of the
tFADE is more obvious in capturing the transport process
in the rough fracture. The subplot of Figure 7 presents
RMSE comparison between the two models, and a similar
phenomenon can be summarized as the major. The rough-
ness elements affect the BBF transport by causing recircu-
lation zones which enhance the heterogeneity of the flow
field dictating the mass transfer [12, 51, 52]. The fractional
operator has obvious advantages in capturing BBF trans-
port in heterogeneous flow fields in the single fracture.

4.4. Fitting Parameters of the tFADE. The responses of fitting
parameters of the tFADE to experimental conditions are
summarized in Table 5. V1 is the measured average flow
velocity. V2 is the best-fit flow velocity, and D is the diffusion
coefficient. In Table 5, V2 is much less than V1 in both two
groups of experiments. It should be noted that V1 there rep-
resents the average flow velocity and the transport velocity of
the BBF can be affected by the local velocity variability which

Table 3: Model errors for the BBF transport in the granite fracture
with 2.60mm aperture.

Model ADE tFADE
Velocity (mm/s) r2 RMSE r2 RMSE

1.923 0.915 0.094 0.964 0.058

3.205 0.961 0.067 0.969 0.055

4.487 0.967 0.064 0.976 0.050
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may be caused by fracture heterogeneity [53]. It may be the
reason for the deviation of V2 and V1. With the increase of
measured flow velocity, V2 also presents an increasing trend.
As the pattern two of group 2 shown in Table 6, V2
decreases with the increase of average aperture which results
in the decreasing flow velocity with the increasing mean
aperture. It indicates that V2 decreases with the increasing

aperture in the smooth single fracture. The same trend can
be found in the rough fracture. It is because the flow rate
is constant in each experiment of group 2. The increasing
aperture causes a wider flow section which leads to the
decrease of flow velocity.

Dispersion coefficient (D), as a physical parameter to
consider the heterogeneity of the fracture, is affected by the
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Figure 6: Fitting BTCs for the BBF transport using tFADE and ADE in the rough fracture (a, b) and the smooth fracture (c, d) with the
average aperture of 4mm.

Table 4: Model errors for the BBF transport in the plexiglass fracture with average aperture of 2mm.

Model ADE tFADE
Velocity (mm/s) △/e r2 RMSE r2tail RMSEtail r2 RMSE r2tail RMSEtail

1.375 1 0.855 0.137 0.866 0.142 0.967 0.051 0.972 0.054

2.5 1 0.758 0.154 0.786 0.161 0.984 0.035 0.984 0.037

2.75 0 0.949 0.768 0.952 0.077 0.956 0.066 0.993 0.026

5 0 0.925 0.080 0.934 0.080 0.917 0.078 0.995 0.019
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hydraulic aperture in the previous studies. However, the var-
iation in this study was negligible (Tables 5 and 6). This is
because D is much lower than the flow velocity, and Pe in
our experiments is over 4 × 103 in which case the transverse
dispersion is negligible [8, 23]. Thus, it can be considered as
a constant value for every single group of experiments.

The value of the fractional derivative order (α) is an
important parameter to describe the anomalous diffusion.
In Table 5, α is insensitive to the variation of the measured
flow velocity in both the granite and the plexiglass fractures
in the range of 0.898 to 0.930. The inconspicuous range of
the order indicated the unremarkable variation of the solute
retention time. This is because the increasing Re is the cause
of the growth of recirculation zones while the Re was small
in these experiments [54]. In addition, the geometry struc-
ture of the fracture also affects the streamline and leads to

the anomalous transport. As seen in pattern two of group
1, the value of α decreased with the increase of the flow
velocity which indicated the longer retention time of solute
transport with the enhancing of the heterogeneity of the flow
field.

The aperture is another factor affecting the value of α. As
seen in Table 6, the value of α increased with the average
aperture in pattern 2 of group 2, while the trend is not obvi-
ous in the pattern 1. It should be noted that the roughness of
the fracture in pattern 2 is constant with the increase of the
average aperture, while it decreases in pattern 1. When the
aperture of the fractures increased, heterogeneity of the flow
field attenuates and anomalous transport tends to approxi-
mate normal transport. The roughness of fractures contrib-
utes to secondary flows in the flow field such as eddies
which partly interferes with the solute transport process

y = x

1

0.95

0.95

0.9

0.9

0.85

0.85

0.8

0.8
0.75

0.75 1
r2 ADE

r2
 tF

A
D

E

0.2
0.18
0.16
0.14
0.12
0.1

0.08
0.06
0.04
0.02
0.00

0 0.05 0.1 0.15 0.2
RMSE ADE

RM
SE

 tF
A

D
E

Rough case
Smooth case

Figure 7: Scatter diagram of r2 and RMSE for the tFADE and ADE in the group 2.

Table 5: Fitting parameters by the tFADE in the experiments of group 1.

Pattern e (mm) △/e V1 (mm/s) V2 (mm/sα) D (10−4m2/sα) α r2 RMSE

Pattern 1

1.71 0.09 2.924 0.128 1 0.924 0.9853 0.0385

1.71 0.09 4.873 0.151 1 0.920 0.9794 0.0473

1.71 0.09 6.823 0.220 1 0.916 0.9231 0.0961

2.60 0.1 1.923 0.137 1 0.930 0.9636 0.0582

2.60 0.1 3.205 0.170 1 0.925 0.9692 0.0547

2.60 0.1 4.487 0.247 1 0.898 0.9756 0.0503

Pattern 2

2 0.34 2.308 0.092 1 0.949 0.9650 0.0600

2 0.34 3.846 0.149 1 0.947 0.9695 0.0548

2 0.34 5.385 0.274 1 0.930 0.9789 0.0480

3 0.23 1.538 0.110 1 0.968 0.9590 0.0586

3 0.23 2.564 0.167 1 0.947 0.9804 0.0416

3 0.23 3.590 0.311 1 0.889 0.9815 0.0410

11Geofluids



[13, 55]. Hence, comparing to α in the smooth case, the
value of α in the rough fracture in the same average aperture
is relatively smaller overall indicating the complex transport
process. The roughness elements were set with sharp corners
in this work which caused resistance to flow and generated
eddies to affect the transport process heavily [56].

5. Summary and Conclusions

In this work, two groups of experiments on BBF transport
with different fracture media, relative roughness, flow rates,
and fracture apertures were conducted. The potential cause
of anomalous transport case was discussed briefly. The clas-
sical ADE and the tFADE were applied to capture the mea-
sured breakthrough curves (BTCs), and both Fickian and
non-Fickian transports were conducted to evaluate the per-
formance of the tFADE. The response of the fitting parame-
ters and fitting errors of the tFADE was qualitatively
analyzed. The main findings drawn from the experimental
and fitting results are summarized as follows:

(1) The experimental results showed that the more obvi-
ous tailing behavior occurred under the relatively
short solute transport distance. Relatively larger Pe
enhanced the non-Fickian effect, and the measured
RTDs demonstrated a notable power-law drop

(2) The fitting results show that when non-Fickian
transport is inconspicuous, both the ADE and
tFADE can capture the transport process with satis-
factory precision. However, when tailing behaviors
which represent the non-Fickian transport occur,
the classical ADE fails to capture the transport pro-
cess while the tFADE can describe it well, especially
in the reduction stage after the peak

(3) An analysis of the physical meaning and response of
the parameters of the tFADE indicates that the best-
fit velocity presented a similar trend as the flow
velocity increased. The best-fit velocity is notably
smaller than the measured value. With the aperture
increasing, the value of the fractional derivative

order increased indicating the relatively low hetero-
geneity. The rough elements caused the eddy in the
flow field and enhanced the heterogeneity, which
lead to a smaller α

The tFADE conducted in this study provides a precise
approach for capturing the solute transport process in single
fractures. The contribution of this study is to provide under-
standing of the applicability and parameter responses of the
tFADE which help better understand the physical meaning
of the model. Since artificial roughness was considered in
this study, the performance of the tFADE in rougher frac-
tures and the sensibility of the fractional order to the rough-
ness should be further investigated. The limitation of this
study is that the flow velocity was considered as stable, while
in reality, it might be variable temporally.

Nomenclature

α: The order of fractional differentiation (−)
C: The concentration of the solute (NL−3)
C0: The dimensionless injected concentration (−)
Cp: The dimensionless concentration under pulse

injection condition (−)
Cs: The dimensionless concentration under step injec-

tion condition (−)
d: The apparent fracture aperture (L)
D: The dispersion coefficient (L2T−1)
Dm: The molecular diffusion coefficient (L2T−1)
μ: The dynamic fluid viscosity (ML−1T−1)
Pe: Peclet number (−)
Q: The flow rate (L3T−1)
r2: The coefficient of determination (−)
Re: Reynolds number (−)
RMSE: The root mean square error (−)
ρ: The fluid density (ML−3)
t: The time (T)
t0: The duration of solution injection (T)
t ′: The dimensionless time (−)
v: The average flow velocity (LT−1)

Table 6: Fitting parameters by the tFADE in the experiments of group 2.

Pattern e (mm) △/e V1 (mm/s) V2 (mm/sα) D (10−4m2/sα) α r2 RMSE

Pattern 1

4 1 1.375 0.3 4 0.850 0.9673 0.0511

4 1 2.5 0.7 4 0.765 0.9837 0.0348

5 0.8 1.1 0.396 4 0.840 0.9420 0.0770

5 0.8 2 0.672 4 0.845 0.9147 0.0960

6 0.67 0.917 0.275 4 0.855 0.9321 0.0552

6 0.67 1.67 0.504 4 0.842 0.9679 0.0574

Pattern 2

2 0 2.75 0.528 4 0.894 0.9564 0.0661

2 0 5 0.969 4 0.890 0.9169 0.0781

3 0 1.83 0.324 4 0.927 0.9497 0.0776

3 0 3.33 0.608 4 0.938 0.9618 0.0579

4 0 1.375 0.236 4 0.931 0.9952 0.0215

4 0 5 0.498 4 0.942 0.9487 0.0678
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V : The advective velocity (LT−1)
V f : The volume of the fracture (L3)
x: The spatial coordinate of the solute along the

direction of flow (L).
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