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Rockburst is one of the main disasters in railway tunnel construction. In order to accurately predict the rockburst intensity level of
the railway tunnel, the rock stress coefficient σθ/σc, rock brittleness coefficient σc/σt , and elastic energy index Wet are used as
evaluation indexes of rockburst intensity, and a BP neural network rockburst prediction model based on hybrid particle swarm
optimization algorithm is proposed. First, 90 groups of existing rockburst examples are selected as the basic data of the mode
based on the research results at home and abroad. Then, the BP neural network is improved by using particle swarm
optimization (PSO) combined with the simulated annealing algorithm. The results are obtained from the training data. Based
on hybrid PSO-BP neural network, the prediction model of rockburst intensity is obtained. Finally, the model is applied to the
actual railway tunnel project to verify. The results show that the model takes into account individual optimization and global
optimization and can correctly and effectively predict the rockburst grade of the railway tunnel, which provides a new method
for rockburst prediction of the railway tunnel.

1. Introduction

Rockburst refers to the phenomenon that when the elastic
strain energy of hard and brittle surrounding rock in high
stress or limit equilibrium state exceeds the energy storage
limit of rock mass, the excess energy is released quickly,
and there is a sudden failure of rock mass adjacent to the
air. Rockburst is a common geological disaster in tunnel
construction, which is characterized by rock falling or pop-
ping, accompanied by sound. In serious cases, the scale of
rockburst is large, which directly threatens the safety of con-
struction equipment and personnel.

With the rapid development of railway construction in
China, the proportion of tunnel engineering has gradually
increased [1, 2]. In order to ensure the construction quality,
construction period, investment, and personnel and equip-
ment safety of tunnel engineering and predict the occurrence
of unknown disasters such as rockburst in advance, taking
corresponding measures is of great significance for the design
and construction of high-stress railway tunnel [3–10]. By
studying the occurrence mechanism and influencing factors
of rockburst, scholars at home and abroad put forward the dis-

crimination basis of rockburst risk level from many angles,
which has laid a solid foundation for rockburst prediction
theory.

In recent years, the research on rockburst prediction has
developed rapidly, and a variety of rockburst prediction
methods based on multifactor analysis theory and practical
case analysis have been proposed one after another. Wang
and Sun [11] divided different combinations, used random
forest for supervised learning, established random forest pre-
diction model, and achieved good results in rockburst classi-
fication of underground engineering; Wang et al. [6, 12]
used particle swarm optimization algorithm to obtain the
internal parameters of BP neural network and established
PSO-BP neural network prediction model, which signifi-
cantly improved the prediction accuracy of BP neural net-
work and provided a new method for rockburst prediction;
Pu et al. [13–15] proposed a sampling probability prediction
method for rockburst of deep buried tunnel by combining
Monte Carlo method with numerical experiment, which
provides a useful reference for rockburst prediction of deep
buried tunnel; Liu and Hu [16] proposed a rockburst inten-
sity evaluation method based on the multifactor grey target
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decision theory to solve the fuzziness and uncertainty of
rockburst intensity grade evaluation in the case of small
samples, so as to give a more accurate rockburst intensity
judgment result; Liu and Zhang [17] realized the organic
combination of nonlinear theory and network analysis
method in rockburst prediction by analyzing representative
engineering examples at home and abroad and using
improved BP neural network.

However, rockburst factor analysis is a complex non-
linear problem. Most research methods are inevitably sub-
jective and arbitrary in the determination of index weight,
and some factors cannot be accurately described by
method theory. In the field of machine learning, at pres-
ent, there are too few actual cases in some rockburst pre-
diction research based on machine learning, and the
established model has the phenomenon of overfitting and
poor generalization. Moreover, although the ordinary
PSO-BP neural network is better than the traditional BP
neural network, it will fall into local optimization occa-
sionally in the training process, and the optimization pro-
cess takes too long [18–20].

Based on this, the paper selects the three most represen-
tative indexes as evaluation factors and proposes a hybrid
PSO-BP neural network rockburst prediction model.
Through training 80 groups of actual sample data, the rela-
tionship between various factors and rockburst intensity
grade is excavated, and the accuracy of the model is evalu-
ated by 20-fold cross validation. Compared with the tradi-
tional neural network, the model can significantly improve
the accuracy and convergence efficiency, and the evaluation
results are more reliable.

2. Indicators and Data

2.1. Selection of Evaluation Index. According to the research
results of [21–24] on rockburst, the rockburst intensity is
divided into no rockburst (grade I), slight rockburst (grade
II), medium rockburst (grade III), and strong rockburst
(grade IV).

The mechanism of rockburst is very complex and
affected by many factors. The selection of indicators needs
to be considered from many aspects.

(1) Most neural network models need a lot of data to
drive, so the selected rockburst index should be com-
mon, easy to measure, and recorded in the existing
literature

(2) Too many indicators will not only increase the com-
plexity of the prediction process but also increase the
training time of the model and even affect the accu-
racy of the prediction model. Too few indicators lead
to the lack of information and cannot fully reflect the
conditions of rockburst. Therefore, the selected indi-
cators should be representative and can reflect the
internal and external factors affecting rockburst
intensity with the least indicators. Internal factors
refer to the brittleness of rock mass, compressive
strength, and stored elastic energy of rock; external

factors refer to the overall geological environment
and environmental changes of rock mass
engineering

(3) According to the main factors affecting the occur-
rence and intensity of rockburst, there are three dif-
ferent criteria: the relationship between rockburst
and surrounding rock stress, the relationship
between rockburst and rock lithology, and the rela-
tionship between rockburst and energy [25]. Rock
stress coefficient σθ/σc refers to the ratio of the max-
imum tangential stress of surrounding rock to the
uniaxial compressive strength of rock, which com-
prehensively reflects the influence of surrounding
rock stress on rockburst. The greater the ratio, the
more intense the rockburst; rock brittleness coeffi-
cient σc/σt is usually expressed by the ratio of rock
uniaxial compressive strength and rock uniaxial ten-
sile strength, which reflects the close relationship
between rockburst and lithology. The smaller the
value is, the more likely rockburst is. The elastic
energy index (elastic deformation energy index)
Wet reflects the energy characteristics of rock. It is
the ratio of the elastic strain energy released by the
rock block under uniaxial compression loading and
unloading and the lost elastic strain energy. The
greater its value, the more energy released during
failure. In the actual case, the rockburst section is
mainly tensile failure accompanied by shear failure,
but in the rockburst examples in the existing litera-
ture, there are few records of shear strength, so it is
difficult to analyze the shear strength. Therefore, it
is considered that the tensile strength represents
the tensile and shear mechanical properties of
rock [26].

To sum up, this paper comprehensively considers the
relationship between rockburst and surrounding rock stress,
lithology, and rock energy and selects rock stress coefficient
σθ/σc. Rock brittleness coefficient σc/σt and elastic energy
index Wet are used as rockburst prediction indexes.

2.2. Data Sources. Rock stress coefficient σθ/σc, rock brittle-
ness coefficient σc/σt , and elastic energy index Wet are com-
mon factors in tunnels and mines. Therefore, this paper
collects the required sample data from the research results
of underground rockburst tendency of tunnels and mines
at home and abroad [27]. After screening the obtained data,
the repeated samples and some mine data are eliminated.
Finally, 90 rockburst example data are used as the research
samples for rockburst intensity level prediction (tunnel sam-
ples account for 60%, and mine data account for 40%), the
number of samples of each level in the samples is shown in
Figure 1, and some data are shown in Table 1.

3. Research Method

3.1. BP Neural Network. BP neural network belongs to mul-
tilayer feedforward neural network, which includes input
layer, hidden layer, and output layer. The neurons of each
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layer characterize their connection strength through the size
of weight and have the ability of highly nonlinear mapping.
The key to determine the structure of BP neural network is
the number of hidden layers and the number of neurons in
hidden layers. For the selection of neural network training
samples, it can be assumed that the length of the time series
is L, and the data of the first N times of the series can be used
to predict the data of the next M times. That is, divide the
whole time series into K overlapping data samples with a
length of N +M, so as to obtain K = L − ðN +MÞ + 1 train-
ing sample. The first N values of each sample are the input
layer, and the last M values are the output layer. By learning
the training samples for many times, a high-precision net-
work model is generated.

3.2. Principle of PSO Algorithm Based on Simulated
Annealing. Particle swarm optimization (PSO) is an algo-
rithm inspired by the foraging behavior of birds, which is
called particle swarm optimization for short. Particle swarm
optimization algorithm is suitable for optimization in
dynamic multiobjective environment. It can converge to
the optimal solution faster and with greater probability and
can take into account the individuality and globality. Its dis-
advantage is that in the process of function optimization, it
mainly depends on the individual information and global
information between particles to constantly update the posi-
tion and speed of particles, so that the particles gradually
approach the optimal solution. Therefore, PSO algorithm is
easy to precocious, and the convergence speed in the later
stage is slow.

Simulated annealing algorithm is an intelligent algo-
rithm to find the global optimal solution of the optimization
problem by simulating the annealing process of high-
temperature objects. The basic idea is as follows: first, an ini-
tial solution is generated as the current solution, and then, in
the field of the current solution, a nonlocal optimal solution

is selected with probability, and the solution is repeated, so
as to ensure that it will not fall into the local optimal solu-
tion. Simulated annealing is a kind of search process, which
introduces the green algorithm with random factors. It
accepts a solution worse than the current solution with a cer-
tain probability. Therefore, it may jump out of the local opti-
mal solution trap and converge to the global optimal
solution region, with high search accuracy.

In this paper, simulated annealing algorithm and particle
swarm optimization algorithm are combined to form a
hybrid particle swarm optimization (SA-PSO) algorithm
[28]. The hybrid algorithm is dominated by the operation
flow of basic particle swarm optimization algorithm. In the
process of particle update speed and position, simulated
annealing mechanism is added to learn from each other.
Compared with a single algorithm, hybrid particle swarm
optimization algorithm is not prone to premature conver-
gence, and the convergence speed has been significantly
improved, which improves the overall performance of the
algorithm. Specific steps are as follows:

(1) Randomly set the speed and position of each particle

Assuming that there are N individuals in the D-dimen-
sional space, the location and speed of the position and
velocity of the i-th individual are defined as follows:

Xi = x1i , x2i ,⋯,xki , xdi
� �

, ð1Þ

Vi = v1i , v2i ,⋯,vki , vdi
� �

, ð2Þ

where xk is the position of the i individual in the k
-dimensional space and vk is the velocity of the i individual
in the k-dimensional space.

45

40

35

30

25

20

15

10Pe
rc

en
ta

ge
 o

f r
oc

kb
ur

st 
sa

m
pl

es
 (%

)

5

0
Strong rock burst Medium rock burst Weak rock burst

Rockburst rating

No rock burst

Figure 1: Proportion distribution of different rockburst grades.
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(2) Save individual extremum and global extremum

The fitness values of each particle are evaluated, and the
location and fitness of particles are saved as the individual
extreme Bestp of particles. The best extreme values of all
extreme values of individuals are preserved as global extreme
values Bestp.

(3) Determine the initial temperature

The following algorithm is used for the initial tempera-
ture and desuperheating method.

Tt+1 = λTt 0 < λ < 1, t = 0, 1,⋯,Mð Þ, ð3Þ

T0 =
Best0g
ln 5 , ð4Þ

where Tt is the initial temperature of iteration t + 1, λ is
the inertia weight of annealing constant, and M is the total
number of iterations.

(4) Determine the fitness value of each particle at the
current temperature

TF Xt
i

� �
= e− f Xt

ið Þ−besttgð Þ/Tt

∑N
i=1e

− f Xt
ið Þ−besttgð Þ/Tt

: ð5Þ

Among them, TFðXt
iÞ is the fitness value corresponding

to the i-th particle in the t-thiteration, besttg is the global
optimal extremum in the t-th iteration, and N is the number
of initial particles.

(5) Update position and speed

Determine the globally optimal alternative value Xi′
under annealing conditions from all Xi, and update the posi-
tion and speed of the following 2 formulas.

xki t + 1ð Þ = xki tð Þ + vki t + 1ð Þ,
vki t + 1ð Þ = η∙vki tð Þ + c1r1 pki − xki tð Þ

h i
+ c2r2 pgt′ − xki tð Þ

h i
,

η = 2
2 − c1 + c2ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 + c2ð Þ2 − 4 c1 + c2ð Þ

q ,

ð6Þ

where vi
kðtÞ is the velocity of the particle in the t itera-

tion, xi
kðtÞ is the position of the particle in the t iter-

ation, pi
k is the particle corresponding to the extreme value

of a single individual, pgy′ is the globally optimal substitution
value in the t iteration under simulated annealing, c1 and c2
are the learning factor, and η represents the weight.

(6) Compare the current Bestp and Bestp, update Bestp,
and then use equation (3) to desuperheat

(7) When the stop condition is reached, the result is out-
put; otherwise, return to step (4) to continue the
search

3.3. Rockburst Prediction Model Based on Mixed PSO-BP.
The rockburst grade prediction model proposed in this
paper is established based on matlab2018b. Firstly, the cen-
ter of BP neural network is obtained by K-means clustering
method, and then, the simulated annealing algorithm is
applied to particle swarm optimization algorithm to opti-
mize the internal parameters of BP neural network. Finally,
the rockburst grade prediction model of hybrid PSO-BP
neural network is trained.

3.3.1. Sample Segmentation. According to the common par-
tition methods of machine learning, the samples are divided
into test set and training set in the proportion of 4 : 1. The

Table 1: Partial rockburst data.

Serial number σθ/σc σc/σt Wet Grade

1 0.38 27.96 6.9 III

2 0.15 29.63 7.2 I

3 0.18 30.12 7.3 I

4 0.24 26.36 7.4 II

5 0.12 22.36 6.3 I

6 0.19 28.63 7.5 I

7 0.79 20.36 4.3 III

8 0.34 25.63 6 II

9 0.28 26.21 6.2 II

10 0.38 23.1 7.8 IV

11 0.25 26.3 5.5 III

12 0.31 27.1 6.8 I

13 .0.28 23.6 7.1 III

14 0.30 24.6 6.9 III

15 0.26 23.9 6.5 III

16 0.19 25.4 6.1 IV

17 0.24 27.4 6.2 I

18 0.38 25.8 6.9 III

19 0.41 24.3 6.6 IV

20 0.52 28.4 6.4 IV

… … … … …

81 0.53 8.77 4.9 III

82 0.41 19.65 6.1 III

83 0.35 19.23 4.1 II

84 0.38 23.4 4.1 II

85 0.32 18.23 4.6 II

86 0.28 19.63 4.3 II

87 0.48 8.67 2.7 II

88 0.42 19.68 7.5 IV

89 0.47 9.05 5.2 III

90 0.24 20.38 5.6 II
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training set is used for model training and updating param-
eters; the test set is used to test the accuracy of the model,
adjust parameters (number of cluster centers, number of
iterations, learning rate, etc.), monitor whether the model
has been fitted, evaluate its generalization ability, and test
its real prediction accuracy after the final training of the
model.

3.3.2. Model Input and Output. The input sample data is
normalized with mapminmax command, and the normal-
ized sample interval is [0,1], which makes the data dimen-
sionless and speeds up the convergence speed. Model
training sample output uses “1,” “2,” “3,” and “4” to repre-
sent four levels of rockburst (no rockburst level I, slight
rockburst level II, intermediate rockburst level III, and
strong rockburst level IV). The test sample output results
are rounded with the round function.

3.3.3. Hidden Layer Node Determination. Theoretically, the
number of hidden layer nodes increases, which can make
the radial basis function neural network achieve arbitrary
accuracy. However, in practical application, too many hid-
den layer nodes will lead to the increase of algorithm train-
ing time and learning cost and reduce the generalization
ability and fault tolerance of the model, resulting in overfit-
ting. In this paper, the hidden layer of BP neural network is
one layer, and the number of neuron nodes is calculated by
BP neural network based on K-means clustering. When the
clustering center is 20, a good approximation effect can be
achieved. Therefore, the number of hidden layer nodes is
20, and the center (ci) of BP is 20 clustering center C
obtained by K-means clustering.

3.3.4. Construct Fitness Function. The performance of neural
networks is usually measured by mean square error (MSE)
[28]. In this paper, the calculation formula of neural network
mean square error MSE is selected as the fitness calculation
function of particle swarm optimization algorithm. The
mixed particle swarm optimization algorithm is used to cal-
culate the weight and basis function standard deviation
under the minimum mean square error, which is the optimal
parameter of the model.

MSE = 1
n

~yp − yp
� �2

: ð7Þ

~yp is the model output value; yp is the expected value of
the model.

3.3.5. Calculate the Optimal Weight. Set the basic parameters
of SA-PSO algorithm: the learning factors c1 and c2 are all
0.5, the initial population number N = 200, the maximum
number of iterations M = 60, and the cooling rate λ = 0:85.

X and V are one-dimensional vectors, V = ðv1, v2,⋯,v40Þ,
and X = ðw1,w2,⋯,w20, σ1, σ2,⋯,σ20Þ. Randomly take N
= 200 different X and V with randn function, and itera-
tively optimize M = 60 times according to the steps shown
in Section 2.2 to obtain the optimal weight W and stan-
dard deviation σ.

3.3.6. Model Output. The output of hybrid PSO-BP neural
network can be obtained by equations (2) and (3).

3.3.7. Cross Validation. In this paper, the cross validation
method is used for model training and accuracy evaluation.

The training set and test set are brought into the model
for 20 times of training and testing, and the training set
and test set are randomly divided according to the ratio of
4 : 1 each time; the minimum value of fitness function, global
optimal weightW, and variance were obtained after each
model trainingσ, and record the accurate classification rate
of test set samples and the mean square error of test set sam-
ples; after the training, the average of the accurate classifica-
tion rate and mean square error of 20 test sets are taken as
the actual accuracy and mean square error of the model in
this paper; finally, the model whose accuracy and mean
square error are closest to the average value is selected as
the prediction model of tunnel rockburst tendency. This
method can effectively avoid the overfitting phenomenon
and obtain the best prediction model. Through cross valida-
tion, the average mean square error (the average minimum
value of fitness function) of the sample training set is
0.048, the average mean square error of the test set is
0.124, and the accuracy is 95.98%. The W of the best model
is selected according to the average value σ[29–33].

3.3.8. Model Comparison. The expansion speed of radial
basis function and the maximum number of neurons of
ordinary BP neural network need to be set by experience.
It is greatly affected by human factors and is prone to over-
fitting, resulting in high classification error rate of test set
and unable to accurately predict the rockburst intensity
level.

The test results of ordinary PSO-BP model are unstable.
The mean square error of training set is 0.07~0.12, the mean
square error of test set is 0.24~0.45, the accuracy is

Table 2: Actual rating and indicator data of tunnel to be predicted.

Sample
number

Rock type
Buried
depth/m

σθ/σc σc/σt Wet
Actual
grade

Q-1 Limestone 498 0.325 9.23 1.968 II

Q-2 Limestone 403 0.468 9.68 3.865 III

Q-3 Basalt 695 0.523 14.36 4.325 III

Q-4 Limestone 640 0.576 11.85 2.325 II

Q-5 Limestone 640 0.765 16.85 3.236 III

Table 3: Rockburst data and prediction results of Laobishan
tunnel.

Sample number Actual grade
Model prediction level

Hybrid PSO-BP PSO-BP BP

Q-1 II II II II

Q-2 III III III II

Q-3 III III III III

Q-4 II II III III

Q-5 III III III III
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84.36%~96.35%, and the number of iterations is more than
70.

The parameters of the hybrid PSO-BP model proposed
in this paper are less. In each training process, the number
of iterations reaches 35 times and then converges to the min-
imum value. The mean square error of the training set is
between 0.06 and 0.08, and the mean square error of 16 test
set samples is less than 0.4. After 20 training, the average
minimum value of fitness function is 0.053, and the average
accuracy of test set is more than 97.26%. Through compari-
son, it can be seen that the training process of hybrid PSO-
BP model will avoid falling into local optimization to a great
extent, with faster convergence, shorter time-consuming,
and significantly improved accuracy.

4. Engineering Application

4.1. Project Overview and Application. Daliangshan tunnel is
located in the south of Sichuan Province and belongs to
the transition zone between the first and second terraces
in China. It is a double track tunnel with a total length
of 12564m. The tunnel belongs to structural denudation
landform of Dadu River Canyon, with ground elevation
of 600~1256m and maximum buried depth of about
698m. The tunnel site is a monoclinal structure, the rock
bedding is N25°E/18°NW, and steep joints are developed
mainly N40°W/65°NE and N50°E/90°. The reverse faults
are developed in the area. The reverse fault intersects with
the line at D1K245+286, the fault strike is N65~75°E, the
dip angle is 40°, and the fault offset is unknown. The
hanging wall of the fault is basalt formation, and the foot-
wall is sandstone, mudstone, and shale formation. The
construction of the tunnel mainly based on the new Aus-
trian tunneling method. There are altogether 3 transverse
holes in the tunnel. The length of No. 1 transverse hole
is 900m, the largest buried depth is 498m, the No. 2
transverse hole is 1768m, the maximum buried depth is
691m, the No. 3 transverse hole is 1768m, and the max-
imum depth is 605m.

Due to the basalt, limestone, and other hard rocks along
the Daliangshan tunnel, the rock mass integrity is good, and
the compressive strength is high. It has good elasticity and
brittleness, so the tunnel is very prone to rockburst during
construction. In this paper, the experimental data of three
rockburst sections in the construction of transverse tunnel
of Daliangshan tunnel are taken as analysis samples of which
two occur in limestone and the other in basalt. At D1K245
+645, the buried depth of the tunnel is 498m, the maximum
principal stress is 25.6MPa, the maximum tangential stress
is 33.45MPa, and the average free immersion saturated
compressive strength of limestone here is 62~73MPa. The
rock structural joints are relatively developed, and the rock
mass is fresh and hard. During tunnel construction, the plate
limestone often peels off under the control of structural
joints and the influence of in situ stress. At D1K245+286,
the buried depth of the tunnel is 403m, the maximum prin-
cipal stress is 14.98MPa, the maximum tangential stress is
23.65MPa, and the uniaxial compressive strength of the
limestone here is 69.32MPa. In the actual construction, the
rock block has small-scale peeling. Near D1K203+435, the
depth is 640~695m, the maximum principal stress is
49.2~56.2MPa, and the maximum tangential stress is
60.85~82.36MPa. The joints of basalt and limestone are rel-
atively developed, and the rock mass is dry. Rockburst
sound, stone ejection, and rock mass collapse occur in the
actual construction. Detailed data are shown in Table 2.

4.2. Results and Discussion. Five sample points of rockburst
in Daliangshan tunnel of reconstructed railway are taken
and predicted by mixed PSO-BP model, PSO-BP model,
and ordinary BP model, respectively. The prediction results
are shown in Table 3.

(1) The mixed PSO-BP neural network model correctly
predicted five samples, and the samples predicted
by PSO-BP model and ordinary BP were wrong

(2) Comparing the output results of the three models
(Figure 2), the error between the actual output result
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and the expected output result (actual level) of the
hybrid PSO-BP neural network prediction model is
the smallest

It can be seen that the RBF neural network optimized by
the hybrid algorithm of simulated annealing algorithm and
particle swarm optimization algorithm has strong antinoise
and repair ability, can largely eliminate the interference of
abnormal data and wrong data in the training set, and accu-
rately predict the rockburst intensity level.

5. Conclusion

(1) By referring to relevant literature, the rock stress
coefficient is selected σθ/σc. Rock brittleness coeffi-
cient σc/σt and the elastic index Wet are used as
the evaluation index of rockburst intensity

(2) The radial basis function neural network optimized
by hybrid particle swarm optimization is not only
faster than the ordinary PSO-BP model but also
can avoid the influence of noise data, and the accu-
racy is 95.98%

(3) The advantages of artificial intelligence in data pro-
cessing have been gradually revealed. Processing data
through machine learning method can more objec-
tively and accurately reflect the impact of various
factors on rockburst intensity
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