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This study solidifies the aeolian sand by microbial-induced carbonate precipitation (MICP) technique. The effects of cementation
solution with different concentrations, particle size, and grouting batches are examined via the bender element, unconfined
compressive test, and scanning electron microscope (SEM). The bender element results show that the wave speed of loose
aeolian sand is 200m/s; however, after solidification of the aeolian sand, the speed of P-wave is about 450-600m/s and S-wave
is about 350-500m/s. Additionally, the unconfined compressive strength (UCS) results indicate that when the concentration of
cementation solution is 0.75mol/L, the UCS of biosolidified sand sample is the highest. Then, compared with the aeolian sand
with original grade, the particles ranging from 0.1 to 0.4mm have a better cementation effect. Moreover, the UCS of
biosolidified sand samples increases along with the grouting batch. From the SEM images, it can be seen that when the
grouting batch reaches to five times, the particles are almost completely covered by CaCO3 crystals compared with the three
batches and four batches.

1. Introduction

The mechanism MICP is that the urease produced by micro-
organisms and the ammonia gas and carbon dioxide pro-
duced by the hydrolysis of urea can be converted into
ammonium ion and bicarbonate ion in the alkaline solution
environment. Then, the bicarbonate ion will attract calcium
ions in solution thus precipitating calcium carbonate. More-
over, as reported, the microorganism is generally negatively
charged thereby absorbing positively charged cations such as
calcium ions, making the microorganism become the crystal
nucleus in the crystallization process of calcium carbonate.

The researchers realized the importance of microbial
mineralization as early as 1970s [1, 2]. The researchers
studied on the urease activity of bacteria as the research
object and study the effects of nickel ions, grouting methods,
and different calcium salt concentrations on the strength of
microbial grouting solidified sands [3, 4]. Researchers found
that the concentration of nutrients is negatively correlated

with the strength of the sample. When the concentration is
low, the strength of the sample is higher and the sample
integrity is better [5]. Scholars in the United Kingdom have
discovered through research that step-by-step grouting can
improve the uniformity of calcium carbonate spatial distri-
bution. The calcium carbonate generated in the early and
midterm will help to fix the microorganisms and induce
the formation of new calcium carbonate [6]. The research
team in Saudi Arabia discussed the influence of culture
medium, bacterial concentration, and different buffers on
the compressive strength of cement mortar. The strength
can reach up to 39.6MPa [7]. Researchers found that when
the particle size distribution contains 75% coarse aggregate
and 25% fine aggregate, the maximum uniaxial compressive
strength is about 575 kPa. Adding fine aggregate to the
coarse aggregate can reduce the size of the coarse aggregate
particles. Provide more bridge contact [8, 9].

Ivanov and Chu applied MICP technology to plugging
and improving soil strength in geotechnical engineering
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[10]. Harkes et al. optimized the MICP grouting technology
by the clogging of the grouting port and the unevenness of
the sample solidification that often occurred in the experi-
ment [11]. Dejong et al. used microbial solidification to gel
the concrete and monitored the shear wave velocity during
the repair process [12]. The researchers in Canada success-
fully reduced the permeability of oilfield sandstone by
cementing sandstone particles [13]. Some of the research
teams used spraying, immersion, and infiltration methods
to conduct indoor or on-site microbial coating tests on lime-
stone, marble, and sandstone stone samples or actual cul-
tural relics [14–19].

Some scholars have also pay attention to how to
improve the economy of the MICP [20]. And other
scholars began to pay attention to adding some other addi-
tives to improve the strength of MICP. For instance, Dhami
et al. and Choi et al. added polyvinyl alcohol fiber and
found that the UCS and splitting tensile strength of the
sample were increased by 138% and 186%, respectively,
and the permeability was reduced by 126% [21, 22]. Xu
et al. found that the uniaxial compressive performance of
the MICP-treated sand column has been improved by add-

ing magnesium ions [23]. Cheng and Cord-Ruwisch tried
the surface infiltration method and compared it with the
continuous grouting method [24].

Another scholars have studied the MICP by the numerical
simulation. The research team in the Netherlands has estab-
lished a complete mathematical model of the microbial grout-
ing process [25–27]. The Swiss Federal Institute of Technology
established amodel to consider the coupling of various factors,
including biology, chemistry, fluids, and mechanics [28]. The
research team used the three-dimensional discrete element
method (DEM) to simulate the mechanical behavior of silt-
stone after MICP reinforcement [29]. Cheng et al. use CT
scanning technology to quantify the key microscopic proper-
ties of MICP, such as the size of crystals [30].

The model tests are of great help to MICP research
[31–33]. In 2010, scholars in the Netherlands applied the tech-
nology of microbial induction to generate calcium carbonate
in the on-site sandy gravel soil reinforcement project [34,
35]. Van Paassen et al. used microbiological methods to carry
out 1m3 and 100m3 sand samples for prototype sand founda-
tion reinforcement tests [36]. Kalkan analyzed the reinforce-
ment mechanism and influencing factors of MCP [37].

Table 1: Test on natural moisture content of aeolian sand.

Number Quality of wet sands (g) Quality of dry sands (g) Quality of water (g) Moisture content (%) Average of moisture content (%)

1 15.98 15.85 0.13 0.82
0.8

2 19.31 19.16 0.15 0.78
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Figure 1: Particle size distribution of aeolian sand.

Table 2: Aeolian sand particle size distribution.

Size (mm) <0.075 <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <1
Percentage (%) 0.055 2.807 64.583 87.067 98.542 99.733 99.768 100 100
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In summary, some research results have been made in the
MICP technique for solidifying various saturated sand and
unsaturated sands, including metallogenic mechanism of

sand, grouting reinforcement method, and nutrient concen-
tration for the effect of mineralization. However, the aeolian
sand is different from the solidifying various saturated sands

(a) Big probe (b) Small probe

Figure 3: Bender element.
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Figure 2: The wave speed of different nutrient concentrations.

Table 3: Experimental scheme.

Fixation
solution

Concentration of fixation
solution (mmol/L)

Cementation
solution

Concentration of cementation
solution (mol/L)

Particle size distribution
Grouting
batches

CaCl2

25

CaCl2 + CH4N2O

0.25

Particles all size/particle
size in 0.1-0.4mm

50 0.5 3 times

75 0.75 4 times

100 1.0 5 times

150 1.5

Note: the black font in Table 3 represents the basic plan.
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as well as unsaturated sand, because of the much lower mois-
ture content and the much poorer particle size distribution.
Meanwhile, there is no effect on solidifying aeolian sand by
using the traditional foundation reinforcement methods. In
addition, there are few researches on the MICP for aeolian
sand solidification. Therefore, it is very necessary to carry
out research on aeolian sand solidification via MICP.

2. Materials and Methods

2.1. Materials

2.1.1. Aeolian Sand Selection. The aeolian sand used in the
current study was sampled (0.3m below the ground surface)
from the Kubuqi Desert, China (latitude: 40.46212, longitude:
108.653344), which is the ninth largest desert in the world and

the sixth largest in China. Due to physical weathering and
chemical weathering, the aeolian sand particles are angular,
weak in strength, and uneven in size distribution and contain
a certain amount of fine soil particles.

2.1.2. Physical Properties of Aeolian Sand

(1) Natural Moisture Content Calculation. According to GB/
T50123-1999 geotechnical test standards of China, the natu-
ral moisture content test needs to be carried out twice and its
arithmetic average is taken. The formula of natural moisture
content for aeolian sand is as follows:

Wo= m0
md − 1

� �
× 100%: ð1Þ

(a) (b)

Figure 4: The process of testing the bender element.
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Figure 5: Curve fitting of P-S wave.
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Figure 6: The wave speed for 1mol/L.
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Figure 7: The wave speed for 1.5mol/L.
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Figure 8: Continued.

6 Geofluids



m0 is the quality of wet soil (g), and md is the qual-
ity of dry soil (g). The testing results of natural moisture
content of aeolian sand are shown in Table 1. The
natural moisture content of aeolian sand is about 0.80%
by calculation.

(2) Particle Size Distribution Analysis. The particle size
distribution is presented in Figure 1. As can be seen in
Table 2, the particle size distribution of the aeolian sand is
mainly between 0.1mm and 0.4mm.

According to Figure 1, the particle size distribution of
the aeolian sand is mainly between 0.1mm and 0.4mm.
Additionally, the effective particle is d10 = 0:11, the median
is d50 = 0:17, and the limit particle size is d60 = 0:19 and
d30 = 0:14. The uneven coefficient of aeolian sand is
Cu = d60/d10 = 1:73; and the curvature coefficient is CC =
d30

2/ðd60 × d10Þ = 0:74.
According to GB/T50123-1999 geotechnical test stan-

dards of China, the pH value of suspension water of aeolian
sand is 8.77.

2.1.3. Bacteria. The microbe used in the current study is
Sporosarcina pasteurii, which has a strong survivability as
well as a high urease production ability. The cell surface is
negatively charged, the spores are oval or spherical, and
the cell rod is 2-3μm long and 1-2μm in diameter. The pro-
cess of bacterial culture is presented in Figure 2 [23]. The
average urease activity is about 15.01mmol/min, and the
average OD600 = 2:62.

2.1.4. Fixation and Cementation Solution. The cementation
solution herein is composed of CaCl2 and urea, which is ana-
lytically pure and was provided by Shanghai Titan Reagent
Co., Ltd. In this study, the detailed experimental scheme is
shown in Table 3.

2.2. Methods

2.2.1. Sample Preparation. For each sample, 115 g dry sand
particles were packed into a column. The grouting and solid-
ification process of aeolian sand is carried out in a medical
syringe. Other instruments mainly include balance, geo-
nonwoven fabric, labeled sand, funnel, beaker, purified
water, tray, retainer, and peristaltic pump. The geo-
nonwoven fabric can make the CaCO3 not block the grout-
ing path and flow easily. The peristaltic pump can send the
CaCl2 to the sand, and the rotation speed is about 5 r/min.

The effects of different concentrations of CaCl2, particle
size distribution, and different grouting batches, respectively,
are being studied.

2.2.2. Particle Size Distribution. The particle all-size distribu-
tion and particle size from 0.1mm to 0.4mm are selected
under the premise of the basic scheme. As can be seen from
Figure 3, the range from 0.1mm to 0.4mm of particle size is
more particles in test. The particle size range that is too large
(>0.4mm) and too small (<0.1mm) is removed.

2.2.3. Grouting Batches. Different grouting batches are
selected including three times, four times, and five times to
research. After the grouting and solidification are completed,
the size of column is about 150mm height and 50mm
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Figure 8: Comparison chart of wave speed for different grouting batches.
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diameter. The syringe is divided into two parts with a tool,
from which the aeolian sand column is taken out and
labeled.

3. Results

3.1. Bender Element Test. The test uses the bender element
BES in conjunction with the data acquisition system. Two
size of probes are selected to measure the wave speeds for
loose aeolian sand and solidified aeolian sand column,
respectively, and the loose aeolian sand is to be the contrast
one. The bender element shown in Figure 3.

The electromagnetic wave propagates through the piezo-
electric ceramic plates at the ends of two probes of the
bender element, one is the transmitting wave device, and
the other one is the receiving wave device, completing a test
cycle. The degree of different solidification aeolian sand
is evaluated through measuring the speed of P-wave
and S-wave. The process of measuring is shown in Figure 4.

As can be seen from Figure 2, neither P-wave nor S-wave
continuously increases with the increase of nutrient concen-
tration, but there is a peak value. When the concentration is
0.75mol/L, the solidification of aeolian sand is better than
other concentrations by using the MICP. The value for speed
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of P-wave is bigger than that of the S-wave from the figure.
As can be seen in Figure 5, the speed of P-wave is 1.3 times
more than the speed of S-wave.

As can be seen in Figures 6 and 7, the wave speed of the
particle all-size distribution is smaller than that of the parti-
cle size from 0.1mm to 0.4mm. The comparative test shows
that the particle size is controlled in a relatively uniform
range, which can make the pores between particles larger.
CaCO3 is much easier to cement, and the degree of cemen-
tation is much better.

There are three different kinds of nutrient concentra-
tions to research, including 0.5mol/L, 0.75mol/L, and
1mol/L. It can be seen from Figure 8 that under the same
nutrient concentration, the largest wave speed of the grout-
ing batches is the five batches, and the maximum is the
470m/s, 550m/s, and 500m/s, respectively. It shows that
grouting batches are beneficial to improve the solidification
aeolian sand. Among the three different nutrient concentra-
tions, the 0.75mol/L has a relatively large S-wave speed,
which is roughly distributed in the range of 450-550m/s
and the average value is higher than the other two concen-
trations. It also shows that when nutrient concentration is
0.75mol/L, the aeolian sand solidification is much better.

The values of the P-wave and the S-wave which are tested
in the bender element are all reasonable according to the stan-
dard for code for seismic design of buildings [38]. And the
value of P-wave is one and a half times as large as S-wave.

3.2. UCS. The dried biocemented aeolian sand samples are
cut into two parts (A and B); then, their surfaces are ground
flat with a grinding machine to eliminate the influence of

deviant stress in the compression process. The testing
machine is MTS810, and the loading rate is 1mm/min, con-
trolled by the displacement. It records the process from
loading to specimen failure, and the peak stress is the uncon-
fined compressive strength of the specimen. Representative
stress-strain curves are presented in Figure 9.

The UCS results are drawn in Figure 10. It can be seen
that the UCS of biocemented aeolian sand samples increases
when the concentration of cementation solution increases
from 0.5mol/L to 0.75mol/L. However, when the concentra-
tion becomes larger than 0.75mol/L, then UCS decreases.
Additionally, the average value of UCS for the aeolian sand
column increases along with the number of injections.

The trend of the UCS are reasonable compared with ref-
erence [31], moreover the figure is much more accurate.

3.3. SEM. The SEM images concerning crystal polymorph
and microstructures of biocemented sand are presented.
Compared with the loose sand particles presented, the aeo-
lian sand particles after MICP treatment are covered by
CaCO3 crystals. It is found that the morphology of precipi-
tated CaCO3 crystals is mostly cubic. There are some round
or slender rod-shaped holes showing on the CaCO3 surfaces
which are identified as the bacterial traces. The diameter of
round holes is about 1micron, while the rod-shaped holes
are 3-4 microns in length.

It is the precipitated CaCO3 crystals acting as the cemen-
titious materials which bond the loose sand particles
together thus improving the mechanical properties of sand.
With the increase of the grouting times, the living environment
of microorganisms in the reaction system will be changed,
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which is conducive to the attachment of microorganisms on
the surface and joints of sand particles to form crystalline
nuclei. It is also conducive to produce the CaCO3 for increasing
the sand strength.

Compared with four batches grouting, the amount of
CaCO3 crystals precipitated by five-batch injection with the
same cementation solution concentration is much higher.
As for the different concentrations, 0.75mol/L can induce
more CaCO3 crystals than other concentrations, which cor-
responds to the figure where 0.75mol/L can induce the high-
est UCS (26.09MPa).

Compared with reference [23], the result of the SEM is
similar to it. It is also confirmed that the result of the SEM
is reasonable.

4. Conclusions

Based on the experimental results, the following conclusions
can be drawn:

(1) Compared with the loose aeolian sand where the
wave speed is only 200m/s, the P-wave speed of bio-
cemented aeolian sand column is about 450-600m/s
and the S-wave speed of it is about 350-500m/s by
the bender element test. It has been improved obvi-
ously, compared with loose aeolian sand with a wave
speed of 200m/s. All the values are reasonable
according to the related standards

(2) This study investigated the effects of different
concentrations of cementation solution. When the
concentration of cementation solution is 0.75mol/
L, the speeds of P-wave and S-wave and the uncon-
fined compression strength of biocemented aeolian
sand are highest

(3) The best times of batches is five times, and the best
nutrient concentration is 0.75mol/L. The average of
uniaxial compressive strength is 26.4MPa under this
condition. It is higher than that of four batches
(16.51MPa) and three batches (13.77MPa). The
results show that the solidification effect of aeolian
sand is more much better based on MICP

(4) The reinforced aeolian sand has a dense microstruc-
ture and good compressive strength through SEM
and UCS tests, which further indicates that the rein-
forced aeolian sand has high compressive strength
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