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Due to poor physical properties and strong heterogeneity of Daniudi tight gasfield (China), traditional methods are not ideal for
predicting reservoir permeability. Based on geoscience data mining algorithms and modeling techniques, this parameter is
predicted and characterized from a new perspective. (e high precision hydraulic unit information was outputted by the BP
neural network and the interwell database was predicted by sequential indicator simulation based on the logging and core data, the
exponential and power law relationship functions were selected to participate in the construction of the permeability model. (e
results showed that the facies-controlled modeling system for permeability based on the hydrodynamic characteristics of tight gas
reservoirs could effectively improve the accuracy of reservoir prediction, and the logging information in the longitudinal direction
and the facies information in the plane were combined by the hydraulic unit.

1. Introduction

In recent years, in case of the gradual increase in the scale of
exploration and development of tight oil and gas reserves,
the reservoir characterization methods have become more
abundant [1–3]. Permeability is an important parameter for
the evaluation of this type of reservoir, and the acquisition of
its accurate value directly affects the results of the evaluation
of heterogeneity and the design of scheme [4–6]. If the data
points are unified for regression calculation of the perme-
ability-porosity model, the weakly producing pores and
invalid reservoirs could easily be classified into the same
category [7, 8]. (e disadvantages of this method are par-
ticularly obvious in the evaluation process of strongly het-
erogeneous reservoirs [9–11]. In recent years, various data
mining and deep learning algorithms have attracted atten-
tion from reservoir engineers due to their excellent calcu-
lation ability [12, 13], and this type of algorithms have great
potential for improving accuracy [14]. (e neural network
technology is widely used in the data mining field for the
prediction of hydraulic unit (HU)/permeability on the
single-well scale, especially BP network. BP network has

strong nonlinear mapping capabilities and good effect in
solving problems of complex reservoir classification.

Tight gas reservoir has the strong heterogeneity in the
distribution of throats-pores environment, and the pores’
geometrical characteristic could not only constraint physical
properties of reservoir geological body but also directly affect
the recovery of tight gasfield [15, 16]. (e target area has
poor microstructure, complex logging response, and poor
correlation between overall porosity and permeability.
(erefore, the traditional methods were abandoned, and the
geoscience data mining algorithms were applied to solve the
prediction problem of permeability, and the permeability
distribution was characterized through the optimized pore-
permeability function based on the platform of modeling
software [17–23]. (e result could effectively eliminate the
interference of weak signal-to-noise ratio and improve the
prediction accuracy of the model. Generally, the HU/per-
meability prediction of well trajectory and interwell space
were usually two independent tasks; in this study, the
prediction work on the vertical and plane scale was inno-
vatively combined; the BP neural network and facies-
controlled simulation system could directly provide an
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important reference for the prediction and evaluation of
related parameters of the same type of reservoirs.

2. Research Background

2.1. Geological Setting. (e target area is located in the
northeast of the Ordos Basin, China, and its construction
location is in the northern section of the Yishan Slope
(Figure 1). (e slope range is about 6–9m/km, and the dip
angle ranges from 0.3° to 0.6°. (is is a monoclinic structure
high in the northeast and low in the southwest with sporadic
development of nose-like uplifts. (e geological character-
istics of the H3 gas-bearing reservoir were studied based on
the sedimentary and stratigraphic data of the Xiaohaotu-
Da16 well group, Daniudi gasfield. (e H3 reservoir was
divided into two layers (H1

3 and H2
3) according to the rock

electricity and cycle differences. (e sedimentary environ-
ment belongs to river sedimentation, and the lithology of the
reservoir was composed of gravel sandstone, medium-fine
sandstone intercalated with siltstone. (e degree of particle
sorting was medium-poor.

2.2. Mathematical Background

2.2.1. Hydrodynamic Parameters and Permeability
Characterization. According to the geological settings,
various reservoir characterization parameters have different
adaptability. (e target area has the characteristics of low
permeability, compactness, large seepage changes, and
complex pore structure. In the process of constructing the
traditional porosity-permeability logarithm linear model,
the trend line has segmented characteristics, which will affect
the accuracy of the overall permeability prediction model
inevitably (Figure 2). And then, the flow zone indicator (IFZ)
and reservoir quality index (IRQ) were selected to participate
in the prediction and characterization research [24].
Amafule et al. [25] conceptualize the pore throat into a series
of capillaries and applied the hydrodynamic method to
divide the geometric pore units on the basis of permeability
changes:

log IRQ � log ∅z + log IFZ,

k � 1014 IFZ( 
2 ∅3e

1 − ∅e( 
2

⎡⎣ ⎤⎦,

(1)

where IFZ reflects the characteristics of rock pores and pore
throat and mineral structure, μm and IRQ characterizes the
seepage capacity of the reservoir, μm [26].

2.2.2. BP Neural Network. (e BP neural network is com-
posed of an input layer, a hidden layer, and an output layer.
(e layers are connected by weights. (e network training
and learning process includes error back propagation and
forward propagation of information. (e external infor-
mation is collected and passed to the hidden layer (each
neuron node) through the input layer and further passed to
the output layer under the action of the excitation function

to complete a forward propagation.(e system will enter the
back propagation process if the output is inconsistent with
expectations. (e general principle is to reduce the error
between the output and the expectation, the hidden layer
and the input layer are conveyed error information through
a mode in which the error gradient is gradually reduced, and
the weights are also adjusted at the same time. (e following
formula is the error function expression:

E �
1
2
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where (dk − Ok) corresponds to the difference between the
expected and output results. In the back propagation pro-
cess, the adjustment calculation expression of the weight w is
as follows:

Δw � −η
zE

zw
 , (3)

where the proportional coefficient is represented by a
constant, which is the learning rate of the network, and the
negative sign represents the gradual decrease of the gradient.

3. Hydraulic Unit Modeling

3.1. 5e Hydraulic Unit Identification of the Core Samples.
IFZ of core samples was calculated based on the parameters
of porosity and permeability, and then the cluster analysis of
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Figure 1: Location of the study area and structure distribution.
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the sum of squared deviations method was applied to
perform calculations since the sum of squares of deviations
of the same class is small and the sum of squares of devi-
ations between classes is large, and this method could show a
good effect on the classification of hydraulic units [27–30].
Finally, the hydraulic units in the target area were divided
into 4 types. From Figure 3, each type of hydraulic unit
corresponds to a fitted trend line with a slope of 1, and the
intercept of the trend line is the average IFZ value of this type
of hydraulic unit. (e average IFZ of HU#1∼HU#4 were
1.3497, 1.1889, 0.9967, and 0.8367, respectively. Because the
reservoir is tight and the range of porosity-permeability
parameters is small, the difference between the average
values of IFZ is also relatively small, but it does not affect the
area division of different hydraulic units on the chart of
standard porosity-reservoir quality index.

3.2. Neural Network Pattern Recognition Technology for
Single-Well. Loggings are the comprehensive parameters
that can reflect the geophysical characteristics of the res-
ervoir, and the parameters were introduced into the training
process of the artificial neural network. (e entire recog-
nition network was composed of input, output, and hidden
layer neuron systems under the artificial neural network
technology. Logging parameters (RT, AC, SP, GR, and DEN)
of the target area were used as input elements, and four types
of hydraulic unit types were used as output elements to
perform BP network pattern recognition and prediction.(e
schematic diagram is shown in Figure 4.

According to the empirical formula and the test de-
duction results, the number of hidden layer neurons was
finally determined to be 15, and the sum of the test and
validation data weights was set to be 30%. Among them,
several key parameters were set as follows: the network
learning rate is 0.1; the allowable error is 0.001, and the

maximum number of training is 1000 (see Table 1). (e
network training was stopped execution when the training
effect reaches the set requirements.

From the results, the positive judgment rate of test set on
the confusion matrix was as high as 95.50%, and the positive
judgment rate of the overall set was 98.20% (Figure 5).

(e training network was saved, and the sample points
were randomly selected for the test on the effect of network
prediction. Test results are shown in Figure 6. It can be seen
that the statistical frequency of HU prediction on the main
diagonal occupies a large proportion, and the overall pre-
diction effect was close to 85% with the environment of
insufficient data points. Among them, the prediction ac-
curacy of HU#1, HU#2, HU#3, and HU#4 were 50%, 75%,
81.82%, and 90.48%, respectively. And then, the uncored
section of the single well and the uncored well were pre-
dicted by the network which provides sufficient hydraulic
unit information of single well for the next spatial modeling
of the hydraulic unit.

(en, the spatial model was further constructed by the
sequential indicator simulation method based on the pre-
dicted results which were treated as 4 types of discrete
variables [31]. (e search path values were estimated in each
layer and unit, and the layers were simulated under the
fitting environment of the variogram. (e spatial geological
body of H3 was established finally.

4. Permeability Model

After determining the spatial distribution model of hy-
draulic units in the target area, the regression calculation of
porosity-permeability parameters was performed according
to each type of hydraulic unit. (us, each regression model
represents the permeability prediction model of each type of
hydraulic unit, and then the permeability of each model grid
is calculated by the prediction model through the software
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Figure 2: Porosity and permeability relationship and corresponding trend lines.
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platform of Petrel. Because the porosity model was predicted
under facies-controlled modeling conditions, the perme-
ability prediction model calculated based on the porosity
model was also constrained by the facies-controlled envi-
ronment on the plane.

4.1. Establishment of the Permeability Prediction Model.
Analyzing the past prediction results of physical property
parameters, it can be found that it is easy to produce pes-
simistic results by processing the data to predict the per-
meability according to the traditional linear method. (e
main reason is that the part of high-permeability and low-

permeability showed obvious heterogeneity changes, which
ultimately affects the regression model [32, 33]. (erefore,
this study abandoned the traditional data processing
methods and matched the classification results of the hy-
draulic unit to the permeability model; the porosity-per-
meability regression model based on each type of unit is as
follows:

HU#1: k � 0.3536e
20.7420∅

R
2

� 0.7519 ,

HU#2: ln k � 7.9770 + 3.2161 ln ∅ R
2

� 0.9362 ,

HU#3: ln k � 7.2743 + 3.0815 ln ∅ R
2

� 0.9657 ,

HU#4: ln k � 7.2989 + 3.2109 ln ∅ R
2

� 0.9715 ,

(4)

where k is permeability (10−3 μm2) and ∅ is porosity.
(e optimal exponential and power law relationship

functions were used in each type of hydraulic unit system to
predict the permeability based on the modeling software
platform. And then, the 3D-geological body of predicted
permeability was constructed.

4.2. Validation of the Permeability Model

4.2.1. Model Verification on the Plane. From the perspective
of the plane characteristics of the model, the distribution of
the permeability of the small layer corresponds well to the
distribution trend of the sand body in the target area.
Variogram information was output based on the difference
between high-energy and low-energy zones of permeability
(Figure 7) (range of 20 deg: 2886.8677m, sill: 0.8732, nugget:
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Figure 3: (e clustering results of hydraulic units and the fitting trend lines of each unit.
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0.1124; range of 70 deg: 1000.2383m, sill: 0.8710, nugget:
0.0615), the variogram characteristics were consistent with
the sedimentary characteristics, and the direction of maxi-
mum range (arrow direction in Figure 7(a)) was consistent
with the provenance direction.

(e 1st layer of the geological body was randomly se-
lected to draw the relationship chart of the porosity-per-
meability-facies, from Figure 8, and the porosity and
permeability were interrelated in three dimensions. Random
point selection was performed in the interpolation area
between the model wells, and the distribution law of the
permeability value was consistent with the geological setting.
According to the plane distribution of the facies, it can be
seen that the high permeability area matched the types of

microfacies with good physical properties such as channel
bar and point bar. (e distribution characteristics of the
prediction model on the plane were reasonable except for a
few extreme values that were not controlled by the well
points.

4.2.2. Model Verification on the Vertical. From the calcu-
lation results of the model’s vertical variogram (range on the
vertical: 4.0198m, sill: 0.9385, nugget: 0.1639), the range was
consistent with the scale of sand body development. (e
overall fluctuation characteristics of the semivariance values
were stable (Figure 9). However, it is worth noting that when
the curve passes through the origin, it jumps directly to a

Table 1: Important parameters of the BP network learning process.
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Figure 5: Confusion matrix analysis diagram of classification model prediction results. (a) Test set. (b) Overall set.
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high value interval above 0.8000. (e jump-like fluctuation
of the semivariance value at the origin reflects the
heterogeneity which was also consistent with the actual
strong heterogeneity of the target reservoir on the vertical
direction.

At the same time, the wells D52 and D30 were selected to
randomly eliminate, and the previous modeling ideas were
repeated to reconstruct the model and output the predicted

permeability profiles on the trajectories of these two wells
(Figure 10). Comparing the predicted permeability data with
the core test data of the two wells, it can be seen that the
repeated action did not interfere with the accuracy of the
model, and the predicted permeability information of the
two wells were basically consistent with the core data. (is
comparison also verified the reliability of the model infor-
mation database.
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5. Results and Discussion

(e heterogeneity of tight gas reservoirs is usually serious,
and conventional prediction methods often cannot accu-
rately reflect the permeability characteristics of the reservoir.
In the study of Izadi et al., HFU model was applied to a low-
permeability reservoir based on a series core data, and the
model identified more flow units and also predicted more-
accurate permeability/porosity relationships [34]. Lin et al.
conducted a tight reservoir permeability prediction based on
an artificial neural network for a small sample environment,
and the prediction results were good [35]. Unlike the above
neural network model, the permeability was used as an
indirect output parameter in this study, and the BP network
with higher accuracy was trained to predict the types of
hydraulic units. (e three-dimension of the hydraulic unit
was established by the sequential indicator simulation
technology, and on the basis of the geological body, the
permeability mode grids were fully calculated based on the
porosity-permeability relationship of each unit. (e model
was controlled by high precision hydraulic unit on the
vertical and sedimentary facies on the plane. (e final
permeability prediction system was more reliable, which
could provide a powerful force for next numerical simula-
tion work and related evaluation work.

6. Conclusions

(e hydrodynamic and geophysical characteristics of tight
gas reservoirs were fully considered by this study, and its
application effect was better. (e conclusion is as follows:

(1) (e flow zone indicator and the cluster method of
the sum of square deviations were selected to classify
the reservoir hydraulic units into 4 types.

(2) (e best network was trained; in the results of sta-
tistical frequency of HU prediction, the overall
prediction effect was close to 85%, and the prediction
accuracy of HU#4 reached 90.48%.

(3) By calculating the variogram of the permeability on
the plane and vertical, the reliability of the predicted
geological body was verified; the rationality of the
model space was also reflected by the analysis results
of the porosity-permeability-facies and the repeated
action.

(4) (e facies-controlled modeling method for perme-
ability based on hydrodynamic and geophysics
characteristics can improve prediction accuracy. It
provides an effective method for spatial permeability
prediction using sedimentary facies and logging data.
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