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Water inrush seriously restricts the safe construction of a karst tunnel. Once it occurs, it will cause serious consequences such as
economic loss and casualties. Due to the complexity of an underground environment, it is difficult to calculate the probability of
karst tunnel water inrush. Therefore, it is of great engineering significance to establish an effective risk assessment model. Based on
the Bayesian theory, interpretation structure model, and generative adversarial network, a Bayesian network risk assessment
model is established. The results show that firstly, twelve indexes selected can not only characterize the karst tunnel water
inrush but also are easy to be counted, which effectively improves the accuracy of the Bayesian risk assessment model.
Secondly, the Bayesian network risk assessment model overcomes the shortcomings of other risk assessment models that rely
too much on geological data and improves the accuracy through massive data training. Thirdly, the corresponding noninrush
samples are generated by the generative adversarial network and analytic hierarchy process, which effectively solve the problem
of an unbalanced database. Finally, the Bayesian network risk assessment model is applied to the DK490+373 section of the
Shangshan Tunnel. The assessment model is operable, effective, and practical, and it is also suitable for the situation of
incomplete index statistics.

1. Introduction

In recent years, with the development of underground
engineering, the scale and difficulty of tunnel construction
in China have leapt to the number one in the world. China,
with an expanse territory, complex topography, climatic
condition, and abundant karst landform, complex environ-
ment leads to water inrush disasters that frequently occur
during the construction of underground engineering.
According to statistics, water inrush accounts for about
40% of all kinds of disasters and nearly 50% of tunnel
water inrush disasters are directly or indirectly caused by
the karst landform, which seriously affects the safety of
underground engineering construction, causing massive

casualties and economic losses. Water inrush also leads to
collapse, surface subsidence, water resources depletion,
and other secondary disasters. Figure 1 shows the situation
of water inrush in the Yesangaun Tunnel. On the 5th of
August, 2007, water inrush occurred during the excavation
and the quantity reached 15:1 × 104 m3/d, resulting in 10
deaths and half a year’s delay of construction [1]. There-
fore, it is of great engineering significance to establish an
effective risk assessment model for water inrush probability
and disaster consequences.

A long time ago, many experts and scholars have real-
ized the danger of water inrush and which is easy to occur
during the excavation in a karst stratum. In 1970s, for the
first time, the British scholar Wilson J.L. [2] summarized
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the water inrush law of karst landform. Subsequently, in
terms of theoretical research, scholars have carried out
research on the disaster-causing mode and mechanism of
water inrush in the karst tunnel through fluid mechanics,
groundwater dynamics, rock mechanics, and fracture
mechanics [3–6]. In addition, numerical simulation, exper-
iment, and other methods are also introduced into the
study about water inrush of the karst tunnel [7–13] carried
out research on the occurrence mechanism, failure modes,
and main influencing factors of water inrush in karst tun-
nels. Li et al. [14] divided the source of water inrush into
three categories, cavity, fissure, and pipeline according to
the type of karst structure, and pointed out that the develop-
ment of disaster source was controlled by various factors
such as geographic and geomorphic conditions and rock
strata dip angle.

Based on the research about water inrush in a karst tun-
nel, the water inrush mechanism of the karst tunnel is com-
plex and there are many influencing factors, which
seriously affect the safety of underground engineering con-
struction. Therefore, it is of great engineering significance
to establish an effective risk assessment model for water
inrush. The research about water inrush in the karst area lays
a good foundation for the development of the water inrush
risk assessment model of the karst tunnel. Based on the
research about water inrush in a karst tunnel, the idea of risk
assessment was firstly introduced into engineering in 1983
[15] and the first risk assessment model was established. Sub-
sequently, three-dimensional reticulated exploration, GIS,
case analysis, advanced geological prediction, Dempster-
Shafer (D-S) evidence theory, microseismic monitoring tech-
nology, MFIM, TOPSIS, and other theories have been intro-
duced into the risk assessment model [16–23].

In 1992, for the first time, Nilsen [24] implemented the
risk assessment in the construction of a subsea tunnel and
established the corresponding risk assessment model. Subse-
quently, Kampmann et al. [25] further extended the risk
assessment method to the construction of subway engineer-
ing and formulated corresponding risk control measures.
Weiss and Vig [26] extended the idea of risk assessment to
the preliminary engineering design. Wang et al. [27, 28]
introduced the efficiency coefficient method and analytical

comparison method into the risk assessment model, which
improved the calculation efficiency. Hou et al. [29] com-
bined the AHP method and coefficient of variation method
to the comprehensive weight and introduced the ideal point
method.

At present, the risk assessment model has proved its
effectiveness in underground engineering construction.
However, most of the risk assessment models used for water
inrush are based on detailed geological data and clear disas-
ter causes. The complexity of the tunnel geological environ-
ment and the uncertainty of each index are ignored. Without
detailed geological data as support, the accuracy of assess-
ment model will be greatly reduced. And underground engi-
neering itself has great fuzziness, and geological data
collection is very difficult. Therefore, a new risk assessment
model based on the Bayesian network theory is established,
which effectively overcomes these problems. Bayes’ theory
has its origins in Bayes’ 1763 work. The essence of Bayesian
theory is to determine the mutual influence among various
factors through data training and measured by probability,
which can dynamically control the probability from the
“macrolevel [30]”. Therefore, the Bayesian theory is often
used in engineering risk assessment models. Kool et al.
[31] used the Bayesian theory to advance the procedure of
hindcasting of levee failures and verified the dam failure near
Breitenhagen in Germany. Zhao et al. [32] proposed a
Bayesian method to effectively develop regional correlation
models to estimate the runoff distance. This method syste-
matically integrates the sparse data collected in a specific
region and the prior knowledge embedded in the existing
relevant models in other regions. The method is illustrated
by examples and numerical examples. In order to better
understand groundwater dynamics and improve the reliabil-
ity of model prediction, Yin et al. proposed a Bayesian multi-
model uncertainty quantification framework to explain the
model parameter uncertainty in complex alluvial groundwa-
ter modeling. The method is applicable to the agricultural
intensive Mississippi River alluvial aquifer (mraa) in North-
east Louisiana. Wu et al. proposed an integrated model
based on dynamic hazard scenario identification (DHSI),
Bayesian network (BN) modeling, and risk analysis for risk
assessment of urban public utility tunnels. The worst-case
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Figure 1: Situation of water and mud inrush in the Yesangaun Tunnel [1].
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scenario of urban utility tunnel accidents is identified by
DHSI and modelled by BN. In 2014, for the first time, the
Bayesian network was applied to the risk assessment model
of tunnel construction. Hu [33] applied the Bayesian net-
work to the stability assessment of the tunnel and proved
the validity of his risk assessment model by monitoring dis-
placement and stress.

Compared with other assessment models, the Bayesian
risk assessment model established in this paper can accu-
rately predict the water inrush of a karst tunnel through
massive data training under the condition of incomplete
geological data and unknown disaster cause. The selected
evaluation indexes are more in line with the characteristics
of the karst tunnel. In order to solve the problem that the
Bayesian risk assessment model needs massive data training,
for the first time, the idea of the generative adversarial net-
work and the principle of the analytic hierarchy process
are used to solve the problem of unbalanced database. The
Bayesian network theory is of great theoretical significance
to the risk assessment and disaster prevention of tunnel
water inrush and to guide the safe and economic construc-
tion of a karst tunnel.

2. The Construction of the Bayesian
Network Model

2.1. The Basic Principle of the Bayesian Network. Bayesian
network is a probabilistic graph model that consists of
nodes, directed arrows, and conditional probability table.
Nodes represent random variables in the network, direc-
tional arrows represent the relationship between nodes,
and conditional probability tables represent the degree of
mutual influence between nodes. The Bayesian network
has the following advantages: the statistical data are quanti-
tatively evaluated, and the final results are determined
according to the interval membership degree of each node.
As the accumulation of statistical data, model evaluation
can become more and more accurate without changing the
original topology diagram. Be able to combine expert experi-
ence with training data.

The mathematical formula and the expression of condi-
tional independence criterion of the Bayesian network are
shown in formula (1) [34]:

P MjN = að Þ = P Mð ÞP N = ajMð Þ
P N = að Þ : ð1Þ

In the formula, PðMjN = aÞ is the posterior probability,
which is the probability of M occurring when a new value
of N is known as a; PðMÞ is the prior probability, the prob-
ability of M before considering the new value of N , which is
obtained by historical data; PðN = ajMÞ is the likelihood of
M, calculated from historical data; PðN = aÞ is the probabil-
ity that N is a.

2.2. Model Building Method. The widely used hybrid model-
ing method is adopted to build the model. The hybrid

modeling method can integrate the influence relationship
between the variables from experience into the data training
without unnecessary causality, which can greatly improve
the learning efficiency. The main steps of the hybrid model-
ing method are as follows. Firstly, representative evaluation
factors of karst tunnel water inrush are selected and classi-
fied according to the risk classification. Secondly, the corre-
sponding interpretation structure model is constructed and
the evaluation index is processed hierarchically according
to the influence relationship. Thirdly, according to the cau-
sality diagram method, the causal relationship of each node
is modified.

2.3. Selection of Evaluation Indexes. The influencing factors
of water inrush in a karst tunnel can be summarized into
geological factors, hydrological factors, and anthropogenic
factors, through reviewing the relevant literature on the
risk assessment of water inrush in a karst tunnel [5, 27,
28]. Six evaluation indexes are selected from geological fac-
tors, including topography and geomorphology, attitude of
rocks, formation lithology, unfavorable geology, interlayer
fissures, and contact zones of dissolvable and insoluble
rock. Two evaluation indexes are selected from hydrologi-
cal factors, including the groundwater level and rainfall.
Two evaluation indexes are selected from anthropogenic
factors, including construction disturbance and support
measures. Water inrush probability and water inrush
quantity are selected as the output of the model. Detailed
introduction and risk classification of each evaluation
index are shown as follows.

2.3.1. Formation Lithology S1. The formation lithology
mainly refers to the solubility of rock. In references [27,
28], t =∑AiBj is defined for risk classification. Among them,
Ai represents solubility (weak solubility, moderate solubility,
and strong solubility) and Bj represents the proportions of
solute rock in total rock (0–20%, 20%–40%, 40%–60%, and
60%–100%); see Table 1.

2.3.2. Unfavorable Geology S2. Unfavorable geology usually
refers to the water-storing structure in a karst landform,
such as cavity, underground river, and karst pipeline. In this
paper, risk classification of unfavorable geology is carried
out according to the on-site expert assessment, as shown in
Table 2 [28].

2.3.3. Topography and Geomorphology S3. Karst landform is
formed by the erosion and deposition of soluble rock by
groundwater. Due to the special geological condition of karst

Table 1: Risk classification of formation lithology.

Risk classification t =∑AiBj Definition

I >0.254 Strong karst stratum

II 0.104~0.254 Moderate karst stratum

III 0.042~0.104 Weak karst stratum

IV <0.042 Nonsolute stratum
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landform, plenty of groundwater is accumulated in negative
landform, which provides water for water inrush. In refer-
ence [35], the proportion of negative landform in the area
is used to classify the risk, as shown in Table 3.

2.3.4. Groundwater Table S4. The quantitative analysis of
groundwater table risk classification is the premise of accu-
rate risk assessment [36]. Distance h between the groundwa-
ter table and the tunnel floor is used to classify the risk, as
shown in Table 4.

2.3.5. Rainfall S5. According to the rainfall division of mete-
orology, rainfall in 24 hours l (mm) is used to classify the
risk. Because different types of karst tunnels have different
response times to rainfall, the time range is set as one week,
that is, as long as the rainfall reaches light rain once within a
week, the rainfall of this week can be identified as light rain,
as shown in Table 5 [29].

2.3.6. Attitude of Rock S6 . The attitude of rocks can indirectly
affect the recharge, runoff, and discharge capacity of ground-
water. In this paper, the dip angle is used to classify the risk,
as shown in Table 6 [36].

2.3.7. Inter-Layer Fissure S7 . The development degree of
interlayer fissure represents the activity of groundwater. In
reference [29], the development degree of interlayer fissure
is used to classify the risk, as shown in Table 7.

2.3.8. Contact Zone of Dissolvable and Insoluble Rock S8. The
contact zone of dissolvable and insoluble rock [5] is a neces-
sary condition for the formation of the underground water-
storing structure. The degree of contact zone development is
used to classify the risk, as shown in Table 8.

2.3.9. Excavation Disturbance S9. Different excavation
methods are used to classify the risk, as shown in Table 9 [37].

2.3.10. Support Measures S10. The support measures of the
tunnel are divided into two steps: preliminary support and

Table 3: Risk classification of topography and geomorphology.

Risk
classification

The proportion of
negative relief (%)

Definition

I >60 Strong water storage
capacity

II 30~60 Moderate water
storage capacity

III 10~30 Weak water storage
capacity

IV <10 Terrible water storage
capacity

Table 5: Risk classification of rainfall in a week.

Risk classification l (mm) Definition

I >50 Rainstorm, high risk

II 25~50 Heavy rain, middle risk

III 10~25 Moderate rain, low risk

IV <10 Light rain or no rain, no risk

Table 6: Risk classification of the attitude of rock.

Risk classification
Attitude of
rocks (°)

Definition

I 25~65 Strong water conductivity

II 10~25/65~80 Moderate water conductivity

III 80~90 Weak water conductivity

IV 0~10 Terrible water conductivity

Table 7: Risk classification of interlayer fissures.

Risk classification Definition

I The fissure is strongly developed

II The fissure is generally developed

III The fissure is poorly developed

IV The fissure is almost undeveloped

Table 8: Risk classification of contact zones of dissolvable and
insoluble rock.

Risk classification Definition

I
Strongly conducive to the development

of large karst structures

II
Generally conducive to the development

of large karst structures

III
Poorly conducive to the development

of large karst structures

IV
Almost not conducive to the development

of large karst structures

Table 2: Risk classification of unfavorable geology.

Risk classification Definition

I
High risk: large-sized water-storing

structure exists

II
Moderate risk: medium-sized
water-storing structure exists

III
Low risk: small-sized water-storing

structure exists

IV No risk: no water-storing structure exists

Table 4: Risk classification of contact zones of the groundwater
table.

Risk classification h (m) Definition

I ≥60
High risk: high water pressure
and large instantaneous water

inrush quantity

II 30~60 Moderate risk

III 0~30 Low risk

IV <0 No risk
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secondary reinforcement. Therefore, the progress of support
measures is used to classify the risk, as shown in Table 10.

2.3.11. Water Inrush Probability and Water Inrush Quantity.
Water inrush probability indicates whether water inrush
occurred. As the output of the Bayesian networkmodel, it rep-
resents the mapping result of each evaluation index on the
probability of water inrush; the evidence of division is whether
the water inrush would happen, as shown in Table 11 [14].

2.4. Interpretation Structure Model. The interpretative struc-
tural modeling method, short for ISM, is a widely used anal-
ysis method in modern engineering. ISM can provide the
simplest hierarchical topology through mathematical opera-
tions without losing system function [34]. The construction
steps are as follows.

2.4.1. Determine the Influence Relation Diagram. Twelve
indexes (S1 – S12) suitable for the risk assessment model of
karst tunnel water inrush have been determined, and the
influence diagram of each index is shown in Table 12. In
Table 12, A indicates that the horizontal index has influence
on the vertical index; B indicates that the vertical index has
influence on the horizontal index; C indicates that there is
no mutual influence between the two indexes; D indicates
that there is mutual influence between the two indexes.

2.4.2. Adjacent Matrix. The adjacency matrix can further
reflect the influence relation among various indexes. The
transformation formula is shown in formula (2):

A =

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋮

an1 an2 ⋯ ann

2
666664

3
777775
,

S = Siji = 1, 2, 3⋯,nf g: ð2Þ

aij represents the relationship between the index si and the
index sj in the adjacency matrix. When a = 1, it means that
the former has influence on the latter, and when a = 0, it
means no influence. The transformed adjacency matrix is
shown in formula (3):

A =

0 1 1 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 1
0 1 0 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

2
666666666666666666666666666664

3
777777777777777777777777777775

: ð3Þ

2.4.3. Accessibility Matrix. Accessibility matrix G is mainly
used to describe the degree that can be reached between
nodes of the graph. Its calculation formula is shown in for-
mula (4):

G = A + Eð Þn+1 = A + Eð Þn ≠⋯≠ A + Eð Þ2 ≠ A + Eð Þ: ð4Þ

n represents the computation times of matrix A, E is the
identity matrix, and the accessibility matrix is in formula (5):

G =

1 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 0 0 0 0 0 1 1
0 1 1 1 0 0 1 1 0 1 1 1
0 1 0 1 0 0 0 1 0 0 1 1
0 1 0 1 1 0 0 1 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666666666666664

3
777777777777777777777777775

: ð5Þ

Table 9: Risk classification of excavation disturbance.

Risk classification Definition

I
Blasting excavation, maximum
disturbance degree, and range

II
Advance exploratory drilling,

general disturbance degree, and range

III
No blasting, minimum disturbance

degree, and range

IV No drilling, no disturbance

Table 10: Risk classification of support measures.

Risk classification Definition

I No support, surrounding rock is exposed

II Preliminary support

III Secondary reinforcement

IV Fully support
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2.4.4. Hierarchical Process. In the accessibility matrix G, the
indexes corresponding to the columns with the value of 1
in each row constitute the accessibility set LðSiÞ and the
indexes corresponding to the rows with the value of 1 in
each column constitute the reason set QðSiÞ. The necessary
and sufficient condition for the variable set O1 to be the
top-level variable set is shown as follows:

L Sið Þ = L Sið Þ ∩Q Sið Þ: ð6Þ

After obtaining set O1, clear the rows and columns of the
indexes corresponding to O1 in the matrix G, then, get new
matrix G, and then, follow the same method, according to
formula (6) to get the set O2, by analogy O3,⋯,On. And
finally, form a multistage skeleton matrix structure.

According to the hierarchical process table and the
relationship between each index, the interpretation struc-
ture model of karst tunnel water inrush risk assessment
is shown in Figure 2.

2.5. Correction of the Causality Chart. The causality chart
describes the causality among variables through charts,
focusing on the results of different combinations of multiple
input indexes. Since the interpretation structure model will
ignore the skip-level relationship and the important rela-
tionship between various indexes, according to the reference,
the interpretation structure model is further modified by the
causality chart and the final Bayesian network model applied
to the risk assessment for water inrush in the karst tunnel is
obtained. Figure 3 shows the final Bayesian network model.

The new dotted arrows in Figure 3 are used to represent
the interaction between each index.

3. The Data Training and Verification of the
Bayesian Network Model

After the model is established, Netica software is used to
train the model. Firstly, it is necessary to divide each index
into interval grades to meet the input and output require-
ments of the network model; secondly, the engineering
cases that can be used for Bayesian network data training
need to be counted separately and the interval quantiza-
tion processing should be carried out; finally, the consis-
tency ratio (RCR) is used to evaluate the training of the
model.

3.1. Determine the Input and Output Types of Each
Evaluation Index. There are twelve indexes in this model,
among which S1 – S10 are the input indexes and S11 – S12
are the output indexes. The risk classification of the input
index is divided into four grades. The output index water
inrush probability is divided into two sections, yes and no,
and the water inrush quantity is divided into 8 sections to
further accurately calculate the disaster consequences.
According to the classification of indexes, the intensity of
each index is described in Tables 13 and 14.

3.2. Training Specimen of the Network. Bayesian network
training requires plenty of data, but the existing databases
are all water inrush cases and nonwater inrush cases are
not included. If only the existing database is used for

Table 11: Subgrading of the karst tunnel water irruption quantity.

Subgrading I
II III

IV V
II1 II2 II3 III1 III2

Water irruption quantity (m3/h) ≥10000 7000~10000 4000~7000 1000~4000 550~1000 100~550 10~100 ≤10

Table 12: Relationship between indexes of karst tunnel water inrush.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
A A A C A A A C A A C S1

C C C B B B C C A A S2

A C C A A C C A A S3

B B B C C C A A S4

C C C C C A A S5

C A C C A A S6

A C A A A S7

C C A C S8

A A A S9

A A S10

C S11
S12
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network training, the sample will be extremely unbalanced.
In order to realize the training of the model, based on the
idea of generative adversarial network and analytic hierarchy
process, some nonwater inrush cases are generated from
water inrush cases to further enrich the database.

In essence, the generative adversarial network generates
new data according to the existing data range or boundary
conditions, which is mainly used to solve problems such as
unbalanced database. The process of generating nonwater

inrush cases is as follows. Firstly, according to the existing
data, S1, S2, S3, S7, S8, S9, and S10 are selected and weighted
by the analytic hierarchy process and the indexes are quan-
titatively processed from 0 to 1. Secondly, value range of
0–1 can be obtained by summing the value of each index
times the weight, which is denoted as the range of water
inrush, that is, if the calculated result is within this range,
water inrush disaster will occur. Thirdly, the lower limit of
the water inrush range is selected as the boundary between

Contact zone of
dissolvable and
insoluble rock

Inter-layer
fissure

Unfavorable
geology

Topography and
geomorphology

Attitude
of rock

Formation
lithology

Groundwater
table

Rainfall

Water inrush
probability

Water inrush
quantity

Excavation
disturbance

Support
measures

Figure 3: Bayesian network of karst tunnel water inrush.

Contact zone of
dissolvable and
insoluble rock

Inter-layer
fissure

Unfavorable
geology

Topography and
geomorphology

Attitude
of rock

Formation
lithology

Groundwater
table

Rainfall in
a week

Water inrush
probability

Water inrush
quantity

Excavation
disturbance

Support
measures

The 6th level

The 5th level

The 4th level

The 3th level

The 2th level

The 1th level

Figure 2: Interpretive structural model among factors of karst tunnel water inrush.

Table 13: S1–S11 grading interval.

Strong Medium Weak None

S1–S9 I II III IV

S10 IV III II I

Yes No

S11 Yes No

The more reasonable the support measures of S10 , the lower the risk, so the expression is in contrary to that of the other input indexes.
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water inrush and nonwater inrush. According to the one-to-
one principle, the nonwater inrush range is obtained from
the water inrush range. According to the same weight, it
can be calculated backwards to get the corresponding quan-
titative value between 0 and 1 of each index. Finally, the cor-
responding grade of each index in nonwater inrush cases can
be obtained by reverse mapping from the quantization value.
The schematic diagram of the generative adversarial network
is shown in Figure 4.

Figure 4 is a seven-sided shape, representing the seven
selected indexes. The distance from the corner point to the
center is 1, representing the quantitative range of 0–1. The
dark-gray area represents the water inrush range, the light-
gray area represents the nonwater inrush range, and the dot-
ted line between the two areas represents the water inrush
boundary. The judgment matrix constructed by the analytic
hierarchy process, as shown in Table 15.

C = 0:159, 0:35, 0:07, 0:032, 0:237, 0:106, 0:046ð Þ,

RCR =
ICI
IRI

= 0:025 < 0:1:
ð7Þ

RCR represents the consistency ratio, and when it is less
than 0.1, it represents that the consistency of the judgment
matrix meets the requirements; ICI represents the consis-
tency index; IRI represents the average random consistency
index.

According to I (0.75–1), II (0.75–0.5), III (0.5–0.25), and
IV (0–0.25) to quantify the various samples, 37 water inrush
samples are selected from the database for quantitative pro-
cess and the range of water inrush samples is 0.55–0.9
according to the calculation method of the above-
introduced water inrush range . Select 0.5 as the water inrush
boundary, and it can be concluded that the nonwater inrush
range is 0.1–0.45. According to the reverse calculation
method, the corresponding nonwater inrush cases can be

obtained. Finally, reverse quantitative processing and the
risk classification of each index of the nonwater inrush cases
can be obtained.

3.3. Bayesian Network Model Training and Verification
Results. Figure 5 shows the training results of the Bayesian
network model, and the probability table of each index after
training is shown. Ten samples are selected from the data-
base for verification. After verification, the accuracy for
water inrush probability is 100% and that for predicting
water inrush quantity is 90%.

4. Application of Bayesian Network Risk
Assessment Model

The DK490+373 section of the Shanggaoshan Tunnel of the
Chengdu-Guiyang Railway is selected to verify the feasibility
of the model.

4.1. Engineering Background. The Shanggaoshan Tunnel of
the Chengdu-Guiyang Railway is located in Qingzhen city,
Guizhou province [38]. The maximum depth of the tunnel
reaches 135m. The average annual rainfall reaches 1000–
1600mm. The surrounding rock of the DK490+373 section
is mainly composed of limestone, marl, and other carbonate
rocks, and the overall dip angle of the rock layer is 5°–30°.
Rock joints and fractures most are open and vertical.

4.2. The Determination of Input Indexes. According to the
engineering data, the Bayesian network model is used to pre-
dict the water inrush risk of DK490+373 of the Shang-
gaoshan Tunnel under no-rain and heavy-rain conditions.
Risk classification of each input index is shown in Table 16.

There is no accurate quantitative data to describe the
topography and geomorphology, formation lithology.
According to the description of engineering data and the risk
classification of the index, it is considered as moderate risk.
The overall dipping direction is 5°–30°; according to the
abovementioned risk classification, the attitude of rocks is
considered as moderate risk. The water storage structures
in the tunnel area mainly are karst pipeline and small karst
cave, which are classified as moderate risk. According to
the engineering data, interlayer fissure is classified as moder-
ate risk by qualitative description. The bench cut method is
adopted in construction, and water inrush occurred without
support, so it can be concluded that the construction distur-
bance is weaker than blasting but stronger than drilling. Due
to the lack of support measure, it can be determined as high
risk.

4.3. Prediction Result of the Bayesian Network Risk
Assessment Model. Figure 5 shows the training result of the
Bayesian network model. Input the values of the indexes in

Table 14: S11–S12 grading interval.

Strong Medium 1 Medium 2 Medium 3 Weak 1 Weak 2 None 1 None 2

S12 I II-1 II-2 II-3 III-1 III-2 IV V

The water inrush quantity is divided into 8 sections corresponding to the subgrading of water irruption quantity in the previous paper.

1

0

0

0

0 0

0

0

Water inrush

No water inrush

Water inrush
boundary

Figure 4: Generative adversarial network diagram.
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Table 16 in turn, and observe whether the final output is
consistent with the reality. In the case of no rain or heavy
rain, the prediction results of water inrush in the DK490
+373 section are shown in Table 17.

4.4. Realistic Water Inrush Situation. On the 23th of August,
2015, the exit section of the tunnel was excavated to DK490
+373 and a karst cave with diameter of 0.55m was exposed
at the right-side wall. Small-scale water inrush occurred
immediately, and water inrush quantity reaches 226.8m3/h.
After investigation, it was found that the exposed karst cave

was connected with the karst pipe, which resulted in the
continuous small-scale water inrush. The geological profile
of the section is shown in Figure 6. On the 28th of August,
2015, massive sustained rainfall (the rainfall in 24 hours
reached 33.4mm, which can be identified as heavy rain)
occurred within the tunnel area, which caused large-scale
water inrush disaster in the tunnel, with the water inrush
quantity reaching 5005m3/h.

4.5. Results Analysis. Under the condition of heavy rain or
no rain, the prediction results of water inrush risk in section

Interlayer fissures
Contact zones of dissolvable 

and insoluble rock Unfavorable geology

Topography and 
geomorphology Formation lithology Attitude of rocks

Groundwater table
Water inrush probability

Excavation disturbance

Support measures
Water inrush quantity

Rainfall in a week

Strong
Medium
Weak
None

38.3
23.3
10.0
28.3

Strong
Medium
Weak
None

29.7
21.3
17.6
31.4

Strong
Medium
Weak
None

37.9
20.0
17.3
24.8

Strong
Medium
Weak
None

22.0
25.1
14.5
38.3

Strong
Medium
Weak
None

38.3
11.7
21.7
28.3

Strong
Medium
Weak
None

53.3
30.9
7.33
8.53

Strong
Medium
Weak
None

27.5
13.9
5.75
52.8

Strong
Medium
Weak
None

35.7
20.4
24.4
19.6

55.6
44.4

Yes
No

Strong
Medium
Weak
None

40.9
20.6
1.93
36.5

Strong
Medium
Weak
None

18.6
27.3
8.23
45.8

Strong
Medium1
Medium2
Medium3
Weak 1
Weak 2
None 1
None 2

8.73
6.58
7.12
22.0
3.48
7.09
6.87
38.1

Figure 5: Bayesian network training results.

Table 15: Overview of the value of each input index.

Topography and
geomorphology

Contact zones of
dissolvable and
insoluble rock

Formation lithology Unfavorable geology Interlayer fissure

No rainfall II (medium) ∗ II (medium) II (medium) II (medium)

Heavy rainfall II (medium) ∗ II (medium) II (medium) II (medium)

Attitude of rock Groundwater table Rainfall in a week Excavation disturbance Support measures

No rainfall II (medium) ∗ IV (none) II (medium) IV (strong)

Heavy rainfall II (medium) ∗ II (medium) II (medium) IV (strong)
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DK490+373 are completely consistent with reality. It can be
seen from the results that this model is accurate and practi-
cal in predicting karst tunnel water inrush probability and
quantity.

5. Conclusion

Based on the Bayesian theory, interpretive structure model,
generative adversarial networks, and analytic hierarchy pro-
cess, a new Bayesian network risk assessment model is estab-
lished. The main conclusions are as follows:

Twelve indexes which can not only characterize the karst
tunnel water inrush but also are easy to be counted are
selected as the input and output indexes of the model, which
summarizes the disaster-causing factors of karst tunnel
water inrush comprehensively and effectively improves the
accuracy of the Bayesian risk assessment model.

In view of the variability and complexity of the under-
ground engineering environment, a new Bayesian network
risk assessment model is established. The model overcomes
the shortcomings of other risk assessment models that rely
too much on geological data. Through massive data learning,
it can carry out accurate risk assessment under the condition
of incomplete geological data and unknown disaster cause.

Based on the idea of the generative adversarial network
and principle of the analytic hierarchy process, the genera-
tion method of no water inrush samples is proposed for
the first time, which can generate no water inrush sample
from water inrush sample database, and effectively solved
the problem of unbalanced database.

The Bayesian network risk assessment model is applied
to the risk assessment of water inrush in the DK490+373
section of the Shanggaoshan Tunnel. The result shows that
the model is operable, effective, practical, and also applicable
to the case of incomplete index statistics. The prediction

Table 17: Prediction and real result.

Prediction result Actual result
Probability of water inrush Water inrush quantity Whether water inrush occurs Water inrush quantity

No rainfall 85.3% 100~550m3/h Yes 226.8m3/h

Heavy rainfall 51.3% 4000~7000m3/h Yes 5005m3/h
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N50°W/11°NE(1°)
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53
1

49
0+

92
7

Figure 6: Geological section of Shanggaoshan Tunnel.

Table 16: Overview of the value of each input index.

Topography and
geomorphology

Contact zones of dissolvable and
insoluble rock

Formation
lithology

Unfavorable
geology

Interlayer
fissure

No rainfall II (medium) ∗ II (medium) II (medium) II (medium)

Heavy
rainfall

II (medium) ∗ II (medium) II (medium) II (medium)

Attitude of rock Groundwater table
Rainfall in a

week
Excavation
disturbance

Support
measures

No rainfall II (medium) ∗ IV (none) II (medium) IV (strong)

Heavy
rainfall

II (medium) ∗ II (medium) II (medium) IV

∗The value of the index is unknown, such as contact zones of dissolvable and insoluble rock and groundwater table.
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results of water inrush risk are completely consistent with
the realistic water inrush situation.
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