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In recent years, the phase field fracture model has been widely studied and applied. It has good convergence in crack propagation
simulation. Comparing with other methods, the phase field method has advantages in simulating crack intersection, bifurcation,
and three-dimensional propagation. Based on the phase field method, the influence of excavation disturbance on crack initiation
of rock mass is realized in this paper. The phase field fracture variational model is built by using user-defined element interface
(UEL) and user material subroutine (UMAT) in ABAQUS. Firstly, the prefabricated crack propagation simulation is carried
out to verify the algorithm. The fracture initiates in a butterfly shape and then expands along the horizontal direction. The
results show that the maximum support reaction decreases with the gradual increase of l, which is compared with the results
obtained by Miehe et al. The result proved the correctness and reliability of the algorithm. In this paper, the phase field
fracture model of a flat plate with a reserved small hole under the upper tension is established. The results show that the crack
finally produces a crack in the lower left and upper right directions of the square hole and continues to extend to the model
boundary, which proves the feasibility of crack independent initiation and propagation by the phase field method. The stress
formed a butterfly region until the fracture occurs. And the butterfly stress distribution was still present at the end of crack
propagation. The maximum vertical stress was 1:7 × 103MPa. Based on the South-to-North Water Transfer Project, the
simulation of tunnel crack propagation under excavation disturbance is realized for the first time, which is based on the phase
field method. The results show that the influence area of excavation disturbance will increase after considering crack
development. Comparing the simulation results without considering crack propagation with the simulation results considering
crack propagation, it is found that the stress level in the excavation disturbance area around the tunnel is greatly affected by
cracks. When the crack is not considered, the maximum vertical stress is 2:16 × 105 Pa, and the maximum horizontal stress is
9:35 × 105 Pa, which occurs at the waist of the tunnel on the horizontal axis. When the crack is considered, the maximum
vertical stress is 2:53 × 105Pa, and the maximum horizontal stress is 1:10 × 106 Pa. It shows that the stress at the dome
increases greatly. The vertical stress reaches 3:68 × 105Pa, and the horizontal stress is up to 3:07 × 103Pa. For the rock mass
far away from the excavation disturbance area, because part of the elastic strain energy is absorbed by the surface crack, the
stress level considering the crack is lower than that without the crack. But it is basically similar, indicating the accuracy of the
phase field fracture model. This paper realizes the simulation of crack propagation under excavation disturbance and provides
a way for the application of phase field fracture model in rock mechanics. This paper proves that phase field method has broad
prospects in simulating rock crack propagation and provides the possibility for the popularization of phase field method.

1. Introduction

In rock engineering, crack initiation and development are
the main failure modes of rock. The crack development
eventually leads to rock fracture [1, 2]. The crack develop-

ment also leads to local stress disturbance. Therefore,
numerical simulation of fracture is of great significance in
the field of geotechnical engineering.

At present, finite element methods for crack propagation
can be divided into two categories: One is geometric crack
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description method based on grid expansion, such as ele-
ment deletion method [3] and interface element method.
The element deletion method is a relatively simple method
to describe the crack by discontinuous means. In this
method, the stress of the element becomes 0 when it reaches

the fracture critical [4]. The interface element method [5, 6]
inserts cohesive interface elements between elements. When
reached the critical condition of fracture, the interface ele-
ment will be disconnected. The interface element method
only allows the crack to expand on the boundary of the ele-
ment [7]. This type of approach allows Raven to extend only
at the boundaries of the cell. The other is the nongeometric
description method, which is the diffusion crack model, such
as the smooth particle hydrodynamics (SPH), the diffuse ele-
ment method (DFM), the extended finite element method
(XFEM), and phase field methods. Lucy and Gingold first
applied the smooth particle hydrodynamics in the field of
astrophysics [8, 9]. Nayrole et al. proposed the scatterer
method in 1992 [10]. This method is collectively known as
the meshless method. Although the meshless method does
not need element structure, its crack propagation needs
manual setting, and its computational efficiency is very
low. Extended finite element method (XFEM) [11, 12] com-
bined displacement field related parameters with variational
function and test function by using the shape function. The
fracture has nothing to do with the grid by using XFEM. The
expansion of cracks can be achieved within the grid, but its
calculation is limited to a few relatively simple bifurcation
problems of crack. It is difficult to solve the three-
dimensional model of crack propagation simulation [13,
14]. The phase field method [15] used the dispersed phase
boundary to approximate the actual sharp boundary, which
implemented a model describing fracture with continuous
functions. By using phase field variables, the phase field
method can explicitly track crack, instead of tracking the
surface of crack. The propagation path of crack can be
obtained by the evolution of order parameters. So, the phase
field method of crack propagation simulation is not affected
by meshing. Moreover, it has good convergence [16] and can
also realize crack propagation in the grid.

In recent years, phase field model has been applied to frac-
ture field. It has attracted extensive attention in this field. Emi-
lio [17] realized the operation of phase field fracture model in
user-defined unit interface (UEL) and user material subrou-
tine (UMAT) of ABAQUS, but the model is simple. Hofacker
[18, 19] established the evolution of complex crack mode for
dynamic problems and applied interlacing algorithm to phase
field simulation. He provided the basis for solving dynamic
problems. Park [20] realized the refinement model of adaptive
grid and carried out the simulation of cohesive cracks under
dynamic loading. Liu Guowei [21] used ABAQUS platform
to realize the step algorithm of phase field fracture model
and analyzed the problem of two parallel air foil crack inter-
section. Cao Yakuo [22] studied the fracture process of
elastic-plastic plate with holes at different spatial distances
based on the elastic-plastic fracture theory of metal. It pro-
vided a thought for solving the elastic-plastic problem. Liu
Jia [23] established a phase field model of hydraulic coupling
based on porous elasticity theory and energy minimization
theory. It solves the problem of phase field seepage.

The phase field fracture method describes the physical
process of fracture through a series of differential equations,
so as to avoid the tedious crack surface tracking. It has great
advantages in simulating crack initiation, propagation, and
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Figure 1: Crack described with a phase field mode.
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Figure 2: The process for solving phase field model.

0.
5

0.
5

0.5 0.5

u

Figure 3: Geometric model and the location of crack (mm).
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bifurcation. At present, most of the phase field method sim-
ulation is a two-dimensional simple model of single homo-
geneous material, and there is no correlation analysis of
excavation disturbance. Based on the phase field method,
this paper established a composite stratum model and real-
ized the excavation simulation by element deletion.

In this paper, the user-defined element (UEL) of finite
element software ABAQUS is used to calculate the propaga-
tion of prefabricated crack and the crack propagation of per-
forated plate during tensile, which verified the correctness of
the code. The deep rock mass disturbed by excavation will
crack on the excavation boundary, which will lead to local
stress concentration of rock mass. Finally, rock mass will
break and be instability. Therefore, it is of great significance
to study the stress distribution of deep rock mass disturbed
by excavation.

2. Phase Field Method Fracture Model

2.1. Fracture Variational Theory. The phase field method is
based on Ginzburg-Laudau theory. Hakim and Karma pro-
posed the phase field model [15], which defines the free

energy of the fracture system as follows:

F u, sð Þ =
ð

g ϕð Þ ψ0 ε uð Þð Þ − ψc½ � +V ϕð Þ + 1
2Dϕ ∇ϕj j2

� �
dx,

ð1Þ

where ϕ is the order parameter; gðϕÞ is the interpolation
function, gðϕÞ = ϕ2+α; ψ0 is strain energy density; ψc is the
critical strain energy density; VðϕÞ is the two potential well
function, VðϕÞ = ϕ2ð1 − ϕ2Þ/4; and Dϕ is surface parameter.
The first two terms are the body free energy term and the
last term is the surface energy term.

In 1920, Griffith proposed Griffith energy theory based
on energy [24], but this theory is suitable for simple model.
It is difficult to analyze the complex crack model. In 1998, G.
A. Francfor and J. J. Marigo proposed a variational method
for fracture problems, which was based on the Griffith
energy theory [25]. The total potential energy Π of elasto-
mer Π can be divided into elastic energy of elastomer and
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Figure 4: The propagation of crack when l = 0:015mm. (a) Crack initiation stage. (b) Crack development stage. (c) Crack penetration stage.
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surface energy of fracture:

Y
u, Γð Þ =

ð
Ω

ψe ε uð Þð ÞdΩ +
ð
Γ

GcdΓ, ð2Þ

where ψe is the elastic energy density; εðuÞ is the strain ten-
sor; and Gc is the critical energy release rate.

In the fracture variational model proposed by Francfor
and Marigo, the crack propagation is controlled by the prin-
ciple of minimum free energy. However, the boundary inte-
gral of surface energy in this method is not easy to deal with
in the case of unknown crack boundary. In 2000, Bourdin
and Francfort introduced the order parameter [26] and
defined one in the interval [0, 1]. When ϕ = 0, it means that
the material is intact. When ϕ = 1, it means that the material
is completely fractured, as shown in Figure 1. The crack sur-
face density can be expressed as

γ ϕ,∇ϕð Þ = 1
2l ϕ

2 + l
2 ∇ϕj j2, ð3Þ

where l is the characteristic length parameter and the time
length parameter determines the diffusion degree of the

crack. When l⟶ 0, the characterization is closer to the
tip crack. However, the size of L does not represent the
actual width of crack diffusion.

Then, the total surface energy of cracks in the elastic
body can be expressed as

ð
Γ

GcdΓ ≈
ð
Ω

Gc
ϕ − 1ð Þ2
2l + l

2 ∇ϕj j2
" #

dΩ, ð4Þ

where Gc is the critical value of Griffith energy release rate of
material per unit area.

To analyze the fracture phase field, the total energy func-
tion of the material can be expressed as

Ψ u, ϕð Þ =Ψb u, ϕð Þ +Ψs ϕð Þ, ð5Þ

where Ψbðu, ϕÞ is the elastic strain energy stored in the
material and ΨsðϕÞ is the surface strain energy related to
the crack.

(a) (b)

(c)

Figure 5: The propagation of crack when l = 0:0075mm. (a) Crack initiation stage. (b) Crack development stage. (c) Crack penetration stage.
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The elastic strain energy can be expressed by the elastic
strain as

Ψb u, ϕð Þ =
ð
Ω

ψ ε uð Þ, ϕð ÞdV , ð6Þ

where u is the displacement of material; ϕ is the fracture
phase field variable; energy storage function ψ of material
per unit volume can be expressed as ψðε, ϕÞ = gðϕÞψ0ðεÞ;
ψ0 is the elastic strain energy density; gðϕÞ can be expressed
as gðϕÞ = ð1 − ϕÞ2 + k, and k is a very small constant.

Based on the above formula, the total energy function of
materials can be expressed as

Ψ u, ϕð Þ =
ð
Ω

1 − ϕð Þ2 + k
� �

ψ0 εð Þ+Gc
1
2l ϕ

2 + l
2 ∇ϕj j2

� ��
dV

�
,

ð7Þ

2.2. Fracture Governing Equation by Phase Field Method.
The energy of the system can be divided into external work
generated by the application of load and internal work gen-
erated by deformation. The external energy increment δWext
can be expressed as

δWext =
ð
V
bδudV +

ð
δV
hδu∂V , ð8Þ

where b is the body force per unit volume unit and h is the
boundary surface force per unit area.

The change of internal potential energy increment is

∂W int = ∂ψ = ∂ψ
∂ε

δε + ∂ψ
∂ϕ

δϕ: ð9Þ

Combined with Equation (7), the internal potential
energy increment can be expressed as

∂W int =
ð
Ω

σδε − 2 1 − ϕð Þδϕψ εð Þ +Gc
1
l
ϕδϕ + l∇ϕ ⋅ ∇δϕ

� �� �
dV ,

ð10Þ

where σ is Cauchy stress tensor,

σ = ∂ψ
∂ε

= g ϕð Þσ0 = 1 − ϕð Þ2 + k
� �

σ0: ð11Þ

Assuming that the model is a quasi-static process, the
virtual work done by the external force of the structure is
equal to the virtual work done by the internal force of the
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structure.

∂W int − ∂Wext = 0: ð12Þ

Combining Equations (8) with Equation (10), Dirichlet
boundary conditions are considered, and Gauss theorem is
used to obtain

ð
∂Ω

Gcl∇ϕ ⋅ n½ � ⋅ δϕdA +
ð
Ω

− Div σ½ � + b½ � ⋅ δu − 2 1 − ϕð Þψ εð Þ −Gc
1
l
ϕ +Div l∇ϕð Þ

� �� �
δϕ

�
dV

�

+
ð
∂Ωh

σ ⋅ n − h½ � ⋅ δudA = 0,

ð13Þ

where n is the unit vector perpendicular to the plane.
Considering the Neumann boundary conditions σ ⋅ n = h

(on ∂Ωh) and ∇ϕ ⋅ n = 0 (on ∂Ω), the strong form of the gov-

erning equation of the phase field method fracture model is

Div σ½ � + b = 0,

Gc
1
l
ϕ + l∇ϕ

� �
− 2 1 − ϕð Þψ εð Þ = 0:

8><
>: ð14Þ

3. Realize Fracture Finite Element by Using
Phase Field Method

In order to solve the numerical solution of partial differential
Equation (14), the weak form of the governing equation is
solved by finite element method.ð

Ω

σδε − b ⋅ δu½ �dV +
ð
∂Ωh

h ⋅ δudA = 0,

ð
Ω

−2 1 − ϕð Þδϕψ εð Þ +Gc
1
l
ϕδϕ + l∇ϕ ⋅ ∇δϕ

� �� �
dV = 0:

8>>><
>>>:

ð15Þ

Using the Voigt-notation method for discretization,

(a) (b)

(c) (d)

Figure 8: The result of crack propagation. (a) Crack initiation stage. (b) Crack initiation stage. (c) Crack development stage. (d) Crack
penetration stage.
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displacement field variables u and phase field variables ϕ on
cell nodes I can be expressed as

u = 〠
n

i=1
Nu

i ui, ϕ = 〠
n

i=1
Nu

i ϕi, ð16Þ

where n is the number of nodes on a cell; Ni is the corre-
sponding shape function on the node I, and the shape func-
tion matrix in two-dimensional case is

Nu
i =

Ni 0
0 Ni

" #
: ð17Þ

Accordingly, the derivative of the form function can be
discretized as

ε = 〠
n

i=1
Bu
i ui,∇ϕ = 〠

n

i=1
Bϕ
i ϕi, ð18Þ

where ε = ½εxx, εyy, εxy�T .

Strain-displacement matrix and phase field matrix are

Bu
i =

Ni,x 0
0 Ni,y

Ni,y Ni,x

2
664

3
775, Bϕ

i =
Ni,x

Ni,y

" #
: ð19Þ

Then, the gradient of displacement variable and phase
field variable can be expressed as

δε = 〠
n

i=1
Bδu
i ui,∇ϕ = 〠

n

i=1
Bϕ
i δϕi: ð20Þ

To ensure that ∂W int − ∂Wext = 0 for any u and ϕ, and,
therefore, to ensure balance, the residual of its equation
can be expressed as

Ru
i =

ð
Ω

1 − ϕð Þ2 + k
� �

Bu
ið ÞTσdV −

ð
Ω

Nu
ið ÞTbdV −

ð
∂Ωh

Nu
ið ÞThdA,

Rϕ
i =

ð
Ω

−2 1 − ϕð ÞNiψ εð Þ + Gc
1
l
Niϕ + l Bϕ

i

� 	T
∇ϕ

� �� �
dV :

ð21Þ

In order to get the residual close to 0, Newton-Raphson
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Figure 9: The vertical stress when the crack grows. (a) Crack initiation stage. (b) Crack initiation stage. (c) Crack development stage.
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method is used for incremental iteration.

u

ϕ

( )
t+Δt

=
u

ϕ

( )
t

−
Kuu Kuϕ

Kϕu Kϕϕ

" #−1

t

Ru

Rϕ

( )
t

: ð22Þ

The governing equation is a partial differential equation
system composed of quasi-static equilibrium equation and
phase field equation. However, in order to prevent crack clo-
sure when the elastic body is under pressure or unloading
springback and ensure the irreversible process of crack evo-
lution (ϕt+Δt ≥ ϕt), a historical state variable H is introduced
to realize the irreversible process.

H =
ψ εð Þ, ψ εð Þ >Ht

Ht , ψ εð Þ ≤Ht

(
: ð23Þ

Therefore, after considering the historical state variables,
the residual corresponding to phase field crack evolution is

Rϕ
i =

ð
Ω

−2 1 − ϕð ÞNiH + Gc
1
l
Niϕ + l Bϕ

i

� 	T
∇ϕ

� �� �
dV :

ð24Þ

The residual of the displacement field is

Ru
i =

ð
Ω

1 − ϕð Þ2 + k
� �

Bu
ið ÞTσdV −

ð
Ω

Nu
ið ÞTbdV −

ð
∂Ωh

Nu
ið ÞThdA:

ð25Þ

The stiffness matrix gradually degenerates in the process
of crack initiation and propagation, which will result in con-
stant rearrangement of the stress field. The implicit solver

cannot be used to obtain a stable equilibrium solution.
Therefore, the displacement field and phase field in Equation
(14) are considered as coupling fields and solved separately.
Considering the historical state variables, Equation (14) can
be expressed as

Gc
1
l
ϕ + l∇ϕ

� �
− 2 1 − ϕð ÞH = 0: ð26Þ

By using the Newton-Raphson method for iteration, the
Equation (23) can be expressed as

u

ϕ

( )
t+Δt

=
u

ϕ

( )
t

−
Kuu 0
0 Kϕϕ

" #−1

t

Ru

Rϕ

( )
t

, ð27Þ

where each stiffness matrix is

Kuu
ij = ∂Ru

i

∂uj
=
ð
Ω

1 − ϕð Þ2 + k
� �

Bu
ið ÞTC0B

u
j dV ,

Kϕϕ
ij = ∂Rϕ

i

∂ϕj
=
ð
Ω

2H + Gc

l

� �
NiN j +Gcl Bϕ

i

� 	T
Bϕ
j

� �
dV :

8>>>><
>>>>:

ð28Þ

In this paper, ABAQUS is used to realize the phase field
method fracture simulation. This research realized the phase
field method model by using UEL of ABAQUS. The relevant
stiffness matrix is updated in UEL. The specific process is
shown in Figure 2. Due to the use of user element subrou-
tine, the integral points defined by it cannot be visualized
independently in ABAQUS postprocessing. However, the
element stiffness matrix and stress-strain results on each
node can be obtained. In order to realize the visualization
of the results, this paper creates an auxiliary grid by using
UMAT to define the relevant material parameters at each
integral point of the auxiliary grid. Then, transmit the data
of user unit subroutine to user material subroutine, and out-
put SDV variables for final visualization. The stress compo-
nent and stiffness matrix of the auxiliary virtual grid are
zero, which have no influence on the solution result.

42 m

60 m

Silty clay

Fine medium sand

Figure 10: Initial model around pile No. 21+979.

Table 1: Parameters of geological model around pile No. 21+979.

Number Stratum
Density

(103kg/m3)
Elasticity

modulus (MPa)
Poisson’s
ratio

1 Silty clay 1.96 5.94 0.3

2
Fine

medium
sand

2.00 13.5 0.2
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+ 2.732e – 01
+ 2.483e – 01
+ 2.233e – 01
+ 1.983e – 01
+ 1.734e – 01
+ 1.484e – 01
+ 1.234e – 01
+ 9.845e – 02
+ 7.348e – 02
+ 4.851e – 02
– 2.354e – 02
– 1.426e – 03

SDV_S22
(Avg: 75%)

Figure 11: Crack propagation under the disturbance of excavation.
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4. Numerical Simulation Examples
and Verification

4.1. A Case of Prefabricated Crack Propagation. To verify the
correctness of the code, a square plate with prefabricated
cracks on the left side was created. The specific size of the
plate is shown in Figure 3. The lower boundary of the model
was fixed. The upward displacement plate of 0.01mm was
applied to the upper boundary. The Young’s modulus E =
210GPa. Poisson’s ratio is μ = 0:3. The critical energy release
rate is Gc = 2:7 × 10−3kN/mm.

In this paper, the crack length parameters were, respec-
tively, selected as l = 0:015mm and l = 0:0075mm. The crack
propagation results are shown in Figures 4 and 5. In the fig-
ure, the blue area represented no failure, while the red area
represented complete failure. The fracture initiates in a but-
terfly shape and then expands along the horizontal and ver-
tical direction. Finally, the crack reaches the right side of the
model.

Figure 6 shows the comparison between the reaction
force and displacement curve calculated in this paper and
Miehe [27]. At that time, the maximum support reaction
force calculated was 0.71 kN, and the maximum support
reaction force calculated was 0.74 kN. The calculation results
were basically consistent with the crack growth and support
reaction displacement curve obtained by Miehe. Although
there is a small deviation on the curve, the maximum reac-
tion force is basically similar, which is consistent with the
results of Miehe. It is found that with the increase of l, while

the maximum reaction force decreases. The result verifies
the correctness of the phase field code.

4.2. A Case of Tensile Crack Propagation of Perforated Plate.
A square plate with side length of 40m was established. And
a square hole with one side length of 4m was established in
the center of the plate, as shown in Figure 7. Young’s mod-
ulus E = 210GPa, Poisson’s ratio μ = 0:3, and critical energy
release rate Gc = 2:7 × 10−3kN/mm were used to fix the lower
boundary of the CPE4 unit model, and upward displacement
was applied to the upper boundary of the model. The lower
boundary of the CPE4 element model is fixed, and the upper
boundary of the model is subjected to upward displacement.

Characteristic length l = 0:04m. The crack extension
results are shown in Figure 8. The results showed that sym-
metrical butterfly-shaped microcracks appear around the
hole in the initial stage. At this time, the structure damage
was small. As the tension continued to be applied, the but-
terfly area expanded, eventually creating cracks in the upper
right and lower left corners of the square hole. And the crack
continued to expand and develops to the edge of the model,
which proved the feasibility of crack initiation and self-
propagation.

The variation of vertical stress with crack growth in this
example is shown in Figure 9. The results showed that there
was a great stress concentration at the four corners of the
hole at the initial stage of crack development. And the stress
distribution likes the butterfly. The maximum vertical stress
was 4:7 × 102MPa. The stress on both sides of the hole
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Figure 12: Horizontal stress distribution after excavation. (a) No cracks. (b) Consider cracks.
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Figure 13: Vertical stress distribution after excavation. (a) No cracks. (b) Consider cracks.
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gradually increased and gradually formed a butterfly region
until the fracture occurs. The stress on both sides of the hole
is positive, and the stress above and below the hole is nega-
tive. The maximum vertical stress was 1:23 × 103MPa.
Crack propagation begins at this time. After that, the crack
propagated gradually. And the butterfly stress distribution
was still present at the end of crack propagation. At this
time, the maximum vertical stress was 1:7 × 103MPa.

4.3. A Case of Crack Propagation in Composite Stratum
Disturbed by Excavation

4.3.1. Engineering Background. As a strategic project in
China, the South-to-North Water Diversion Project is an

extremely large infrastructure project to solve the serious
shortage of water resources in the north and implement
the optimal allocation of water resources. It plays a very
important role in alleviating the bearing pressure of water
resources and improving the water supply security and guar-
antee rate in Beijing.

Under the influence of excavation disturbance, some
stress concentration occurs in the geological body of Eastern
Canal in Beijing, which leads to lining damage and pipeline
leakage. Therefore, the pile no. 21+979 and its surrounding
area of Eastern Canal of the South-to-North Water Diver-
sion Project were selected for the analysis. Crack propaga-
tion and stress disturbance were analyzed in this case. The
left and right width of the numerical model near pile no.
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Figure 14: Comparison of vertical stress after excavation. (a) Above the vertical axis of the tunnel. (b) Right of horizontal axis of tunnel.
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21+979 is 60m. The tunnel buried depth is 19.62m. The
depth below the axis of the tunnel is 22.38m and the tunnel
radius is 3m.

According to the site geological survey data, the strata
were simplified, and a composite stratum tunnel model
was established. The tunnel size and stratum distribution
are shown in Figure 10. The material parameters are shown
in Table 1. Material critical energy release rate is Gc = 2:7
× 10−3kN/mm. Controlling the parameters of diffuse crack
width is l = 0:04m.

4.3.2. Realization of Phase Field Method. In order to simulate
the initial stress state of rock and soil mass, the ground stress
balance was carried out first. Then, the excavation was car-

ried out. The specific process of the excavation of rock and
soil mass simulated based on the phase field method is as
follows:

(1) Establish the initial composite formation model
(without tunnel excavation). Fix the bottom bound-
ary for the model, ux = 0 and uy = 0. The left and
right boundaries of the model are fixed with normal
displacement, ux = 0. The initial geostress field of the
model was obtained by the ground stress balance
analysis step under the dead weight stress

(2) Delete some excavated units, renumber nodes and
grids, and establish tunnel excavation model
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Figure 15: Comparison of horizontal stress after excavation. (a) Above the vertical axis of the tunnel. (b) Right of horizontal axis of tunnel.

11Geofluids



(3) In the .inp file of ABAQUS, the fracture parameters
related to the layer phase field method were defined
and the virtual visualization grid was generated. Apply
the initial in situ stress field calculated in the first step
to the tunnel excavation model, and define the output
variables to simulate the excavation of rock and soil
mass, which considered the phase field method

Considering the crack growth, the crack growth is shown
in Figure 11. After tunnel excavation, the cracks of the
model are mainly distributed around the tunnel, and the
weak links are on the horizontal sides of the tunnel. The
crack initiation occurs firstly in horizontal direction and
then gradually develops. After excavation, the stress of the
tunnel is released, and the shape of tunnel is ellipse. Due
to the maximum stress on both sides of the middle line of
the tunnel, there is a large damage in this part. The crack
begins to expand at the horizontal direction.

The horizontal stress cloud diagram after excavation is
shown in Figure 12. Figure 12(a) is the horizontal stress
result obtained without considering the phase field method,
that is, without crack development; Figure 12(b) is the hori-
zontal stress result obtained with crack development by
using the phase field method. Both cases indicate that stress
disturbance occurs in the surrounding area after tunnel
excavation. When the crack is not considered, the maximum
horizontal stress is 2:16 × 105Pa, which occurs near the hor-
izontal axis of the tunnel waist. When considering the crack,
the maximum stress on the horizontal axis is 2:53 × 105Pa,
and it is found that the stress at the tunnel dome increases
significantly, up to 3:68 × 105Pa. It indicates that the crack
development has a great influence on the stress.

The vertical stress cloud is shown in Figure 13. In situ
stress is disturbed after excavation. When do not consider
the crack, the maximum stress can reach 9:35 × 105Pa. It
occurs at the horizontal axis of the tunnel edge. When con-
sidering the crack development, the stress level around the
tunnel increases due to the influence of the crack develop-
ment. The maximum stress can reach 1:10 × 106Pa. At the
horizontal axis of the tunnel edge, the stress at the dome
changes under the influence of the crack. It produces a ver-
tical upward stress of 3:07 × 103Pa.

After the phase field method is adopted to simulate the
excavation, the stress around the tunnel changes greatly
from considering the cracks, which is due to the develop-
ment of cracks around the tunnel. In the area far away from
the tunnel, it is less affected by the crack, as shown in
Figures 14 and 15. However, its total stress level is reduced,
which is due to part of the elastic energy into the surface
energy of the crack. As the cracks developed along the hori-
zontal axis, it can be found in Figure 14(b) and Figure 15(b)
that when the distance from the center of the tunnel is 3m
(tunnel boundary), the stress level of the cracks is signifi-
cantly different from that when the crack is not considered.
The vertical stress reaches −7:90 × 105MPa when the crack
is considered. The vertical stress reaches −8:69 × 105MPa
when the crack is not considered. The horizontal stress is
5:76 × 104MPa when the crack is considered and −1:24 ×
105MPa when the crack is not considered.

5. Conclusion

Based on ABAQUS platform, this paper realized the phase
field method fracture model and simulated the crack growth
of composite stratum under excavation disturbance. This
paper realized the excavation simulation of composite stra-
tum based on the phase field method. The main conclusions
are as follows:

(1) By using UMAT/UEL of ABAQUS secondary devel-
opment interface, prefabricated crack growth simu-
lation, prefabricated hole crack growth simulation,
and composite stratum crack growth simulation
under excavation disturbance were carried out.
Based on the previous phase field model, the simula-
tion of various materials and the disturbance analysis
of excavation to the model are realized in this paper

(2) The correctness and reliability of the phase field frac-
ture model code were verified by comparing the
results of prefabricated crack propagation simulation
with those in other literature. It was found that the
crack propagated in the upper right corner and the
lower left corner of the hole through the tensile
example of the perforated plate, which demonstrated
the feasibility of the phase field method for the self-
initiation and propagation of cracks. By comparing
the crack growth model under excavation distur-
bance with the model without crack growth, it was
found that the stress disturbance was great at the
crack development. When considering the crack,
the maximum stress on the horizontal axis was
2:53 × 105Pa. It was found that the stress at the tun-
nel dome increased greatly, up to 3:68 × 105Pa

(3) Based on the crack propagation model of composite
strata established by phase field method, the crack
distribution of rock mass after excavation distur-
bance and the fine in situ stress distribution around
the tunnel are obtained. It provides an idea for sim-
ulating crack propagation in geotechnical engineer-
ing and lays a foundation for simulating in situ
stress analysis in geotechnical excavation
engineering
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