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The scaled boundary finite element method (SBFEM) is a semianalytical computational scheme based on the characteristics of the
finite element method (FEM) and boundary element method that combines their respective advantages. In this paper, the SBFEM
and polygonal mesh technique are integrated into a new approach to solve steady-state and transient seepage problems. The
proposed method is implemented in Abaqus employing a user-defined element (UEL). A detailed implementation of the
procedure is presented in which the UEL element is defined, the internal variables RHS and AMATRX are updated, and the
stiffness/mass matrix is solved using eigenvalue decomposition. Several benchmark problems are solved to verify the proposed
implementation. The results show that the polygonal element of the polygonal SBFEM (PSBFEM) is more accurate than the
standard FEM element of the same element size. For transient problems, the results for the PSBFEM and FEM are in excellent
agreement. Hence, the proposed method is robust and accurate for solving steady-state and transient seepage problems. The
developed UEL source code and the associated input files can be downloaded from GitHub.

1. Introduction

Seepage analysis is an essential topic in civil engineering.
Changes in soil pore water pressure may significantly affect
the stability of structures, such as such as the slope [1, 2],
tunnel [3], and earth-rock dam [4]. The finite element
method (FEM) is the dominant method for seepage prob-
lems [5–8]. However, this method is cumbersome when
dealing with singularities. Thus, alternative approaches have
been proposed. The scaled boundary FEM (SBFEM) was
developed in the 1990s. It is a semianalytical method that
attempts to combine the advantages and characteristics of
the FEM and the boundary element method into one new
approach. In the SBFEM, only the boundaries of the domain
are discretized in the circumferential direction. Then, in the
radial direction, the partial differential equation is trans-
formed to an ordinary differential equation (ODE), which
can be solved analytically [9]. The SBFEM has been applied
to many engineering problems, such as wave propagation

[10–12], heat conduction [13, 14], fracture [15–18], acous-
tics [19], seepage [20, 21], elastoplastics [22], and fluids
[23, 24].

The polygonal SBFEM (PSBFEM) is a novel method that
integrates the standard SBFEM and the polygonal mesh
technique [22, 25]. Compared with the standard FEM ele-
ment, a polygon element with more than four edges involves
more nodes in the domain and is usually more accurate [22].
Polygons can discretize complex geometry flexibly. Further-
more, polygons have high geometric isotropy and eliminate
the mesh dependence caused by the discretization of fixed
meshes with standard triangles or quadrangles [26]. These
advantages further motivate the choice of polygonal finite
elements as an alternative to standard finite elements that
use triangles or quadrangles.

Recently, an alternative mesh technique has been widely
used in geometric discretization. The quadtree algorithm is
fast, efficient, and capable of achieving rapid and smooth
transitions of element sizes between mesh refinement
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regions [27]. As a result of hanging nodes between two adja-
cent elements of different sizes, the adaptation of quadtree
meshes for direct computational analyses within the stan-
dard FEM is not widespread [27]. The presence of hanging
nodes destroys the displacement compatibility between the
adjacent elements. Several methods have been developed in
the literature to resolve the displacement incompatibly
introduced by hanging nodes for the FEM. Provatidis [28]
developed arbitrary-noded large finite elements, which are

based on the Coons–Gordon interpolation theory in con-
junction with piecewise-linear, cubic B-splines, and
Lagrangian interpolation of the potential between the nodal
points arranged along the boundary of the problem domain.
Duczek et al. [29] proposed a compatible transition element
—xNy-element—which provides the capability of coupling
different element types. Gupta [30] presented the formula-
tion of the finite element to match one element with two ele-
ments side-by-side. The PSBFEM only discretizes in the
geometric boundary. Hence, each element in a quadtree
mesh is treated as a generic polygon regardless of the hang-
ing nodes. This enables the structure of the quadtree to be
exploited for efficient computation. The ability to assume
any number of sides also enables the SBFEM to discretize
complex curved boundaries.

To date, few studies on SBFEM seepage analysis have
been reported. Li and Tu [31] used the SBFEM to solve
steady-state seepage problems with multimaterial regions.
Bazyar and Talebi [32] simulated transient seepage problems
in zoned anisotropic soils. Prempramote [33] developed a
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Figure 1: Coordinate system of the SBFEM: (a) S-element; (b) local coordinate system of the SBFEM.
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Figure 2: Flow chart of the UEL subroutine for the PSBFEM.
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Figure 3: Schematic diagram of the polygon meshes.

1∗USER ELEMENT, NODES=5, TYPE=U5, PROPER-
TIES=2, COORDINATES=2
2 8
3∗ELEMENT, TYPE=U5, ELSET=E5
4 3,2,3,4,8,7
5∗UEL PROPERTY, ELEST=E5
6 0.003,0.003

Listing 1: Input file of the polygon element in Abaqus (cf.
Figure 4).
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high-frequency open boundary for the transient seepage
analyses of semi-infinite layers with a constant depth. Liu
et al. [20] presented an iso-geometric SBFEM using nonuni-
form rational B-splines for the numerical solution of seepage
problems in the unbounded domain. These studies demon-
strate that the SBFEM has excellent accuracy, efficiency,
and convergence rate. However, the PSBFEM has not been
used to solve the seepage problem.

Although the SBFEM has matured, these studies only
exist as independent code, and the SBFEM is not available
in commercial software. Therefore, engineers find it difficult
to use this method to solve engineering problems. The com-
mercial software Abaqus has powerful linear or nonlinear,
static, or dynamic analysis capabilities [34]. Abaqus/stan-
dard analysis also provides a user-defined element (UEL)
to define an element with an available option to interface
with the code. Several researchers have focused on the
implementation of the SBFEM in Abaqus. Yang et al. [35]
developed UEL subroutines for steady-state and transient
heat conduction analysis using the PSBFEM. Ya et al. [36]
implemented an open-source polyhedral SBFEM element
for three-dimensional and nonlinear problems through the
Abaqus UEL. Yang et al. [37] implemented the SBFEM in

Abaqus in linear elastic stress analyses. However, there are
no subroutines available that enable the SBFEM to solve
the seepage problem in Abaqus at the present time.

The primary goal in this study is to implement a novel
semianalytical approach by integrating the SBFEM and
polygonal mesh technique to solve the seepage problem.
This paper is divided into six sections: In Section 2, the
polygon seepage SBFEM concept is described. In Section
3, the solution procedures are outlined. In Section 4, the
implementation of the PSBFEM for seepage problems
using the Abaqus UEL subroutine is described. Then, sev-
eral benchmark examples are presented in Section 5.
Finally, the main concluding remarks for this study are
presented in Section 6.

2. The PSBFEM for the Transient
Seepage Problem

The governing equations related to two-dimensional tran-
sient seepage flow can be written as [21]

∇ ⋅ k∇hð Þ + p − Ss h
̇
= 0, ð1Þ

where Ss is a specific storage coefficient, p is the source per
unit volume, h is the total head, _h is the derivative of the
total head with respect to time, k is the permeability

matrix, and ∇ is the gradient operator, where ∇ = ð∂/∂xÞ
i
!
+ ð∂/∂yÞ j!. Applying the Fourier transform to the gov-

erning equation [32, 38] transforms it into the frequency
domain as follows:

∇ ⋅ k∇ h
∼

� �
+ p

∼
− iωSs h

∼
= 0, ð2Þ
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Figure 4: Steady-state seepage problem in a concrete dam: (a) geometric model and boundary conditions; (b) Abaqus CPE4P element; (c)
PSBFEM polygonal element.

Table 1: Comparison of the water head using different methods
(element size 20m).

Method
Monitor point Relative error eL2

(%)1 2 3

Analytical solution
(m)

60 50 40 —

Abaqus CPE4P (m) 60.86 50 39.14 1.38

PSBFEM (m) 60.40 50.06 39.32 0.90
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where p∼ and h∼ are the Fourier transforms of p and h,
respectively, and ω is the frequency.

As illustrated in Figure 1, the SBFEM presents a local
coordinate system ðξ, ηÞ. The coordinates of any point ðx∼
, y∼Þ along the radial line and inside the domain can be writ-
ten as [9]

x
∼ = ξ N ηð Þ½ � xf g,
y
∼ = ξ N ηð Þ½ � yf g,

ð3Þ

where ½NðηÞ� is the shape function matrix.
The differential operator in the Cartesian coordinate sys-

tem can be transformed to the scaled boundary coordinate
system as follows [9]

∇ = b1½ � ∂∂ξ +
1
ξ
b2½ � ∂∂η , ð4Þ

where

b1½ � = 1
Jbj j

yb,η 0

0 −xb,η

" #
,

b2½ � = 1
Jbj j

‐yb 0

0 xb

" #
,

ð5Þ

and the Jacobian matrix at the boundary can be written as

Jb½ � =
xb yb

xb,η yb,η

" #
= xbyb,η − ybxb,η: ð6Þ

The head function at any point can be expressed as

h
∼
ξ, ηð Þ

� �
= Nu ηð Þ½ � h

∼
ξð Þ

� �
, ð7Þ

where fh∼ðξÞg is the nodal head vector and ½NuðηÞ� is the
shape function matrix.

Using Equations (4) and (7), the flux Q∼ðξ, ηÞ can be
written as

Q
∼
ξ, ηð Þ = − k½ � B1 ηð Þ½ � h

∼
ξð Þ

� �
,ξ
+
1
ξ
B2 ηð Þ½ � h

∼
ξð Þ

� � !
, ð8Þ

where

B1 ηð Þ½ � = b1 ηð Þf g N ηð Þ½ �,
B2 ηð Þ½ � = b2 ηð Þf g N ηð Þ½ �:

ð9Þ

Applying the weighted residual method and Green’s the-
orem and introducing the boundary conditions yield the fol-
lowing equations [9, 23]

E0½ �ξ2 h
∼
ξð Þ

� �
,ξζ

+ E0½ � − E1½ � + E1½ �T
� �

ξ h
∼
ξð Þ

� �
,ξ

− E2½ � − iω M0½ �ξ2
� �

h
∼
ξð Þ

� �
= ξ F ξð Þf g,

ð10Þ
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Figure 5: Water head distribution of the dam foundation: (a) Abaqus CPE4P element; (b) PSBFEM element.
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where

E0½ � =
ð
S
B1 ηð Þ½ �Tk B1 ηð Þ½ � Jbj jdη, ð11Þ

E1½ � =
ð
S
B2 ηð Þ½ �Tk B1 ηð Þ½ � Jbj jdη, ð12Þ

E2½ � =
ð
S
B2 ηð Þ½ �Tk B2 ηð Þ½ � Jbj jdη, ð13Þ

M0½ � =
ð
S
N ηð Þ½ �TSs N ηð Þ½ � Jbj jdη: ð14Þ

3. Solution Procedure for the
PSBFEM Equation

3.1. Steady-State Solution. Equation (10) is a second-order
Euler–Cauchy equation. In this paper, considering that the
side of domains is adiabatic or the domain is closed, fFðξÞ
g on the right-hand side of Equation (10) satisfies fFðξÞg
= 0. Set ω = 0in Equation (10). Then, the SBFEM equation
for the steady-state seepage field can be written as

E0½ �ξ2 h
∼
ξð Þ

� �
,ξξ

+ E0½ � + E1½ �T − E1½ �
� �

ξ h
∼
ξð Þ

� �
,ξ
− E2½ � h

∼
ξð Þ

� �
= 0:

ð15Þ

1 m

1 m

Impermeable
materialPermeable

material

(a) (b)

(c)

Figure 7: Permeable material’s geometric model and quadtree mesh: (a) geometric model; (b) Abaqus CPE4P mesh; (c) PSBFEM quadtree mesh.
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Introducing the variable fXðξÞg that consists of the
nodal water head functions h∼ðξÞ and flux functions Q∼ðξÞ
yields

X ξð Þf g =
h
∼
ξð Þ

� �

Q
∼
ξð Þ

n o
8>><
>>:

9>>=
>>;: ð16Þ

The equation can be transformed into a first-order ODE:

ξ X ξð Þf g, ξ − Zp

� 	
X ξð Þf g = 0, ð17Þ

where the coefficient matrix ½Zp� is a Hamiltonian matrix.
The solution for the bounded domain is obtained using the

positive eigenvalues of ½Zp�. Hence, ½Zp�can be expressed as

Zp

� 	
=

− E0½ �−1 E1½ �T E0½ �−1

E2½ � − E1½ � E0½ �−1 E1½ �T E1½ � E0½ �−1

" #
: ð18Þ

The solution of Equation (18) can be obtained by com-
puting the eigenvalue and eigenvector of the matrix½Zp�,
which yields

Zp

� 	 ψ11½ � ψ12½ �
ψ21½ � ψ22½ �

" #
=

ψ11½ � ψ12½ �
ψ21½ � ψ22½ �

" #
λn½ �

λp
� 	

" #
,

ð19Þ

2 4 6 8 10
2

4

6

8

10

PS
BF

EM
 (m

)

ABAQUS CPE4P (m)

eL2 = 0.28%

1:1 Line

(a)

2

4

6

8

10

PS
BF

EM
 (m

)

eL2 = 0.32%

2 4 6 8 10
ABAQUS CPE4P (m)

1:1 Line

(b)

Figure 8: Comparison of the PSBFEM and FEM in the water head: (a) left edge; (b) right edge.
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Figure 9: Water head distribution: (a) Abaqus CPE4P; (b) PSBFEM quadtree element.
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where the real components of eigenvalues λn and λp are neg-
ative and positive, respectively.

The general solution of Equation (18) can be obtained as
follows:

h
∼
ξð Þ

� �
= ψ11½ �ξ− λ1½ � c1f g + ψ12½ �ξ− λ2½ � c2f g,

Q
∼
ξð Þ

n o
= ψ21½ �ξ− λ1½ � c1f g + ψ22½ �ξ− λ2½ � c2f g:

ð20Þ

To obtain a finite solution at the scaling center (ξ = 0),
fc2gmust be equal to zero. The solution in the bounded
domain can be written as

h
∼
ξð Þ

� �
= ψ11½ �ξ− λ1½ � c1f g,

Q
∼
ξð Þ

n o
= ψ21½ �ξ− λ1½ � c1f g:

ð21Þ

The relationship between fh∼ðξÞg and fQ∼ðξÞg is
expressed as

Kst� 	
h
∼
ξð Þ

� �
= Q

∼
ξð Þ

n o
, ð22Þ

where the steady-state stiffness matrix of the S-element can
be expressed as

Kst� 	
= ψ21½ � ψ11½ �−1: ð23Þ

3.2. Mass Matrix and Transient Solution. To determine the
mass matrix ½M� of the SBFEM, the dynamic-stiffness matrix
½Kðξ, ωÞ� at ξis introduced:

K ξ, ωð Þ½ � h
∼
ξð Þ

� �
= ~Q ξð Þ
n o

: ð24Þ

For the bounded domain, the dynamic-stiffness matrix

½KðωÞ� on the boundary ξ = 1formulated in the frequency
domain is written as

K ωð Þ½ � − E1½ �ð Þ E0½ �−1 K ωð Þ½ � − E1½ �T
� �

− E2½ � + 2ω K ωð Þ½ �,ω − iω M0½ � = 0:

ð25Þ

To obtain the mass matrix ½M�of the bounded domain,
the low-frequency case in the SBFEM is addressed, in which
the dynamic-stiffness ½KðωÞ� of a bounded domain is
assumed to be

K ωð Þ½ � = Kst� 	
+ iω M½ �: ð26Þ

The steady-state stiffness matrix ½Kst� is computed using
Equation (23). Substituting Equation (26) into Equation (25)
leads to a constant term independent of iω, a term in iω, and
higher-order term in iω, which are neglected. Additionally,
the constant term vanishes. The coefficient matrix of iω
can be expressed as

− Kst� 	
+ E1½ �
 �

E0½ �−1 − I½ �
 �
M½ � + M½ �

� E0½ �−1 − Kst� 	
+ E1½ �T

� �
− I½ �

� �
+ M0½ � = 0:

ð27Þ

This is a linear equation used to solve the mass matrix
½M�. Using the eigenvalues and eigenvectors of matrix ½ZP�,
Equation (27) can be written as

I½ � + λb½ �ð Þ m½ � + m½ � I½ � + λb½ �ð Þ = ΦT
~

b

" #T
M0½ � ΦT

~

b

" #
, ð28Þ

where

m½ � = Φ
~T
b

h iT
M½ � Φ~T

b

h i
: ð29Þ

After solving matrix ½m� in Equation (29), the mass
matrix ½M� is obtained by

M½ � = Φ
~T
b

h i−1� �T

m½ � Φ~T
b

h i−1
: ð30Þ

3.3. Time Discretization. Equation (26) is substituted into
Equation (24); then, the inverse Fourier transform is applied,
and the nodal water head relationship for a bounded domain
is expressed as a standard time domain equation using
steady-state stiffness and mass matrices as follows:

Kst� 	
h tð Þf g + M½ � h

·
tð Þ

n o
= Q tð Þf g, ð31Þ

where the nodal water head hðtÞ is a continuous derivative of
time. Generally, it is difficult to obtain the function solution
in the time domain. In this paper, the backward difference
method [39, 40] is adopted to solve Equation (31). The time
domain is divided into several time units, and the solution
for the time node is obtained step by step from the initial

Water head = 10 m

A(2,3)

Water head = 3 m

4.
0 

m

4.0 m

O
X

Y

D(3,2)B(1,2)

C(2,1)

Figure 10: Geometry and boundary conditions for a square plate
with a Stanford bunny cavity.
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conditions, and the nodal water head at any time is obtained
by interpolation.

At time ½t, t + Δt�, the water head change rate fh·ðtÞg can
be expressed as

h
·
tð Þ

n o
=

Δh½ �
Δt

=
h tð Þf gt+Δt − h tð Þf gt

Δt
: ð32Þ

Equation (35) is substituted into Equation (34), and the
equation at time step t + Δtcan be obtained as follows:

Kst� 	t+Δt + M½ �t+Δt
Δt

 !
h tð Þf gt+Δt = Q tð Þf gt+Δt + M½ �t+Δt

Δt
h tð Þf gt:

ð33Þ

4. Procedure Implementation

4.1. Implementation of the PSBFEM in Abaqus. The most
critical task of UEL is to update the contribution of the ele-
ment to the internal force vector RHS and the stiffness
matrix AMATRX in the user subroutine interface provided
in Abaqus [40]. For the steady-state seepage analysis,
AMATRX and RHS are defined as follows:

AMATRX = Kst� 	
, ð34Þ

RHS = − Kst� 	
hf g, ð35Þ

where fhg is the water head vector.
For transient seepage, AMATRX and RHS are defined as

follows:

AMATRX = Kst� 	t+Δt + M½ �t+Δt
Δt

,

RHS = − Kst� 	t+Δt hf gt+Δt − M½ �t+Δt
Δt

hf gt+Δt − hf gt
� �

:

ð36Þ

Figure 2 shows a flow chart of the UEL subroutine for
the PSBFEM. Based on the input file’s connectivity informa-
tion, the UEL computes the scaling centers and transforms
the global coordinate into the local coordinate. Equations
(11)–(14) compute the coefficient matrices ½E0�, ½E1�, ½E2�,
and ½M0�, which are used to construct the Hamilton matrix

(a) (b)

Figure 11: Meshes of a square plate with a Stanford bunny cavity: (a) Abaqus mesh; (b) quadtree mesh.
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½Zp� using Equation (18). The two eigenvector matrices

(½ΦðnÞ
q �,½ΦðnÞ

u �) are constructed using eigenvalue decomposi-
tion. Finally, the stiffness matrix ½K� and mass matrix ½M�
of the PSBFEM elements can be obtained.

4.2. Defining the Element of the PSBFEM. The input file of
Abaqus usually contains a complete description of the
numerical model, such as nodes, elements, degrees of free-
dom, and materials. This information needs to be defined
by the user in the “inp” file. Figure 3 shows a simple polygon
mesh of the PSBFEM to demonstrate the definition of ele-
ments in the UEL. The mesh consists of three element types:
triangular element (U3), quadrilateral element (U4), and
pentagonal element (U5). As shown in Listing 1, the pentag-
onal element (U5) is defined as follows: 1–6 are the line
numbers. Lines 1–6 are used to define the pentagonal ele-
ment (U5): Line 1 assigns the element type, number of
nodes, number of element properties, and number of
degrees of freedom for each node; line 2 sets the active
degrees of freedom for the pore pressure; lines 3–4 define
the element sets E5; and lines 5–6 set the permeability coef-
ficient of E5.

5. Numerical Examples

Four numerical examples are used to demonstrate the con-
vergence and accuracy of the PSBFEM. Additionally, the

results of the PSBFEM are compared with those of the stan-
dard FEM. The FEM analysis uses the commercial finite ele-
ment software Abaqus. For validation, the relative errors in
the water head are investigated as follows:

eL2 = h‐hnk kL2 Ωð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
Ω
h − hnð ÞT h − hnð Þ dΩ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
Ω
hTh dΩ

q , ð37Þ

where h is the numerical solution and hn is the analytical or
reference solution.

5.1. Steady-State Seepage Problem in a Concrete Dam. In the
first example, a standard concrete dam foundation steady-
state seepage problem is considered. The geometric model
and boundary conditions are shown in Figure 4(a). The
dam is assumed to be impervious. The boundaries BC, AE,
EF, and DF are defined as impermeable boundaries. The
hydraulic head of AB is 80m, and the hydraulic head of
CD is 20m. To verify the accuracy of the proposed method,
three monitor points 1 (100, 80), 2 (120, 80), and 3 (140, 80)
are chosen, as shown in Figure 4(a). The permeability coef-
ficient of the dam foundation is kx = ky = 1 × 10−5 cm/s.
The FEM analysis uses the Abaqus CPE4P element in this
study, as shown in Figure 4(b). The PSBFEM uses the polyg-
onal element, as shown in Figure 4(c). The water head of the

Table 2: Water head of the monitor points at different times.

Time (s)
A B C D

Relative error (%)
FEM (m) PSBFEM (m) FEM (m) PSBFEM (m) FEM (m) PSBFEM (m) FEM (m) PSBFEM (m)

500 7.517 7.571 4.685 4.783 3.295 3.348 4.845 4.940 1.57

1000 8.403 8.428 6.028 6.070 4.205 4.228 6.203 6.244 0.55

1500 8.578 8.588 6.297 6.317 4.388 4.399 6.472 6.490 0.24

2000 8.612 8.618 6.351 6.364 4.425 4.431 6.525 6.537 0.15
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Figure 13: Water head distribution at different times using the FEM and PSBFEM.
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monitor points is presented in Table 1. The relative errors of
Abaqus CPE4P and the PSBFEM are 1.38% and 0.90%, respec-
tively. Hence, the PSBFEM is more accurate than the FEM for
the same element size. Figure 5 shows that the results are virtu-
ally the same for the FEM and PSBFEM. Additionally, a conver-
gence study is performed usingmesh h-refinement. Themeshes
are refined successively following the sequence 20m, 10m, 5m,
2.5m, and 1.25m. Figure 6 illustrates the water head of the
monitor points at different degrees of freedom. It is noted that
the convergence rates of the PSBFEM and Abaqus CPE4P are
the same. Moreover, the PSBFEM is more accurate than Aba-
qus CPE4P for the same degrees of freedom.

5.2. Steady-State Seepage Analysis in Permeable Materials.
To demonstrate the flexibility of the PSBFEM using the

quadtree mesh, a steady-state seepage problem for perme-
able materials is solved. The geometry is shown in Figure 7
(a), in which the interior of the permeable material contains
an impermeable material. The length and width of the per-
meable material are both 1m. The coefficient of permeability
is kx = ky = 5 × 10−4 cm/s. The quadtree mesh is shown in
Figure 7(b). The mesh size for the quadtree mesh is the same
for each material at the junction, and the mesh transition
area can be effectively processed without further manual
intervention.

Moreover, the impermeable material does not divide the
mesh, and only the impermeable boundary is set at the junc-
tion with the permeable material. To verify the accuracy of
the quadtree mesh calculation, the results of the Abaqus
CP4EP element with similar degrees of freedom are

160 m

60 m

5 m

60 m

30 m

10 m

60 m40 m

x

y

(a)

(b)

(c)

Figure 14: Transient seepage under a concrete dam constructed on anisotropic soil: (a) geometry and boundary conditions; (b) FEM mesh;
(c) PSBFEM mesh.
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compared. The degrees of freedom for the quadtree and
CPE4P elements are 11,447 and 11,749, respectively.

Figure 8 shows a comparison of the PSBFEM quadtree
element and Abaqus CPE4P element in the water head.
The relative errors of the left edge and right edge are
0.28% and 0.32%, respectively. Furthermore, the distribu-
tions of the water head obtained from the PSBFEM and
FEM are illustrated in Figure 9. It can be observed that the
contour plots present good agreement. Therefore, these
results demonstrate the accuracy and reliability of the
PSBFEM for the quadtree mesh.

5.3. Transient Seepage Analysis for Complex Geometry. To
demonstrate the PSBFEM’s ability to solve complex geome-
try in the transient seepage problem, a square plate
(L = 4:0m) with a Stanford bunny cavity [41, 42] is consid-
ered, as shown in Figure 10. The coefficients of permeability
in the x and y directions are considered: kx = ky = 5 × 10−6
m/s. The value of Ss is 0.001m

-1. As shown in Figure 10, four
monitor points A, B, C, and D are chosen to compare the
results between the FEM and PSBFEM. The water heads at
the top and bottom boundaries are specified as 10m and
3m, respectively. The total time 2000 s and time step Δt =
1 s are used for the PSBFEM and FEM. The PSBFEM and
FEM are modeled using the quadtree element and CPE4P
element, respectively. As shown in Figure 11, both
approaches use the same element size.

Figure 12 illustrates the history of the water head of
the four monitor points. The solutions obtained by the
PSBFEM are in excellent agreement with those obtained
by the FEM for all points. When the time is greater than
1500 s, the water head of all points becomes stable. Addi-
tionally, the water head of the four monitor points at dif-
ferent times is presented in Table 2, which shows that the
relative error of the four nodes is less than 1.6%. It is
noted that the relative error reduces as the increment of
time decreases. Furthermore, Figure 13 shows the distribu-
tion of the water head at different times. The water head
distributions are virtually the same for the FEM and
PSBFEM. Therefore, the PSBFEM with quadtree meshes
demonstrates a good effect for solving complex geometry
in the transient seepage problem.

5.4. Transient Seepage Analysis in a Concrete Dam with an
Orthotropic Foundation. In the final example, the PSBFEM
is applied to simulate a concrete dam with an orthotropic
foundation. The geometry and boundary conditions are
shown in Figure 14(a). The initial water levels upstream
and downstream are 10m and 5m, respectively. Moreover,
the change of the water level upstream of the reservoir is
illustrated in Figure 15. The material properties of kx, ky,
and Ss are 0.001m/day, 0.0005m/day, and 0.001m-1, respec-
tively. Quadrilateral and polygonal meshes are used in Aba-
qus and the PSBFEM, respectively, as shown in Figures 14(b)
and 14(c). The mesh size is 5m.

A monitor point is chosen at the bottom dam to com-
pare the PSBFEM and FEM results, as shown in Figure 14
(a). Table 3 shows the water head of the monitor points at
six times. When the time is 500 days, the relative error of

the water head is 3.958%. It can be observed that the relative
error is 0.092% when the time is 3000 days. The history of
the water head is shown in Figure 16, where the results
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Figure 15: Variation of the water head with time upstream of a
concrete dam constructed on anisotropic soil.

Table 3: Water head of the monitor points at different times.

Time (day)
Monitor point

Relative error (%)
FEM (m) PSBFEM (m)

500 5.833 6.064 3.958

1000 12.819 12.996 1.379

1500 15.770 15.879 0.695

2000 16.879 16.937 0.341

2500 17.280 17.309 0.170

3000 17.422 17.438 0.092
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Figure 16: Comparison of the FEM and PSBFEM for the water
head history of the monitor point.
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obtained by the two methods correspond well. It is noted
that the water head becomes stable when the time is more
than 2000 days. Moreover, Figure 17 illustrates the distribu-
tion of the water head at different times using the PSBFEM
and FEM. The results for the two methods are in excellent
agreement.

6. Conclusions

In this study, the PSBFEM was proposed, which integrates
the SBFEM and polygonal mesh technique to solve seep-
age problems. Several benchmark problems were solved
to validate the implementation of the PSBFEM against
the FEM.

For steady-state problems, the accuracy rate of the
polygonal element of the PSBFEM was higher than that of
the standard FEM element for the same element size. The
PSBFEM converged to an analytical solution with an opti-
mal convergence rate. For transient problems, the results
for the PSBFEM the FEM were in excellent agreement. Fur-
thermore, the PSBFEM with quadtree meshes demonstrated
a good effect for solving complex geometry in the seepage
problem. Hence, the proposed method is robust and accu-
rate for solving steady-state and transient seepage problems.
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