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Well placement optimization is a significant task in oil field development which aims to find the optimal well locations by
maximizing the net present value (NPV) or other objective function. It is a highly nonlinear problem involving large number
of variables. Despite lots of work has been done on conventional reservoirs, the optimization tool for naturally fractured
reservoir (NFR) is still rare. Naturally fractured reservoirs represent significant amounts of oil reserves. The well placement
optimization for NFR is challenging due to the high heterogeneity of matrix and fracture system. In this work, a computer-
aided well placement optimization method is established for NFR based on the recent advances. The two phases flow discrete
fracture numerical simulation model, i.e., the embedded discrete fracture method (EDFM) is used to model the natural
fractures as its computational efficiency and flexibility to handle fracture. Then, stochastic simplex approximate gradient
(StoSAG) is employed to obtain the approximate gradient by combing the EDFM. The steepest ascent algorithm is used to find
the optimal well placement. A series of numerical case studies are set up to examine the performance of the proposed
approach. The NPV for water flooding naturally fractured reservoir production optimization substantially increased by using
StoSAG.

1. Introduction

Determining the location of wells is crucial during field devel-
opment process because it can affect the final NPV signifi-
cantly [1]. Lots of automated well placement optimization
methods has been investigated in previous studies [2–5]. How-
ever, little has suggested an effective way to assess the well
location optimization for naturally fractured reservoir. In
recent years, naturally fractured reservoirs receive great atten-
tion as its significant amounts of oil reserves [6]. In order to
improve the efficiency of reservoir development and enhance
oil recovery, well location for NFR should be carefully
arranged and optimized.

Well placement optimization is a highly nonlinear prob-
lem involving the reservoir response. Reservoir simulation
simulators are the common tools to achieve the rates of oil
and water. In the optimization process, the reservoir simula-
tion model may require thousands of runs. Thus, the simula-
tor should be computational efficiency. For NFR, simulators
are developed based on two classical types of fracture models:

dual-continuum method and explicit discrete-fracture and
matrixmodel. Dual-continuummethod is widely used inmost
commercial reservoir simulators such as Eclipse and CMG.
Dual-continuum method divides the reservoir domain into
fracture and matrix [7–9]. Commonly, it can keep applicabil-
ity when the fractures are denser and the representative ele-
mentary volume (REV) exists [10]. It also loses accuracy in
flow calculation when a number of large fractures locates in
the reservoir [11]. The fracture and matrix system are coupled
by transfer functions. Fracture-matrix flow is controlled
mainly by matrix propertied, and the shape factor needs to
be determined. Unfortunately, the shape factor is difficult to
calculate when considering capillarity, gravity [12]. Explicit
discrete-fracture and matrix model or discrete fracture-
matrix (DFM) has grown in popularity during recent years.
The model deals with every fracture explicitly. Thus, it can
capture the fracture geometries and accurately characterize
the flow exchange between fracture and matrix. Many DFMs
have been developed [13–18]. The unstructured grid is always
chosen to discrete the calculation domain. The grid size near
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the fractures should keep small to exactly simulate the flow
between matrix and fracture. However, the local grid refine-
ment leads to large computational load. A recently popular
DFM—embedded discrete fracture model (EDFM)—attracts
much attention and shows some advantages. The EDFM is
firstly proposed as a hierarchical modeling method to deal
with multiple length scales in naturally fractured formations
[19–21]. Then, it is extended to the flow performance analysis
of both naturally fracture reservoirs and hydraulic fractured
tight oil reservoirs [22–24]. Some applications of EDFM have
been reported. Yao et al. coupled the EDFM and dual-
continuum method to inverse multiscale fractures hierarchi-
cally using dynamic production data [25, 26]. Yao et al. [27]
optimized the fracturing parameters in shale gas reservoir.
Yu et al. [28] simulated the pressure response of well interfer-
ence in tight oil reservoirs with complex–fracture geometries.
Alessio et al. [29] employed the EDFM for computing
fracture-fracture and matrix-fracture transmissibilities as an
upscaling tool. In this study, the EDFMwill be used as the sim-
ulating tool.

Another important issue for well placement optimization
is the chosen of optimization algorithm. Two kinds of optimi-
zation algorithms are implemented to find the optimal well
placement: (1) gradient-based methods and (2) gradient-free
methods. Gradient-based methods mainly include SPSA,
finite difference, adjoint method, and descent method. These
gradient-based techniques are easy to trap in local optima,
and the gradient is difficult to calculate. On the other hand,
derivative-free techniques do not require the calculation of
derivatives, and they can achieve global search. Many
gradient-free methods are used like particle swarm optimiza-
tion (PSO), genetic algorithm (GA), differential evolution
(DE), and covariance matrix adaptation evolution strategy
(CMA-ES). Ensemble-based optimization increases popular-
ity recently due to its ability to capture uncertainty of multiple
reservoir realizations [30]. Ensemble-based optimization
(EnOpt) was first introduced by Lorentzen et al. [31] and
Nwaozo [32]. Then, this method is greatly improved and used
in reservoir development field [33–35]. In 2017, Fonseca et al.
[36] found that not all cases can get the optimal value in the
process of robust optimization using this method. Based on
this observation, a stochastic simplex approximate gradient
(StoSAG) method was proposed. StoSAG improves the EnOpt
gradient formula in two aspects, using the initial variable and
initial function value to replace the average value of random
perturbation position and corresponding function value,
respectively. After that, the method is widely used in the field
of well location optimization and injection production optimi-
zation [37, 38]. In 2019, the researchers of Alamos National
Laboratory of the United States proved the advantages of Sto-
SAG in robust optimization theoretically, and the optimal
value obtained by StoSAG was significantly higher than that
obtained by EnOpt, which provided a strict theoretical basis
for the popularization and application of StoSAG. Four kinds
of stochastic gradient calculation criteria, which are StoSAG, f-
StoSAG, sf-StoSAG, and ss-StoSAG, are proposed. The results
show that the optimal injection production control variables
can be obtained by using four kinds of gradients. The NPV
calculated is greatly improved than EnOpt method [39].
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Figure 1: Basic connections for EDFM.
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Figure 2: Flow chart of well placement optimization for fractured
reservoirs.
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Here, we developed the well placement optimization tool
for naturally fractured reservoirs by coupling the EDFM and
StoSAG. As far as we know, this is the first well placement opti-
mization tool by introducing the EDFM method. It has broad
application prospects. In the tool, the classical EDFM of two-
phase flow problem is adopted to simulate the naturally frac-
tures. The detailed geological characteristics of each fracture is

kept. The pressure and saturation are solved by Newton-
Raphson iteration by carefully setting the time steps to guaran-
tee the convergence. The standard StoSAG is chosen as the opti-
mization algorithm to search for the optimization well
placements. The well can connect with the fracture and matrix
domain freely. A series of example are test from simple to com-
plex to show the validation of the workflow. Specially, the

Table 1: Result of optimal well locations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Perturbation size 0.1 1 1.414 1 1 1

Initial step size 1 1 1 1 2 3

Optimal injection well location (19,10) (19,10) (20,3) (19,10) (18,4) (16,3)

Optimal production well location (3,11) (6,15) (5,10) (6,15) (6,11) (7,20)
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Figure 4: Log-permeability distribution for example 1.
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Figure 3: Illustration of well placement optimization for a reservoir with or without fracture.
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robust optimization results are presented. This is the first tool to
optimize the well placement by coupling the StoSAG and
EDFM. The paper is organized as follows. In Section 2, the the-
oretical model for well placement optimization is presented.
Then, we show the optimization model and results. Finally, dis-
cussion is given.

2. Methodology

2.1. Numerical Simulation Model. In order to perform the
well placement optimization for naturally fractured reser-

voir, the numerical simulation model should be carefully
prepared. In this work, the embedded discrete fracture
method (EDFM) is adopted as the numerical simulation
tool for well placement optimization. Figure 1 shows four
kinds of connections when using EDFM. The three kinds
of NNCs are the fracture-matrix connection in the same
matrix grid, the fracture-fracture connection in the same
matrix grid, and fracture-fracture connection in different
matrix grids. By defining three kinds of NNC in prepro-
cessing program, the in-house numerical simulation code
can be called to perform the calculation. Previous research
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Figure 5: The NPV with respect to number of iteration based on six cases.
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Figure 7: The optimal well locations plotted on the water saturation field.
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Figure 8: Log-permeability distribution example 2.

Table 2: Result of optimal well locations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Perturbation size 0.1 1 1.414 1 1 1

Initial step size 1 1 1 1 2 3

Optimal injection well location (17,11) (19,11) (17,11) (19,11) (17,11) (16,3)

Optimal production well location (6,11) (4,10) (4,10) (4,10) (4,10) (7,20)
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results show that pressure distribution, saturation distribu-
tion, and the well flow response agree with each other for
EDFM, DFM, and LGR. Easy implementation, general
applicability, and high computational efficiency are also
demonstrated compared to DFM and LGR.

2.2. Optimization Algorithm. Ensemble-based methods show
advantages in gradient-based optimization. The motivation
is that the real gradient is not always available. The general

formulation for StoSAG search direction is given by the fol-
lowing equation [39, 40]:

dl = ∇uJE uð Þ = 1
Ne

〠
Ne

i=1
∇u J u,mið Þ, ð1Þ

where Ne is the geological model realization number to
describe the reservoir uncertainty. ucontains the placement

0.00E + 00

5.00E + 06

1.00E + 07

1.50E + 07

2.00E + 07

2.50E + 07

3.00E + 07

0 10 20 30 40 50

N
PV

 ($
)

Iterations

Case1
Case2
Case3

Case4
Case5
Case6

Figure 9: The NPV with respect to number of iteration based on six cases.
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information for all wells. ∇uJðu,miÞ is the stochastic approx-
imation of the simplex gradient. ∇uJðu,miÞ is obtained by

∇uJ u,mið Þ = 1
Ns

〠
Ns

j=1
δûl, j δûl,j

� �T� �+
δûl,j J ûl,j,mi

� �
− J ul,mið Þ� �

:

ð2Þ

Then, the gradient becomes

dl = ∇uJE uð Þ = 1
Ne

〠
Ne

i=1

1
Ns

〠
Ns

j=1
δûl,j δûl,j

� �T� �+
δûl,j J ûl,j,mi

� �
− J ul,mið Þ� � !

:

ð3Þ

The superscript sign “+” on a matrix denotes the Moore-
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Figure 11: The optimal well locations plotted on the water saturation field.
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Table 3: Result of optimal well locations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Perturbation size 0.1 1 1.414 1 1 1

Initial step size 1 1 1 1 2 3

Optimal injection well location
(17,10)
(3,19)
(17,11)

(11,15)
(6,19)
(18,4)

(5,18)
(10,16)
(18,2)

(11,15)
(6,19)
(18,4)

(3,20)
(9,20)
(19,3)

(9,20)
(5,20)
(18,2)

Optimal production well location
(2,4)
(10,18)
(5,10)

(2,5)
(18,19)
(3,11)

(8,6)
(20,18)
(1,3)

(2,5)
(18,19)
(3,11)

(1,4)
(19,17)
(4,5)

(2,4)
(19,17)
(5,6)
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Figure 13: The NPV with respect to number of iteration based on six cases.

25200000

27200000

29200000

31200000

33200000

35200000

37200000

39200000

41200000

1 2 3 4 5 6

N
PV

 ($
)

Six test cases

Figure 14: The maximum NPV after 50 iterations for different cases.

8 Geofluids



0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

20
18
16
14
12
10

8
6
4
2

20
18
16
14
12
10

8
6
4
2

2015105

20
18
16
14
12
10

8
6
4
2

2015105

20
18
16
14
12
10

8
6
4
2

2015105

2015105

20
18
16
14
12
10

8
6
4
2

2015105

20
18
16
14
12
10

8
6
4
2

2015105

Figure 15: The optimal well locations plotted on the water saturation field.
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Table 4: Result of optimal well locations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Perturbation size 0.1 1 1.414 1 1 1

Initial step size 1 1 1 1 2 3

Optimal injection well location
(8,12)
(19,3)
(19,9)

(8,12)
(3,13)
(19,3)

(2,19)
(7,16)
(19,2)

(8,12)
(3,13)
(19,3)

(6,20)
(9,13)
(20,3)

(17,16)
(2,13)
(14,13)

Optimal production well location
(5,20)
(4,2)
(15,19)

(3,1)
(18,18)
(4,19)

(3,1)
(17,20)
(8,7)

(3,1)
(18,18)
(4,19)

(3,2)
(20,17)
(1,13)

(8,4)
(16,1)
(8,20)

9Geofluids



Penrose pseudo-inverse, where

δûl,j = ûl,j − ul: ð4Þ

Ns represents the number of control perturbations. Each
control perturbation ûl,j,j = 1, 2,⋯Ns at iteration l is gener-
ated from the distribution Nðul, CUÞ; CU is a predefined
covariance matrix.

2.3. Well Placement Optimization Tool. The objective func-
tion commonly used in well placement optimization prob-

lem is the NPV, which is defined as

J u,mið Þ = 〠
Nt

n=1

Δtn
1 + bð Þtn/365

〠
Np

j=1
ro ⋅ qno,j − cwq

n
w,j

� �
− 〠

NI

k=1
cwi ⋅ qnwi,k
� �2

4
3
5

8<
:

9=
;,

ð5Þ

where u is a Nu-dimensional column vector which contains
all well placement information; ndenotes the nth time step
for the reservoir simulation; Nt is the total number of time
steps; the time at the end of the nth time step is denoted by
tn; tn is the nth time step size; b is the annual discount rate;
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Figure 17: The NPV with respect to number of iteration based on six cases.
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NP and NI denote the number of producers and injectors,
respectively; ro is the oil revenue, in $/STB; cw and cwi denote
the disposal cost of produced water and the cost of water
injection in units of $/STB, respectively; qo,j and qw,j, respec-
tively, denote the average oil production rate and the average
water production rate for the nth time step, in units of STB/
day; and qwi,k denote the average water injection rate at the
kth injector for the nth time step, in units of STB/day.

To account for geological uncertainty, robust optimiza-
tion is performed. The problem is to maximize the expecta-
tion for life cycle NPV which is approximated by the average
NPV over Ne geological realizations:

JE uð Þ =
1
Ne

〠
Ne

i=1
J u,mið Þ: ð6Þ

We consider only bound constraints and let ulow and uup

denote the lower bound and upper bound for the well place-
ment variable, respectively. Then, the problem can be
expressed as

max
u

JE uð Þ =max
u

1
Ne

〠
Ne

i=1
J u,mið Þ,

s:t:ulow ≤ u ≤ uup:

ð7Þ

The logarithm transformation to each element of the
control vector is used to search the solution of the well place-
ment optimization problem. The steepest descent optimiza-
tion algorithm is used in which the new search position is
updated as

xk+1 = xk + αk
dk
dkk k∞

� �
, ð8Þ

for k = 0, 1, 2⋯ until convergence, where x0 is the initial
guess and xk is the estimate of the optimal control parameter
at the kth iteration; αk is the step size.

2.4. Workflow. The workflow of well placement optimization
using StoSAG and EDFM is shown in Figure 2. Firstly, Ne
geological realizations should be generated. In robust opti-
mization, Ne is commonly set to be bigger than 1. The initial
well placement u0 is used to calculate the initial objective
function value JEðu0Þ. In order to compute the objective
function, the EDFM simulator is called. Then, the iteration
step is performed. For a certain iteration k, the stochastic
simplex approximate gradient is calculated using the search
direction. In our work, the ensemble size is set to be 10 for
all cases. Figure 3 shows the reservoir model with three wells.
The number of grids is 100 for the reservoir without frac-
ture, while the number of grids is 119 for the reservoir with
fracture. Note that if there is no fracture in the reservoir, the
well placement is located at the center of the matrix grid.
However, when fractures exist, the well placements can
locate at the centers for both matrix and fracture grids.

3. Case Study

In this section, some synthetic cases are presented to test the
new workflow. The examples are set from simply to com-
plex. The 2D models are firstly discussed. Then, the 3D
model is presented. A number of wells and fractures also
increase for different examples which can test the perfor-
mance of the new workflow.

3.1. Example 1: 2D Model with Inclined Single Fracture. A
water flooding example is considered which is a 2D hetero-
geneous model. The model size is 400m×400m×10m with
20×20× 1 uniform grid. The size for each grid is
20m×20m×10m. The horizontal log-permeability
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distribution is presented in Figure 4. the fracture width is set
to be 0.001m. The matrix porosity is homogenous and equal
to 0.1. The initial pressure is set to be 30MPa. The reservoir
lifetime is 2000 days. One production wells and one injec-
tion wells are placed in the reservoir. The production well
is operated at fixed bottom hole pressure of 10MPa, and
the injection wells are operated with BHP of 40MPa. To
optimize the NPV, the oil price is set equal to USD 60/stb;
the water injection cost is USD 5/stb; the cost of disposing
produced water is USD 5/stb; the annual discount rate is
0.1. The maximum number of step size cuts is set to be 5.
The total maximum allowable iteration is 50.

The performance of the optimization algorithm is always
dependent on the setting parameters. In the optimization
process, different value of perturbation size and initial step
size are taken to examine their effect on the objective func-
tion value and optimal placement. Six test cases are con-
ducted, and the optimization results are also presented in
Table 1(case 1 and case 4 have the same setting parameters).
Figure 5 shows the NPVs after 50 iterations. It can be seen
that all cases converge to a steady NPV value after a series
of exploring. Compared the initial well placement and the
final solution, the NPV increases substantially. At the initial
iterations, the NPV increases rapidly, and then the NPV
increases slowly. Lastly, the NPV trends to be a constant
for different cases. Figure 6 shows the final converged
NPV. The highest NPV is $2:66 × 107 for case 5, and the
lowest NPV is $2:6 × 107 for case 2. Despite that the final
converged NPV value is different, the difference is very
small. The NPV evaluation curves follow similar paths
which start from small to large value monotonously. Taking
a closer look at the six curves calculated from different cases
in Figure 5, we can observe that the red curve shows a rela-
tively high converged performance than other for curves. In
the initial iteration stage, case 5 has a rapid search efficiency
and converges to the highest NPV finally. Though case 6 has
a slow search efficiency during the first 25 iterations, it finds

a relatively high local optimum. Observing the curves of case
1, case 2, and case 3, the initial stage search efficiency
becomes higher if we set a smaller perturbation size. On
the other hand, by comparing case 4, case 5, and case 6, we
can see that the initial step size also has great effect for the
search path. Overall, the results demonstrate that StoSAG
generates optimal well placement, so the stochastic simplex
approximate gradient can be used in well placement optimi-
zation problem. Figure 7 shows the optimal well placement
overlapped on water saturation field in 2000 days. The injec-
tion well moves along the +x and -y direction, and the pro-
duction well moves along -x and + y from the initial position.
The line connecting two wells trends to be perpendicular to
the fracture. The distance between two wells is very close for
different cases.

3.2. Example 2: 2D Model with Vertical Single Fracture. A
water flooding example is considered shown in Figure 8.
The basic model parameter is the same as example 1 except
the fracture. A fracture is located at the center of the reser-
voir. The length of the fracture is 200m. The fracture width
is set to be 0.001m. Six test cases are conducted, and the
optimization results are presented in Table 2. Figure 9 shows
the NPVs after 50 iterations. It can be seen that the first five
cases are converged to a steady NPV value after 50 iteration.
Case 6 is trapped to a local optimum. In this example, case 1
demonstrated an extraordinary ability in research efficiency.
For most of the iteration, its NPV is higher than others.
Figure 10 is the maximum NPV after 50 iterations. The
highest NPV is $2:85 × 107 for case 1, and the lowest NPV
is $2:55 × 107 for case 6. Figure 11 shows the optimal well
placement overlapped on water saturation field in 2000 days.
The injection well moves along the x direction, and the pro-
duction well moves along -x from the initial position. The
line connecting two wells trends to be perpendicular to the
fracture for the first five cases. The distance between two
wells is very close for the first five cases.

Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7

Figure 20: Fracture distribution of different layers for egg model.
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3.3. Example 3: 2D Model with Multiple Fractures. In exam-
ple 3, we set 12 fractures in the reservoir. The position is
shown in Figure 12. The orientation of the fractures keeps
consistent. The other parameters are the same as example
1. Three injection wells and production wells are arranged
in the reservoir. Note that in this model, the number of
whole optimization variables is 12 considering the well loca-
tion coordinates in (x, y)-plane. Six test cases are conducted,
and the optimization results are presented in Table 3.
Figure 13 shows the NPVs after 50 iterations. It can be seen
that the first five cases are converged to a steady NPV value
after 50 iteration. In this example, case 6 demonstrated an
extraordinary ability in search efficiency. For most of the
iteration, its NPV is higher than others. Figure 14 is the
maximum NPV after 50 iterations. The highest NPV is $
4:03 × 107 for case 6 and the lowest NPV is $3:89 × 107 for

case 1. Figure 15 shows the optimal well placement over-
lapped on water saturation field in 2000 days. The three pro-
duction wells are located along the diagonal of the reservoir.
Two production wells are located at the zone where the per-
meability is relatively high.

3.4. Example 4: Robust Optimization. In example 4, we con-
sider the robust production optimization. Here, 10 reservoir
realizations are randomly chosen, which is used to charac-
terize the reservoir geological uncertainty. Figure 16 shows
the log-permeability distribution in the horizontal direction
of 10 reservoir models. Like example 3, we set 12 fractures
in the reservoir. Three injection wells and production wells
are arranged in the reservoir. Table 4 shows the optimal well
location. Figure 17 shows the NPVs after 50 iterations.
Figure 18 is the maximum NPV after 50 iterations. It can

Permeability (mD)
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Figure 21: Permeability distribution of different layers for egg model.
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Figure 22: The NPV with respect to number of iterations based on different methods.
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be seen that the highest NPV is $3:54 × 107 for case 4 and
the lowest NPV is $3:44 × 107 for case 3. Compared with
the results of example 3, the uncertainty decreases the
NPV greatly. On the other hand, four types of search
methods (f-StoSAG, sf-StoSAG, StoSAG, and ss-StoSAG)
for the steepest ascent optimization algorithm are used to
optimize the well placement. Figure 19 presents the expected
NPV of different methods. As expected, the average NPV
generated from different search methods is higher than the
initial average NPV. The f-StoSAG obtains a relatively high
average NPV.

3.5. Example 5: Modified Egg Model. The egg model has been
widely used for well placement and control optimization.
The geological parameters, fluids parameters, and produc-
tion control parameters can be found in Jansen et al.
(2014) [41]. The number of gridblocks is 25200 for which
(60,60,7) is used to discretize the reservoir in x, y, and z
directions, respectively. In this study, all grids are set to be

active and will be considered in the simulation runs. The
grid block size is set to 8m×8m× 4m. There are eight injec-
tion wells and four production wells. Because the model has
no aquifer and no gas cap, primary production is almost
negligible. The production wells are operated at fixed bottom
hole pressure (BHP) with 39.5MPa, and the injection wells
are operated under a BHP constraint of 42MPa. Total pro-
duction time is 7200 days. We seek to optimize the well loca-
tions of 8 injection wells and 4 production wells. Figure 20
shows the fracture distribution for each layer. Figure 21
shows the permeability distribution of seven layers for egg
model. After defining connections and calculating transmis-
sibility in preprocessing code, the simulation is simple to
performance using in-house simulators. Two other typical
algorithms, particle-swarm optimization (PSO) and
ensemble-based optimization (EnOpt), are both used to
study their performance on well placement optimization.
Figure 22 shows the NPVs with respect to number of itera-
tions for different methods. Figure 23 shows the oil
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Figure 23: Oil saturation at the final simulation time for different optimization methods.
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Figure 24: Cumulative oil production and water cut for different optimization methods.
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saturation (first layer) at the final simulation time for differ-
ent optimization method. Figure 24 shows the cumulative oil
production and water cut for different optimization method.
As can be seen, the highest NPV is $1:02 × 108 for by using
StoSAG. The final NPV for EnOpt and PSO is $9:56 × 107
and $9:65 × 107, respectively. Also, when using StoSAG,
the highest cumulative oil production can be achieved in
7200 days.

4. Conclusions

In this work, we use StoSAG for the well placement optimi-
zation. The computer-aided well placement optimization
method is established for naturally fractured reservoirs
based on the recent advances. The embedded discrete frac-
ture method (EDFM) is used to model the natural fractures
as its computational efficiency and flexibility. The stochastic
simplex approximate gradient (StoSAG) is employed to
obtain the approximate gradient by combing the EDFM.
The steepest ascent algorithm is used to find the optimal well
placement. A series of numerical case studies are set up to
examine the performance of the proposed approach. We
also demonstrate that f-StoSAG and StoSAG and sf-
StoSAG and ss-StoSAG can achieve fairly close results. The
workflow can be taken as an effective tool in well placement
optimization for naturally fractured reservoirs.
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