
Research Article
Measurement of Total Flow Rates in Horizontal Well Oil-Water
Two-Phase Flows by the Application of BP Neural Network
Algorithm to Production Array Logs

Xin Zhang ,1 Hongwei Song ,1,2 Haimin Guo,1 and Xinlei Shi3

1School of Geophysics and Oil Resources, Yangtze University, Wuhan, Hubei 430100, China
2Research Office of Yangtze University, Key Laboratory of Well Logging, China National Petroleum Corporation, Wuhan,
Hubei 430010, China
3CNOOC China Limited, Tianjin Branch, Tianjin 300459, China

Correspondence should be addressed to Hongwei Song; shw98wj@yangtzeu.edu.cn

Received 1 January 2022; Revised 28 February 2022; Accepted 1 March 2022; Published 11 April 2022

Academic Editor: Bicheng Yan

Copyright © 2022 Xin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the modern petroleum industry system, oil-water two-phase flows exist widely. Among them, the total flow rate of mixture fluid
in a horizontal well is difficult to obtain due to the phase segregation caused by gravity. Therefore, it is a difficult and hot issue. To
obtain the total flow rate of oil-water two-phase flows in horizontal wells, in this paper, Multiple Array Production Suite (MAPS),
which is also called Production Array Logs (PAL), is used to conduct simulation experiments, uses BP neural network (BPNN)
algorithm to train the data samples, and establishes the prediction models of the total flow rates of oil-water two-phase flows
in horizontal wells. The results showed that the average relative error was less than 10%, which justify that the BPNN has good
practicability in using data of MAPS in oil-water two-phase flows horizontal wells to predict the total flow rates, and it
provides a new method and theoretical support for obtaining flow rates in horizontal wells.

1. Introduction

With the maturity and wide application of horizontal well oil
development technology, it has become an important
research direction to study its related production logging
technology, including obtaining various flow parameters in
wells. Among them, the study of oil-water two-phase flows
is a key problem [1, 2].

In the logging industry, some researchers have tried to
provide the solution: multiple-sensor array tools (MAPS),
which can be used to detect and analyze multiphase flow
in horizontal wells. For the multiphase flow of horizontal
well, these tools measure the fluid properties at multiple
locations around the cross-sectional area of the wellbore,
providing a distributed measurement that helps to relate
the measurements to obtain flow rates and holdups [3, 4].
According to the measured value, auxiliary computer analy-
sis software can be used to reconstruct it, which can reflect
the flow pattern in the horizontal well. At the same time,

the relevant special software can reconstruct the results of
well logging into simulation images. It should be used in
conjunction with neural network technology to obtain better
results.

The neural network has shone in the oil-related sector.
During the COVID-19 outbreak, the convolutional neural
network which extracts online oil news can be used to pre-
dict the fluctuation of the oil market [5]. The deep neural
network is used to process seismic wave data for reservoir
prediction [6].

In addition, some scholars have made researches on the
application of processing well logging data with neural net-
works. Guo et al. [7] studied the use of feedforward artificial
neural networks for oil-water two-phase flow production log-
ging interpretation methods and obtained the design of corre-
sponding software. Strict experiments were carried out on the
three-phase flow simulation device of Daqing Oilfield. The
105 sets of sample data obtained in the experiment were
substituted into the network for training and learning. 93 sets
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of data were selected to train the BP neural network and RBF
network. 12 multiple sets of sample data were used for testing
and prediction, the value was compared with the actual value,
and the error was within the acceptable range [8]; Chen et al.
[9] used BP neural network to predict the startup velocity of
the continuous flowmeter in the wellbore and obtained excel-
lent prediction results, which showed the potential of this
method in conventional vertical well logging interpretation.

In general, it is very effective to use great algorithms combined
with computer tools to improve productivity [1, 10].

In horizontal wells, the fluid is stratified under the influ-
ence of gravity, which makes the instruments used in con-
ventional vertical wells such as inline flowmeters and
capacitance holdup meters not applicable anymore. In order
to solve these problems, this paper took the MAPS array log-
ging tools as the research object and the experimental data
obtained from the oil-water two-phase simulation experi-
ment on the production logging experiment platform of
Yangtze University as samples, adopting BPNN that can
realize the nonlinear mapping to establish models and pre-
dict flow rates. It provides a new method for obtaining flow
rates of horizontal wells.

2. Production Logging Simulation
Experiment in Horizontal Well

2.1. Experimental Set-Up. The experimental set-up
(Figure 1) was a multiphase flow simulation experiment
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Figure 1: Multiphase flow experimental set-up.
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platform of Yangtze University, which included two trans-
parent glass tubes with one inner diameter of D = 124mm
and another inner diameter of D = 159mm, which both
permitted visual observation of the flow, besides a large
liquid storage tank for oil and water storage, an air com-
pressor for pneumatic control valves and gas for experi-
ments, a hydraulic machine for adjusting the angle of the
wellbore, and the relevant complete set of pumps, trans-
portation pipelines, and a master console for controlling
the input fluid and observing the state of the entire exper-
imental set-up. The simulation experiment used a 12m
long 159mm inner diameter wellbore. The fluid was an
oil-water two-phase flow, the water was tap water, and
the oil was No. 10 industrial white oil. The oil-water ratio
was set to 20%, 40%, 60%, 80%, and 90% water cut. The
flow rates were 100m3/d, 300m3/d, and 600m3/d. The
wellbore angles were set to near-horizontal (93°, 90°, and

85°). The measurement methods were divided into spot
measurements and continuous measurements. During con-
tinuous measurements, set the cable speed to 0, 10m/min,
15m/min, and 20m/min.

2.2. Production Array Logs. The experimental tools MAPS
(Figure 2) include spinner array tool for obtaining flow rates,
resistance array tool, and capacitance array tool for obtain-
ing holdup, in addition to a caged fullbore flowmeter [11].

The spinner array tool (SAT) (Figure 3) is composed of
six microspinners distributed on the same section, which
can measure the flow at different positions on the wellbore
area; the capacitance array tool (CAT) (Figure 4) and the
resistivity array tool (RAT) have similar shapes: twelve
microsensors are evenly distributed to measure the fluid
nearby [12]. The caged fullbore (CFB) (Figure 5) flowmeter,
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Figure 6: Structure of BP.

Table 1: Cable speed-flow conversion table.

Experimental control
flow (m3/d)

Cable speed
(m/min)

Equivalent total flow
(m3/d)

100

0 100.00

10 385.91

15 528.87

20 671.82

300

0 300.00

10 585.91

15 728.87

20 871.82

600

0 600.00

10 885.91

15 1028.87

20 1171.82

Figure 5: CFB.
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Figure 7: Relational graph of the measured value of 93° inclination
of 100m3/d CFB and cable speed.
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which uses retractable metal blades to measure the flow
velocity and resides in the middle of the wellbore, can accu-
rately measure the total flow rate [13].

3. Backpropagation Neural Network

Backpropagation neural network is a multilayer feedforward
neural network that uses a backpropagation learning algo-
rithm to adjust the weights, generally uses a sigmoid func-
tion to transmit signals between neurons, and can realize
any nonlinear mapping from input to output.

BP neural network is a kind of neural network, which is
powerful and widely used. It consists of an input layer, a hid-
den layer, and an output layer. The layers are fully intercon-
nected, and the same layers are not connected. The hidden
layer can be one or more layers. Figure 6 is a typical three-
layer BP neural network structure picture.

The multilayer network design enables the network to
calculate errors more accurately during operation and
complete more complex tasks. At the same time, it uses
backpropagation algorithm for learning. In the BP neural
network, the data signal is propagated back layer by layer
through the input layer and hidden layer. When training
the network weights, the signal is in the direction of
reducing errors in the network structure, from the output
layer to the middle layers, and forwards layer by layer.
Modify the connection weight of the network [14]. With
the continuous progress of learning, the final error
becomes smaller and smaller and finally reaches the set
ideal error. At this time, a series of neuron weights con-
taining information is obtained, and a model that can
solve the problem is completed.

In summary, the BP neural network can realize complex
nonlinear mapping, can approximate complex functions
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Figure 9: Relational graph of the measured value of 93° inclination
of 600m3/d CFB and cable speed.
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Figure 8: Relational graph of the measured value of 93° inclination
of 300m3/d CFB and cable speed.
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Figure 10: Relational graph of the measured value of 90°

inclination of 100m3/d CFB and cable speed.
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Figure 11: Relational graph of the measured value of 90°

inclination of 300m3/d CFB and cable speed.
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suitable for problem-solving and processing for the fusion of
multiple input data, and is suitable for processing MAPS
well logging data to predict the flow rates.

4. The Realization of Predicted Flow Rates

4.1. Sample Data Training and Prediction. In the laboratory
environment, total input flow rates, water cuts, and wellbore
inclinations are controlled; the corresponding MAPS data
are used as the original data. Among them, all data samples
are divided into two categories according to whether the
measurement method is the continuous measurement or
spot measurement, and only the CAT corresponding to
SAT is included in the spot measurement data.

In the wellbore, pulling the cable to drive the instrument
to the direction of fluid entry is equivalent to increasing the
flow rate. Therefore, Equation (1) and Equation (2) can be

used to convert the cable speed into flow rate:

Pc =
1
4πD

2 × 3600 × 24 × 10−6 m3/d, ð1Þ

Q = v ∗ PC ∗
5
3 ,

ð2Þ

where Q represents the conversion flow (m3/d), v represents
cable speed (m/min), and PC is pipe constant ((m3/d)/(cm/
s)).

After unit conversion and calculation according to the
above formula, the result was obtained and made into
Table 1.

The array spinners of SAT are closely distributed in the
wellbore wall, and the CFB is located in the center of the
wellbore. The combination of the two can measure the flow
data in the horizontal well. The conventional processing of
these data is to consider the spinner starting velocity fitting
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Figure 12: Relational graph of the measured value of 90°

inclination of 600m3/d CFB and cable speed.
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Figure 13: Relational graph of the measured value of 85°

inclination of 100m3/d CFB and cable speed.
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Figure 14: Relational graph of the measured value of 85°

inclination of 300m3/d CFB and cable speed.
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to obtain the apparent velocity and obtain the flow data after
deviation correction. Using the BP neural network to predict
the flow of these data can omit the fitting step and ignore the
influence of the correction factor, as shown below in the
figures.

Analyzing Figures 7–17, we can get this conclusion: the
response values of CFB with different water cuts have a dif-
ferent slope or intercept with the measuring velocity rela-
tional graph. There is also a significant difference in SAT
response value in oil and water. It can be seen that SAT
and CFB have different instrument constants and start-up
velocities in different fluids. The data of CAT is used to give
the phase states of different positions in the wellbore. In fact,
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Figure 16: The response diagram of SAT spinners with flow rate
= 100m3/d in horizontal well in different water cuts.
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Figure 17: The wellbore distribution map in horizontal well with
flow rate = 100m3/d of SAT.
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Figure 18: Histogram of the predicted value error of model 1.
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Figure 19: Histogram of the predicted value error of model 2.
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Figure 20: Histogram of the predicted value error of model 3.
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the BP neural network is trained with different oil and water
SAT and CFB data as weights. Therefore, CAT data can be
added to the training to improve accuracy. According to
the existing data and algorithm requirements, the following
three prediction models have been set up:

(1) Data of SAT as inputs: response value of spinner
array tool as inputs (129 sets for training, 10 sets
for test)

(2) Data of SAT and CFB as inputs: response value of
spinner array tool and caged fullbore flowmeter as
inputs (129 sets for training, 10 sets for test)

(3) Data of SAT, CAT, and CFB as inputs: response
value of spinner array tool and capacitance array tool
and caged fullbore flowmeter as inputs (24 sets for
training, 6 sets for test)

The above three different input models all use actual
flow rates as output for the BP neural network algorithm
to adjust connection weights. When importing data into
the algorithm, select several groups of data to keep (about
10% of the total amount of data samples) for use in testing
algorithms, analyzing errors, and evaluating effects. Benefit-
ting from the advantages of the BP neural network, the error
can be continuously corrected to analyze the data by itself, so
the data can be used directly without correction processing;
on the other hand, due to the advantages of the BP network,
when inputting the measured value of capacitance array tool
CAT instrument, it is not necessary to normalize to obtain
the water holdup, but the network can obtain the
relationship through calculation by itself, which makes it
quick and convenient to predict the flow rates on the way.
The results obtained by running the above three models
are as follows:

(1) Data of SAT as inputs

The average relative error is 10.84% and according to
Figure 18, there are many jump points. It may be related
to insufficient experimental data, and the bigger reason is
the limitation of the single SAT value as input that can be
analyzed from Figure 18: only 5 of the predicted values can
meet the requirement of less than 10% error, accounting
for half of the total number of test samples, and the effect
is not as expected.

(2) Data of SAT and CFB as inputs

According to Figure 19, there are few jump points and
basically, they meet the requirements, and the average rela-
tive error is 7.94%; according to the visual error chart, the
effect is good, most of the predicted values fluctuate within
the ±10% error line, and occasionally, the predicted values
exceed these lines. It can be seen that the absolute error is
not large at the lower flow rate, the relative error is higher,
and the rest of the data is better, which achieves the purpose
of predicting the flow rates.

(3) Data of SAT, CAT, and CFB as inputs

This model has less data, which is not conducive to the
neural network but still achieves relatively good results
according to Figure 20. Overall, there is one and only one
jump point, which may be caused by too little data or insuf-
ficient experimental conditions. Only one of the six
predicted values has a relative error of 29.9%, and the rest
are within 10%, the average relative error is 9.03%, which
realizes the prediction of flow rate. After increasing the
number of data samples, it is bound to further improve the
accuracy and reduce the error. It also shows the superiority
of model 3.
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4.2. Result Analysis. The BP neural network has been used
to process the raw data of the array logging tool, and dif-
ferent models have been designed to run. From the results
of the three models, according to Figure 21, the accuracy
of model 1 is slightly worse, and the average relative error
of model 1 is 10.84%, but the consistency is poor, while
the average error of model 2 is 7.94% and model 3 is
9.03%. The accuracies are better than model 1. They are
limited by the number of output data and a small number
of total data sets, so their accuracies may still be improved.
In general, this design can be used in actual production
with improvement.

5. Conclusions

(1) It is not feasible to predict the flow rates by using
only a single spinner array tool SAT instrument
response value as the data input. The other two pre-
diction models have higher accuracy. After more
data samples and more improvement of multiple
output, directions and algorithms can be put into
actual production interpretation and complement
other methods of calculating flow

(2) Although the BP neural network does not need to
calibrate the data due to its unique operating princi-
ple, the increased input parameters, for example, in
model three, the introduction of capacitance array
tool CAT measurement data is equivalent to giving
the array spinner tool data with the water holdup
parameter corresponding to the flowmeter which
adds weight to the network when processing differ-
ent spinners. As a result, the predicted flow rates
are closer to the true value. It can be concluded that
when using the BP network, increasing the related
different parameters such as the corresponding
RAT and CAT data will improve the efficiency and
accuracy of the network, which is of great signifi-
cance to the actual production

(3) BPNN is a traditional and mature neural network
algorithm, which is easy to implement and obtain.
However, it should be noted that BPNN has disad-
vantages such as difficult parameters to determine
and dependence on samples and it takes many oper-
ations to determine the optimal parameter. In future
studies, more advanced new algorithms will be used
or extended to deep learning
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