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Dual-permeability flow and stress sensitivity effect are two fundamental issues that have been widely investigated in transient
pressure analysis for horizontal wells. However, few attempts have been made to simulate the combined effects of dual-
permeability flow and stress-dependent fracture permeability on the pressure transient dynamics of a horizontal well in a
naturally fractured gas reservoir. In this approach, an analytical model is proposed to integrate the complexities of pressure-
dependent PVT properties, dual-permeability flow behavior, and stress-dependent fracture permeability characteristics. The
nonlinearity of the mathematical model is weakened by using Pedrosa’s transform formulation. Then, the Laplace integral
transformation and separation of variables are applied to solve the model. Based on the solution of the mathematical model, a
series of new-type curves are drawn to make a precise observation of different flow regimes. The main differences between the
proposed model and the traditional models are discussed, and the effects of the permeability modulus of fractures, storability
ratio, interporosity flow factor, and skin factor on transient pressure response are also examined. The results show that there
are obvious differences in transient pressure dynamic curves between the proposed model and traditional models. The stress
sensitivity effect plays a significant role in the intermediate flow period and the late-time pseudoradial flow period. The dual-
permeability flow behavior mainly affects the early transient and interporosity flow stages. The proposed model can accurately
simulate the transient pressure behaviors of a horizontal well in a naturally fractured gas reservoir with a dual-permeability
flow and stress sensitivity effect. The novel model can be used to interpret pressure signals with accurate matching results and
more reasonable interpreted parameters.

1. Introduction

Transient pressure analysis of a horizontal well in a naturally
fractured gas reservoir is greatly affected by fracture seepage
parameters and stress-dependent fracture permeability. For
naturally fractured reservoirs, the fractures are always with
heterogeneities [1, 2]. An experimental study on fracture
stress sensitivities proves that stress-dependent fracture per-
meability significantly affects the transient pressure response
[3]. So, it is pretty essential to propose a comprehensive
model to capture the transient behavior of horizontal wells
in naturally fractured gas reservoirs.

Because it is often impossible to describe the complex
fractures precisely, continuum models are proposed to cap-

ture the flow behavior of this kind of reservoir. Much
research has been done on theoretical models of vertical
wells in naturally fractured reservoirs. Barenblatt et al. [4]
proposed a classic double-porosity and single-permeability
model to study vertical well production in porous media
reservoirs. This model assumes that a naturally fractured
reservoir is composed of two completely overlapping con-
tinua, porous matrix, and fractures. Warren and Root [5]
expanded Barenblatt et al.’s approach to cover the indepen-
dent physical properties of fracture and matrix. In their
model, naturally fractured formation is formed by matrix
blocks, which is separated by uniform and orthogonal frac-
tures. Besides, the pseudosteady-state interporosity flow is
firstly adopted to simulate mass transfer between fracture
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and matrix systems. After that, Kazemi et al. [6], de Swaan
[7], Raghavan and Ohaeri [8], Serra et al. [9], Jalali and
Ershaghi [10], Wu and Pruess [11], Bui et al. [12], Wu
et al. [13], Kuchuk et al. [14], Jia et al. [2], and Wang et al.
[15] proposed their own dual-media model for naturally
fractured reservoirs with the consideration of transient inter-
porosity flow behavior. These models assume that the frac-
ture system is the only flow pathway directly connected
with wellbore by ignoring the flow from the matrix system
to the wellbore. Because the dual-porosity and single-
permeability model is no longer applicable in naturally frac-
tured reservoirs, a great deal of work have instead been
directed at using dual-porosity and dual-permeability
models [14, 16–18] to describe the flow behavior, which
assumes that both the fracture and matrix systems are the
flow pathway directly connected with the wellbore, also con-
sidered the pseudosteady-state and transient-state interpor-
osity flow between matrix and fracture systems. However,
most of the models ignored the effect of the stress-
dependent fracture permeability on transient pressure
response. Although a great deal of work has been done on
theoretical models of naturally fractured gas wells consider-
ing stress sensitivity of fracture permeability, most of them
are restricted to the dual-porosity and single-permeability
flow problem [3, 15, 19–21].

In recent years, horizontal wells have been increasingly
applied to some naturally fractured gas reservoirs. Research
on the transient pressure behavior of this kind of well has
become increasingly popular among engineers [22–30].
However, transient pressure analysis for horizontal wells is
commonly performed assuming that permeability for natu-
ral fractures remains constant, which might not be physi-
cally applicable for stress-sensitive reservoirs. Besides, dual-
permeability flow is seldom considered in their models. In
general, the big challenge of analyzing the transient pressure
response of a horizontal well is that the dual-permeability
flow behavior and stress-dependent fracture permeability
should be all incorporated in the mathematical models.

This paper presented a novel semianalytical model to
examine the combined effects of dual-permeability flow
behavior and stress-dependent fracture permeability on the
transient pressure response of a horizontal well in a naturally
fractured gas reservoir. The nonlinearity of the governing
equations caused by the stress sensitivity of fracture perme-
ability is eliminated using Pedrosa’s [31] transform formula-
tion. With Laplace transform and separation of variables, we
got the analytical solution of the mathematical model. A
series of new transient pressure dynamic curves are drawn
to observe different flow regimes based on the solution.
Then, differences between the proposed model and tradi-
tional models are discussed and the effects of some critical
parameters on transient pressure response are also analyzed
with the proposed model.

2. Methodology

2.1. Model Assumption. As shown in Figure 1, the naturally
fractured gas reservoir is composed of fracture and matrix
systems and the physical properties of the two systems are

independent. A radial cylindrical dual-porosity and dual-
permeability medium reservoir is considered in which a
single horizontal well is located at the center, completely
penetrating the formation. The matrix/fracture flow is sche-
matically described in Figure 2. In this study, the proposed
model assumes that both the fracture and matrix systems
are the flow pathway directly connected with the wellbore
and fluids in the fracture and matrix systems first flow into
the horizontal wellbore, followed by the matrix-fracture
interporosity flow. Some simplifying physical model
assumptions for the derivation of the governing equation
are listed as the horizontal well produced with the constant
production rate in a naturally fractured gas reservoir. The
external boundaries of the top and bottom are assumed to
be closed, and the lateral boundary is assumed to be infinite.
The matrix-fracture interporosity flow in the reservoir is
described by the pseudosteady-state model [5, 25, 26]. Fluid
flow follows the law of Darcy seepage, and stress-dependent
fracture permeability is considered. Also, capillary and grav-
ity forces are neglected to simplify the model.

2.2. Mathematical Model. The PVT properties, such as fluid
viscosity and volume factor of the gas phase, are quite sensi-
tive to formation pressure. In this section, the pseudopres-
sure transformation is used to capture pressure-dependent
PVT properties and reduce the nonlinearity of governing
differential equations. The definitions of pseudopressure
and pseudotime are given by

Figure 1: Schematic of naturally fractured reservoir.
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Figure 2: Dual-porosity and dual-permeability flow scheme.
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ψj = 2
ðp
0

p
μgZ

dp, j = f ,m,

ta =
ðt
0

μgicti
μg pð Þct pð Þ dt,

ð1Þ

where p is the pressure, MPa; ψf is the pseudopressure of the
fracture, MPa2/(mPa·s); ψm is the pseudo pressure of the
matrix, MPa2/(mPa·s); t is the time, h; ta is the pseudotime;
μg is the gas viscosity, mPa·s; ct is the total compressibility
coefficient, MPa−1; and Z is the gas compressibility factor.

To describe the degree of stress sensitivity and its influ-
ence to fracture permeability, the concept of pseudoperme-
ability modulus γf is defined as [19, 26]

γf =
1
kf

∂kf
∂ψf

: ð2Þ

Equation (2) can be further written as

kf = kf ie
−γ f ψi−ψ fð Þ, ð3Þ

where kf is the permeability of fracture, mD; kf i is the initial
permeability of fracture, mD; ψi is the initial pseudopres-
sure, MPa2/(mPa·s); and γf is the pseudopermeability mod-
ulus of the fracture, (mPa·s)/MPa2.

To establish and solve the model, a radial cylindrical sys-
tem (r) is used to describe the flow of the fracture and matrix
system. With consideration of the dual-porosity and dual-
permeability flow behavior and stress-dependent fracture
permeability, the governing differential equation of the com-
plex system can be described as follows:

For the fracture system,

∂2ψf

∂r2
+ 1
r

∂ψf

∂r
+ γf

∂ψf

∂r
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+
kf vi
kf hi
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� �2" #
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kf hi

ψm − ψf

� �
= eγ f ψi−ψ fð Þ ϕf μgct f

3:6kf hi
∂ψf

∂t
:

ð4Þ

For the matrix system,

∂2ψm

∂r2
+ 1
r
∂ψm

∂r
+ kmv

kmh

∂2ψm

∂z2
− α

km
kmh

ψm − ψf

� �
=
ϕmμgctm
3:6kmh

∂ψm

∂t
:

ð5Þ

For the initial condition,

ψf

���
t=0

= ψmjt=0 = 0: ð6Þ

In the inner boundary condition,

lim
ε⟶0

lim
r⟶0

4πh
μgε

ðzw+ε/2
zw−ε/2

kmhr
∂ψm

∂r
+ kf hie

−γ f ψi−ψ fð Þr ∂ψf

∂r

� �
dz

" #

= pscTZ
pTsc

qsc, z − zwj j ≤ ε

2 :

ð7Þ

The top and bottom boundaries are assumed to be closed
and given by

∂ψm

∂z

����
z=0

=
∂ψf

∂z

����
z=0

= 0,

∂ψm

∂z

����
z=h

=
∂ψf

∂z

����
z=h

= 0
ð8Þ

The lateral boundary condition is assumed to be infinite
and expressed as

lim
r⟶∞

ψm = lim
r⟶∞

ψf = ψi, ð9Þ

where ct f is the total compressibility of the fracture, MPa−1;
ctm is the total compressibility of the fracture, MPa−1; h is the
reservoir thickness, m; kf hi is the initial horizontal perme-
ability of the fracture, mD; kf vi is the initial vertical perme-
ability of the fracture, mD; kmh is the horizontal
permeability of the matrix, mD; kmv is the vertical perme-
ability of the matrix, mD; p is pressure, MPa; psc is the pres-
sure at standard condition, MPa; qsc is the surface gas
production rate, 104 m3/d; r is the radial distance, m; T is
temperature, K; Tsc is the temperature at standard condition,
K; z is the vertical distance from the bottom, m; zw is the
vertical distance of the horizontal well from the bottom, m;
ε is a variable in the z direction, m; ϕf is the porosity of frac-
ture; ϕm is the porosity of the matrix; and α is the geometric
shape factor of matrix block, m−2.

To make the equations homogeneous, some dimension-
less variables are defined and tabulated in Table 1. Taking
the dimensionless variables into equations (4)–(9), one can
obtain the dimensionless differential equations.

For the fracture system,

κ
∂2ψf D

∂rD2 + 1
rD

∂ψf D

∂rD
− γf D

∂ψf D

∂rD

� �2(

+ 1
h2D

∂2ψf D

∂zD2 − γf D
∂ψf D

∂zD

� �2" #)

= eγ f Dψ f D ωf e
−2S ∂ψf D

∂tD
+ λmf e
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:

ð10Þ
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For the matrix system,

1 − κð Þ ∂2ψmD

∂rD2 + 1
rD

∂ψmD

∂rD
+ 1
h2D

∂2ψmD

∂zD2

 !

− λmf e
−2S ψmD − ψf D

� �
= ωme

−2S ∂ψmD

∂tD
:

ð11Þ

In the initial condition,

ψf D

���
tD=0

= ψmDjtD=0 = 0: ð12Þ

In the inner boundary condition,

lim
εD⟶0

lim
rD⟶0

ðzwD+ εD/2ð Þ

zwD− εD/2ð Þ
κrD

∂ψmD

∂rD
+ 1 − κð ÞrDe−γ f Dψ f D

∂ψf D

∂rD

� �
dzD

" #

= −
1
2 , zD − zwDj j ≤ εD
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In the outer boundary conditions,

∂ψmD

∂zD

����
zD=0

=
∂ψf D

∂zD

����
zD=0

= 0, ð14Þ

∂ψmD

∂zD

����
zD=1

=
∂ψf D

∂zD

����
zD=1

= 0, ð15Þ

lim
rD⟶∞

ψmD = lim
rD⟶∞

ψf D = 0: ð16Þ

2.3. Solution to the Mathematical Model. It should be noted
that equations (10) and (13) are strongly nonlinear with the
consideration of the stress sensitivity of fracture permeabil-

ity. This is because the stress-dependent fracture permeabil-
ity is a function of the pseudopressure of the fracture.
However, the pressure of fracture is an unknown parameter.
Therefore, the mathematical model cannot be solved analyt-
ically. In this work, the Pedrosa [31] variable substitution
and regular perturbation method are firstly deployed to alle-
viate the nonlinearity. Then, the Laplace transformation and
separation of variables are adopted to address the linearized
model. Thus, the model can be solved in the Laplace space
and the Stehfest and Harald [32] numerical inversion is used
to calculate the pressure in real space.

2.3.1. Linearization of the Flow Equation. To linearize the
mathematical model, the Pedrosa transformation is
employed in this section and given by

ψf D rD, tDð Þ
���
tD=0

= −
1
γf D

ln 1 − γf Dηf D rD, tDð Þ
h i

, ð17Þ

where ηf D is an intermediate variable called the perturbation
deformation function.

After the Pedrosa transformation, equations (10)–(16)
can be rewritten as

κ
∂2ηf D
∂rD2 + 1

rD

∂ηf D
∂rD

+ 1
h2D

∂2ηf D
∂zD2

 !
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1
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ð18Þ
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∂tD
+ λmf

1
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Table 1: Definitions of the parameters used in this work.

Parameters Symbol Definition

Dimensionless pseudopressure of the fracture ψf D ψf D = 78:489 kmh + kf hi
	 


h
	 


/Tqsc
	 


ψi − ψf

� �
Dimensionless pseudopressure of the matrix ψmD ψmD = 78:489 kmh + kf hi

	 

h

	 

/Tqsc

	 

ψi − ψmð Þ

Dimensionless vertical distance zD zD = z/h

Dimensionless pseudotime tD tD = 3:6 kmh + kf hi
	 
	 


/ μrw
2 ϕmCmt + ϕf Cft
� �� �� �

ta

Dimensionless reservoir thickness hD hD = h/rwe−S
	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kf hi/kf pi
	 
q

Dimensionless radial distance rD rD = r/rwe−S

Dimensionless wellbore storage coefficient CD CD = Cs/ 6:2832 ϕf Cft + ϕmCmt

� �
hr2w

� �
Dimensionless pseudopermeability modulus γf D γf D = Tqsc/78:489kf hih

	 

γf

The permeability ratio of the fracture system to the sum of the fracture and
matrix system

κ κ = kf hi/ kf hi + kmh

	 

Capacitance coefficient of the fracture ωf ωf = ϕf Cft/ ϕf Cft + ϕmCmt

� �
Interporosity flow factor of matrix system into the fracture system λmf λmf = αmkmhr

2
w/ kf hi + kmh
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ηf D rD, tDð Þ
���
tD=0

= ψmD rD, tDð ÞjtD=0 = 0, ð20Þ

lim
εD⟶0

lim
rD⟶0

ðzwD+ εD/2ð Þ

zwD− εD/2ð Þ
1 − κð ÞrD

∂ψmD

∂rD
+ κrD

∂ηf D
∂rD

� �
dzD

" #

= −
1
2 , zD − zwDj j ≤ εD

2 ,

ð21Þ

∂ηf D
∂zD

����
zD=1

= ∂ψmD

∂zD

����
zD=1

= 0, ð22Þ

∂ηf D
∂zD

����
zD=0

= ∂ψmD

∂zD

����
zD=0

= 0, ð23Þ

lim
rD⟶∞

ψmD = lim
rD⟶∞

ηf D = 0: ð24Þ

According to the regular perturbation theory, equations
(18)–(24) can be simplified as

κ
∂2ηf D0
∂rD2 + 1

rD

∂ηf D0
∂rD

+ 1
h2D

∂2ηf D0
∂zD2

 !

= ωf e
−2S ∂ηf D0

∂tD
+ λmf e

−2S ηf D0 − ψmD

� �� �
,

ð25Þ

1 − κð Þ ∂2ψmD

∂rD2 + 1
rD

∂ψmD

∂rD
+ 1
h2D

∂2ψmD

∂zD2

 !

= 1 − ωf

	 

e−2S

∂ψmD

∂tD
+ λmf e

−2S ηf D0 − ψmD

� �
,

ð26Þ

ηf D0 rD, tDð Þ
���
tD=0

= ψmD rD, tDð ÞjtD=0 = 0, ð27Þ

lim
εD⟶0

lim
rD⟶0

ðzwD+ εD/2ð Þ

zwD− εD/2ð Þ
1 − κð ÞrD

∂ψmD

∂rD
+ κrD

∂ηf D0
∂rD

� �
dzD

" #

= −
1
2 , zD − zwDj j ≤ εD

2 ,

ð28Þ

∂ηf D0
∂zD

����
zD=1

= ∂ψmD

∂zD

����
zD=1

= 0, ð29Þ

∂ηf D0
∂zD

����
zD=0

= ∂ψmD

∂zD

����
zD=0

= 0, ð30Þ

lim
rD⟶∞

ψmD = lim
rD⟶∞

ηf D0 = 0: ð31Þ

2.3.2. Solution of the Proposed Model. To derive the analyti-
cal solution of the model, the mathematical model is trans-
lated into the Laplace domain with respect to tD:

L ηf D rD, tDð Þ
h i

= �ηf D rD, uð Þ =
ð+∞
0

ηf D rD, tDð Þe−utDdtD,

ð32Þ

L ψmD rD, tDð Þ½ � = �ψmD rD, uð Þ =
ð+∞
0

ψmD rD, tDð Þe−utDdtD,

ð33Þ
where u is the Laplace transform variable.

With equations (32) and (33) and taking the Laplace
transform of equations (25)–(31), one can obtain the dimen-
sionless mathematical model in the Laplace space:

For the fracture system,

∂2�ηf D
∂rD2 + 1

rD

∂�ηf D
∂rD

+ 1
h2D

∂2�ηf D
∂zD2 + A1

κ
�ηf D + A2

κ
�ψmD = 0: ð34Þ

For the matrix system,

∂2�ψmD

∂rD2 + 1
rD

∂�ψmD

∂rD
+ 1
h2D

∂2�ψmD

∂zD2 + A2
1 − κ

�ηf D + A3
1 − κ

�ψmD = 0,

ð35Þ

where A1 = −ðλmf + uωf Þe−2S, A2 = λmf e
−2S, and A3 = −½λmf

+ uð1 − ωf Þ�e−2S.
In the inner boundary condition,

lim
εD⟶0

lim
rD⟶0

ðzwD+ εD/2ð Þ

zwD− εD/2ð Þ
1 − κð ÞrD

∂�ψmD

∂rD
+ κrD

∂�ηf D0
∂rD

� �
dzD

" #

= −
1
2u , zD − zwDj j ≤ εD

2 :

ð36Þ

In the outer boundary conditions,

∂�ψmD

∂zD

����
zD=0

=
∂�ηf D0
∂zD

����
zD=0

= 0, ð37Þ

∂�ψmD

∂zD

����
zD=1

=
∂�ηf D0
∂zD

����
zD=1

= 0, ð38Þ

lim
rD⟶∞

�ψmD = lim
rD⟶∞

�ηf D0 = 0: ð39Þ

This section uses the separation of variables to solve the
dual-porosity and dual-permeability modeling of a horizon-
tal well in a naturally fractured reservoir. With the separa-
tion of variables, the dimensionless pseudopressure in the
Laplace space can be separated by [25]

�ηjD = �Rj rDð Þ�Zj zDð Þ, j =m, f : ð40Þ

Substituting equation (40) into equations (34) and (35),
one can obtain
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h2D �Rj ′′ + 1/rDð Þ�Rj ′ − σ�Rj
� �

�Rj
= −

�Zj ′′
�Zj

= λ: ð41Þ

According to equation (41), the fluid flow in the
horizontal direction can be written as

�Rj ′′ +
1
rD

�Rj ′ − ξ�Rj = 0, ð42Þ

ξ = σ + λ

h2D
: ð43Þ

And the fluid flow in the vertical direction is

�Zj ′′ + λ�Zj = 0: ð44Þ

Without consideration of the flow in the z-direction and
taking equation (42) into equations (34) and (35), we have

∂2�RfD

∂rD2 + 1
rD

∂�RfD

∂rD
+ A1

κ
�RfD + A2

κ
�RmD = 0, ð45Þ

∂2�RmD

∂rD2 + 1
rD

∂�RmD

∂rD
+ A2

1 − κð Þ
�RfD + A3

1 − κð Þ
�RmD = 0:

ð46Þ
Under the infinite external boundary of side, the solutions

of equations (45) and (46) can be expressed by

�Rf = Af K0
ffiffiffi
σ

p
rD

	 

, ð47Þ

�Rm = AmK0
ffiffiffi
σ

p
rD

	 

: ð48Þ

Substituting equations (47) and (48) into (45) and (46), we
have

σK0
ffiffiffi
σ

p
rD

	 

Af +

A1
κ
K0

ffiffiffi
σ

p
rD

	 

Af +

A2
κ
K0

ffiffiffi
σ

p
rD

	 

Am = 0,

ð49Þ

σK0
ffiffiffi
σ

p
rD

	 

Am + A2

1 − κ
K0

ffiffiffi
σ

p
rD

	 

Af

+ A3
1 − κ

K0
ffiffiffi
σ

p
rD

	 

Am = 0:

ð50Þ

Because the modeling must have solutions, the coefficients
Am and Af cannot be zero, so the term σ in equation (50) can
be given by

σ =
− κA3 + 1 − κð ÞA1½ � ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κA3 + 1 − κð ÞA1½ �2 − 4κ 1 − κð Þ A1A3 − A2

2
	 
q

2κ 1 − κð Þ :

ð51Þ

With equation (49)–(51), the general solutions of
equations (45) and (46) can be expressed by

�Rf = Af ,1K0
ffiffiffiffiffi
σ1

p
rDð Þ + Af ,2K0

ffiffiffiffiffi
σ2

p
rDð Þ, ð52Þ

�Rm = Am,1K0
ffiffiffiffiffi
σ1

p
rDð Þ + Am,2K0

ffiffiffiffiffi
σ2

p
rDð Þ, ð53Þ

Am,1 = a1Af ,1,
Am,2 = a2Af ,2,

ð54Þ

a1 = −
κσ1 + A1

A2
,

a2 = −
κσ2 + A1

A2
:

ð55Þ

Considering the fluid flow in the z-direction, the general
solutions of equations (52) and (53) can be given as

�Rf = Af ,1K0
ffiffiffiffi
ξ1

p
rD

� �
+ Af ,2K0

ffiffiffiffi
ξ2

p
rD

� �
, ð56Þ

Rm = a1Af ,1K0
ffiffiffiffi
ξ1

p
rD

� �
+ a2Af ,2K0

ffiffiffiffi
ξ2

p
rD

� �
, ð57Þ

ξ1 = σ1 +
λ

h2D
, ξ2 = σ2 +

λ

h2D
: ð58Þ

Combined with the boundary conditions, the terms Af ,1
and Af ,2 in equation (56) are

Af ,2 =
1
u

1 − a1ð ÞK0
ffiffiffiffi
ξ1

p� �
κ + 1 − κð Þa2½ � 1 − a1ð ÞK0

ffiffiffiffi
ξ1

p� �
− κ + 1 − κð Þa1½ � 1 − a2ð ÞK0

ffiffiffiffi
ξ2

p� � ,

Af ,1 =
1

κ + 1 − κð Þa1½ �u −
κ + 1 − κð Þa2
κ + 1 − κð Þa1

Af ,2:

ð59Þ

The general solution of equation (44) can be expressed by

�Zj = C cos
ffiffiffi
λ

p
zD

� �
+D sin

ffiffiffi
λ

p
zD

� �
: ð60Þ

Substituting equation (60) into equations (37) and (38), we
have

D = 0, λ = λn = nπð Þ2, n = 0, 1, 2,⋯,

C = 1
2 cos

ffiffiffiffiffi
λn

p
zwD

� �
, λn = nπð Þ2, n = 0, 1, 2,⋯,

ð61Þ

so the solution in the vertical direction is

�Zj =
1
2 cos

ffiffiffi
λ

p
zwD

� �
cos

ffiffiffi
λ

p
zD

� �
: ð62Þ

Combined with equations (56), (57), and (62), the pres-
sure solution for a three-dimensional volumetric source can
be obtained and expressed by

�ηf D = 〠
∞

n=0
�Rf n ⋅ �Zf n: ð63Þ
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According to the superposition principle, the dimension-
less pressure in the Laplace space for constant-rate production
can be obtained by integrating equation (63) along with the
direction of horizontal wellbore.

�ηsD = 〠
∞

n=0

ðL/2/rw
−L/2/rw

�RfndxD ⋅ �Zw: ð64Þ

Equation (64) is the dimensionless pseudopressure solu-
tion expression considering the skin effect. The wellbore stor-
age effect can be incorporated in the abovementioned solution
using Duhamel’s principle [25], and the bottom-hole pressure
solution is

�ηwD = �ηsD
1 + CDu2�ηsD

: ð65Þ

�ηwD in equation (65) is the dimensionless pressure solu-
tion in the Laplace space, and in real space, the dimensionless
pressure ηwD can be obtained using Stehfest numerical inver-
sion [32]. After that, utilizing the inverse transformation of
equation (66), the bottom-hole pressure response for a hori-
zontal well incorporating the stress-dependent permeability
of fracture system can be obtained:

ψwD rD, tDð Þ = −
1
γf D

ln 1 − γf DηwD rD, tDð Þ
h i

: ð66Þ

3. New-Type Curves

In this work, a novel semi-analytical model is presented to
examine the combined effects of dual-permeability flow
behavior and stress-dependent fracture permeability on the
transient pressure response of a horizontal well in a naturally
fractured gas reservoir. A series of new transient pressure
dynamic curves are drawn to observe different flow regimes
based on the solution of the proposed model. The differences
between the proposed model and traditional models are dis-
cussed, and the effects of some critical parameters on tran-
sient pressure response are also analyzed with the
proposed model. Furthermore, it provides an efficient
method for field engineers and related research and further
to interpret pressure signals with accurate matching results
and more reasonable interpreted parameters. After that,
the effects of some critical parameters, including the dimen-
sionless permeability modulus, the storability ratio of frac-
ture, interporosity flow factor of matrix system into
fracture system, and skin factor, on the characteristics of
the type curves are examined and analyzed.

3.1. Flow Regime Identification. Figure 3 depicts the
standard-type curves of wellbore pressure responses for a
horizontal well located at a naturally fractured gas reservoir
considering dual-permeability flow and stress-dependent
fracture permeability. Basic data used to generate the type
curves are listed in Table 2. An entire transient flow process
is clearly shown, and the following six main flow stages can
be recognized:

(1) Pure wellbore storage stage: this period is character-
ized by a slope of 1 on the pressure and pressure
derivative curves and governed by the wellbore stor-
age coefficient, C

(2) Skin effect transition stage: the pressure derivative
curve exhibits like a “hump.” The peak of the
“hump” is dominated by the skin factor, S

(3) Early radial flow stage: this period is present
whenever the wellbore storage coefficient, C, and
the horizontal wellbore length, L, are suitable.
During this period, the pressure derivative curve is
a horizontal line with a value of “1/ð4LDÞ”

(4) Early linear flow stage: it can be identified by a half-
slope trend on the pressure derivative curve. During
this period, gas flows linearly from the formation to
natural fractures

(5) Interporosity flow stage from the matrix system to
the fracture system: this process is characterized by
a concave in the pressure derivative curve. The
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Figure 3: The transient responses with the log-log plot.

Table 2: Parameters used for model validation.

Parameters Symbol Value

Dimensionless wellbore storage coefficient CD 1 × 10−4

Skin factor S 0.1

Dimensionless reservoir thickness hD 400

Dimensionless horizontal section position zwD 0.5

Dimensionless pseudopermeability modulus γf D 0.08

The permeability ratio of the fracture system to
the sum of the fracture and matrix system

κ 0.9

Capacitance coefficient of the fracture ωf 0.05

Interporosity flow factor of the matrix system
into the fracture system

λmf 0.01
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concave shape is controlled by the storability ratio of
fracture, ωf , and the interporosity flow coefficient
from the matrix system to the fracture system, λmf

(6) External boundary response stage: during this
period, the pressures in the matrix and fracture sys-
tems reach a dynamic balance state. This period is
marked by a slope of 0.5 on the pressure derivative
curve without considering stress-dependent fracture
permeability. However, the pressure derivative curve
is no longer a horizontal line with a value of “0.5” but
exhibits an upward tendency due to the effect of
stress-dependent fracture permeability

3.2. Comparisons with the Traditional Models. So far, few
attempts have been made to quantify the combined effects
of dual-permeability flow behavior and stress-dependent
fracture permeability on the transient pressure behavior of
a horizontal well in fractured gas reservoirs. The main differ-
ence between the proposed and traditional models [25, 26] is
that the dual-permeability flow behavior and stress-
dependent fracture permeability are all incorporated in the
new model. In this section, we simultaneously simulated
the pressure response of both the proposed and conven-
tional models using the same group of formation and well
parameters in Table 2.

Figure 4 shows the comparison results of transient
responses for the new model with the solution presented
by Nie et al. [25]. The main difference between the two
models is that stress-dependent fracture permeability is not
considered in the model of Nie et al. [25]. As shown in
Figure 4, fracture permeability stress sensitivity is found to
significantly affect the middle stream flow period and the
late-time pseudoradial flow period. There exist obvious dif-
ferences during late-time pseudoradial flow period. The
dimensionless pressure derivative curve exhibits a horizontal
line with a value of 0.5 in the model of Nie et al. [25]; how-
ever, the derivative curve is no longer horizontal but bends
upward in the new model. In addition, the location of the
dimensionless pressure and pressure derivative curves dur-
ing the middle stream flow period is higher in our model.
This is because an additional pressure drop will be required
to maintain a constant flow rate when the stress-sensitivity
effect is taken into account.

We also compared the proposed model with the solution
of a single-permeability model [26] based on the same reser-
voir properties and fracture parameters. The stress-
dependent fracture permeability is considered both in two
models. As can be seen in Figure 5, the combined effects of
dual-permeability flow behavior and stress-dependent frac-
ture permeability play a significant role in the early radial
flow stage, the early linear flow stage, and the interporosity
flow stage of the matrix system to the fracture system.
Dimensionless pressure of the proposed model is lower than
that of the single-permeability model [26] during the three
flow periods. Besides, the concave in the pressure derivative
curve of the dual-permeability model is shallower than that
of single-permeability model. This is because the single-
permeability model assumes that the fracture system is the

only flow pathway directly connected with wellbore; how-
ever, the fluid supply from the matrix system to the wellbore
is not considered. The dual-permeability flow behavior will
accelerate energy supplement in the matrix during produc-
tion compared with the single-permeability model.

3.3. Sensitivity Analysis. Based on the proposed model, the
influences of stress sensitivity of fracture permeability, stor-
ativity ratio of the fracture, interporosity flow factor, and
skin factor on pressure response are discussed. Except for
the parameters analyzed, other parameters are the same
and are shown in Table 2.
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Figure 4: Comparison of the results of the proposed model with
that of Nie et al. [25].

10–2 100 102 104 106 108 1010

Pressure (Li et al. 2017)
Pressure derivative (Li et al. 2017)
Pressure (our model)
Pressure derivative (our model)

tD/CD

10–2

10–1

100

101

102

m
w

D
, d
m

w
D

/d
ln
t D

Figure 5: Comparison of the results of the proposed model with
that of Li et al. [26].
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3.3.1. Effect of the Permeability Modulus of the Fracture. The
stress-sensitivity effect can be determined with the dimen-
sionless permeability modulus, γf D. Figure 6 shows the
pressure and pressure derivative curves for γf D = 0:04,
0.06, and 0.08. As stated, with increasing the value of
γf D, the slope of the derivative curves increases during
the intermediate and late time period. This is because
the pressure drop increases as the dimensionless perme-
ability modulus increases and fluid flow will be difficult
and more gas is left in the reservoir. The stress sensitivity
reflects the damage of permeability, and a larger dimen-
sionless permeability modulus will increase the damage
of permeability. Consequently, the permeability stress sen-
sitivity of the fracture decreases the cumulative produc-
tion. So, it is believed that reasonable producing pressure
differential is excellent for reducing the negative effect of
stress sensitivity on gas productivity in the development
of fractured gas reservoirs.

3.3.2. Effect of the Storability Ratio of the Fracture. The effect
of the storability ratio of the fracture, ωf , on transient
behavior is shown in Figure 7. As shown in Figure 7,
the storability ratio of the fracture not only determines
the duration and the depth of the concave but also has a
significant effect on the early flow regimes (early radial
and early linear flow stage). It can be clearly observed that
the larger the ωf is, the deeper and wider the concave in
dimensionless pressure derivative curve. In addition, the
dimensionless pressure curve becomes higher with the
increase of the storability ratio of the fracture. This is
because the storativity ratio of fracture reflects the relative
capacity of fluid stored in the fracture system; a smaller
storability ratio of the fracture is the response of relative

abundant reserves in the matrix system. The pressure drop
should increase to maintain the constant production rate
when increasing the storability ratio of the fracture.

3.3.3. Effect of the Interporosity Flow Factor. The effect of the
interporosity flow factor of the matrix system to the fracture
system, λmf , on pressure response is shown in Figure 8.
According to the definition of the interporosity flow factor,
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Figure 6: Effect of dimensionless permeability modulus, γf D, on

type curves.

Pressure (𝜔f = 0.15)
Pressure (𝜔f = 0.1)
Pressure (𝜔f = 0.05)
Pressure derivative (𝜔f = 0.15)
Pressure derivative(𝜔f = 0.1)
Pressure derivative (𝜔f = 0.05)

10–2 100 102 104 106 108 1010

tD/CD

10–2

10–1

100

101

102

m
w

D
, d
m

w
D

/d
ln
t D

Figure 7: Effect of the storability ratio of the fracture, ωf , on type
curves.
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Figure 8: Effect of the interporosity flow factor, λmf , on type
curves.
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the λmf represents the starting time of the flow exchange
from the matrix system to the fracture system. The larger
the λmf is, the earlier the time of the interporosity flow
period is. Besides, the late-time pseudoradial flow period
would be masked if the λmf is large enough.

3.3.4. Effect of the Skin Factor. The effect of the skin factor, S,
on pressure response is shown in Figure 9. As shown in
Figure 9, skin factor plays a significant role in the early tran-
sient flow period. A larger skin factor leads to a higher loca-
tion of dimensionless pressure and pressure derivative
curves. This is because the incremental value of the skin fac-
tor results in the increasing additional filtration resistance
and the skin effect transition period will last longer. The
larger the skin factor is, the slower the pressure wave propa-
gates to the external boundary and the larger the pressure
drop is.

4. Conclusions

This paper provided a semianalytical model to investigate
the combined effects of dual-permeability flow behavior
and stress-dependent fracture permeability on the transient
pressure response for a horizontal well in a naturally frac-
tured gas reservoir. The main conclusions of this work are
as follows:

(i) A horizontal production well in a naturally frac-
tured gas reservoir with consideration of stress sen-
sitivity effect may exhibit six flow stages: pure
wellbore storage stage, skin effect transition stage,
early radial flow stage, early linear flow stage, inter-
porosity flow stage, and external boundary response
stage

(ii) The stress-dependent fracture permeability imposes
effects on the intermediate flow period and the late-
time pseudoradial flow period; the existence of dual-
permeability flow behavior can make the stress sen-
sitivity effect more significant

(iii) The storability ratio of the fracture, ωf , mainly
affects the duration and the depth of the concave,
and a larger ωf leads to a deeper and wider concave
in dimensionless pressure derivative curve. In addi-
tion, the storability ratio plays a significant role in
the early radial flow stage and early linear flow
stage. The interporosity flow factor, λmf , mainly
affects the starting time of the flow exchange from
the matrix to the fracture. The larger the value of
λmf , the earlier the occurrence of the interporosity
flow period

(iv) The proposed model is suitable for various naturally
fractured gas reservoirs and can interpret pressure
signals with accurate matching results and more
reasonable interpreted parameters
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