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The frost heave characteristics of artificial frozen soil are very important information for underground freezing engineering. It is
found that both the frost heaving force and rate of the same soil layer increase with the decrease of freezing temperature. In
addition, due to the comprehensive influence of freezing temperature, natural water content, dry density, and tidal flow peak
value, the frost heave characteristics of different soil samples are evidently uncertain. With the aim of improving the deficiency
of traditional BP neural network algorithms in solving fuzzy random engineering problems, random factor and mean square
error between layers are used to modify the evaluation function of the network model. On this basis, taking tidal flow peak
value, freezing temperature, natural water content, and dry density as inputs, the frost heaving force and rate of frozen soil as
output values, and setting the number of hidden layer elements as 4, an improved fuzzy random BP network prediction model
for frost heave characteristics was established. The new network prediction model has a smaller weight and bias, and the
response tends to be smoother than the traditional one, which greatly reduces the overfitting phenomenon. The engineering
example shows that the improved BP neural network prediction model can make the predicted value of frost heaving force and
rate basically coincide with the measured value after effective training, and the error is controlled within 8%. Therefore, the
prediction model can be used as an effective tool to predict frost heaving characteristics in Nantong metro freezing
construction, and the corresponding model and method can also be extended to similar engineering cases.

1. Introduction

With the rapid development of urbanization, metro con-
struction has been in full swing in many cities to solve the
problem of urban traffic congestion. During the process of
metro excavation, the contact passage that connects the up
and down tunnels not only ensures the safe evacuation of
passengers but also plays the role of water collection and
drainage between stations during metro operation. There-
fore, the construction risks of the contact passage and the
corresponding measures have attracted more and more
attention. The artificial freezing method has many advan-
tages such as strong structural adaptability, no environmen-

tal pollution, and good water insulation, and it is often used
in the construction of metro contact passages [1, 2].

Nantong belongs to the delta alluvial plain landform of
the lower reaches of the Yangtze River. The overall soil qual-
ity is relatively soft, with high water content, large hydraulic
slope, and obvious tidal flow in different seasons. Based on
the complex hydrogeological conditions in Nantong, the
frost heave characteristics of soil caused by the phase change
of ice water are obviously uncertain as the temperature
decreases during the freezing construction of the metro con-
tact passage. This often leads to uneven random deformation
around the tunnel, which is unfavorable to the existing con-
tact passage and even affects the construction safety of the
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whole metro project. Therefore, it is of great practical signif-
icance to study the characteristics of horizontal frost heaving
in the freezing construction process of connecting passage of
the metro in a coastal area for tunnel construction safety of
Nantong metro.

Scholars at home and abroad have done much research
and discussion on the frost heave characteristics. Jihui
et al. [3] analyzed the frost heaving degree of frozen soil in
different frozen regions by numerical calculation and then
deduced theoretical analytical solutions of the frost heaving
force according to the distribution of frost heaving loads.
Lu et al. [4] took fractured sandstone as the research object
and carried out a frost heaving cycle test. On this basis, the
uniaxial compressive strength damage prediction model
was established by comprehensively considering cracks, con-
fining pressure, and other factors, and the accuracy of the
model was verified through engineering cases. Lu et al. [5]
carried out frost heaving tests under different confining
pressures, deviatoric stresses, temperature gradients, and
water supply conditions. Based on the Takashi one-
dimensional frost heaving rate model, an improved predic-
tion model for saturated cohesive soil frost heaving rate
was established considering the effects of stress level and
temperature gradient. Zhu et al. [6] determined the stress
field and displacement field according to the continuous
conditions of tunnel lining, frost heaving region, and unfro-
zen surrounding rock and established a new analytical solu-
tion. On this basis, the analytical solution was verified by
taking the Zhegushan tunnel as an example. Zhou et al. [7]
used the multilayer field test and separation potential model

to calculate the temperature gradient and bimodal function
according to the field monitoring results and proposed a
simplified frost heave prediction method based on the con-
cept of separation potential. Liu et al. [8] established a fully
coupled model of frozen soil frost heave, temperature distri-
bution, and pore water pressure under the framework of
poroelasticity theory and porosity function. Luo et al. [9]
conducted a series of freezing temperature and freezing tests
on unsaturated expansive clay. The results show that the
swelling amount of expansive clay is the displacement and
frost heave caused by the increase of water content in the
unfrozen region. It is found that the state and change of pore
water are the key factors determining the frost heave charac-
teristics of unsaturated expansive clay in the open system.

To sum up, previous studies on horizontal frost heave
characteristics of artificial frozen soil were mostly based on
experimental data analysis and formula calculation, without
considering the influence of tidal flow on frost heave. Engi-
neering practice shows that under the comprehensive action
of tidal flow, temperature, lithology, and other factors, the
frost heave characteristics in underground freezing engineer-
ing have obvious uncertain distribution. Therefore, the char-
acteristics of frost heave in underground engineering cannot
be accurately characterized only by traditional empirical for-
mulas and experimental data analysis.

Therefore, based on the frost heaving test of clay layer in
Nantong under tidal flow, the improved BP neural network
is used to predict the horizontal frost heaving characteristics
of the metro contact passage during freezing construction in
view of the uncertainty of permafrost parameter distribu-
tion. It is expected that the frost heave data obtained can
effectively prevent the underground tunnel location devia-
tion and section damage and provide effective basic data
for the underground freezing engineering in Nantong and
its surrounding areas.

2. Frost Heaving Test of Soil Samples

2.1. Soil Sample Making. The underground tunnel of Nan-
tong metro line 1 has a total length of 34.75 km with 25 sta-
tions, and contact passages between stations along the line
were constructed by the freezing method. To ensure the
engineering representativeness of frost heaving test results,
the undisturbed soil was collected from the horizontal frozen
clay layer of Nantong metro under the action of tidal flow.
The physical parameters of each soil sample are shown in
Table 1. The collected soil samples were carefully packed
and sealed with double-layer plastic fresh-keeping bags,
recorded, and tied with ropes. The bundled soil samples
were then loaded into sampling cylinders, labeled, sealed
with adhesive tape, loaded into the core box, and safely
transported to the laboratory [10]. The core box was care-
fully opened, and the soil samples were divided into upper
and lower layers according to natural deposition direction,
and both ends were sawed flat. According to the Chinese
Artificial Frozen Soil Test Standard (MT/T593.6-2011), the
sawed soil samples were made into Φ50 × 100mm speci-
mens, the shape error was within 1.0%, and the parallelism

Table 1: Main physical parameters of clay layers.

Soil
sample

Depth
(m)

Tidal flow
peak value

(cm)

Moisture
content
(%)

Dry
density (g/

cm3)

Plastic
index

1 9.6 55 20.91 1.62 12.0

2 12.1 129 23.42 1.54 12.7

3 15.0 82 21.48 1.60 11.9

4 18.6 167 23.14 1.56 12.5

Figure 1: Clay sample specimen.
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error was within 0.5mm. The standard specimen of a pre-
pared clay sample is shown in Figure 1.

2.2. Frost Heaving Test. Per MT/T593.2-2011, the cold end
temperature of the frost heaving instrument was adjusted
to the test temperature, and the error was controlled within
0.2°C. The prepared soil sample was placed into the low-
temperature cabinet to control the freezing temperature in
the test process, and the film was wrapped around the spec-
imen for effective insulation. When the temperature of the
cold end equaled the test temperature, the specimen was
loaded and the two ends lightly pressed to ensure that the
specimen was in good contact with the test device and could
expand freely in the axial direction. The displacement sensor
was installed and debugged, the real-time data acquisition
system was opened, and the height change value of the spec-
imen was recorded by intervals of 1min, 2min, 5min,
10min, 20min, 30min, 1 h, 2 h, 3 h, 6 h, 12 h, and 14 h. Dur-
ing the test, the axial frost heaving amount was recorded
according to the reading of displacement meter, and the
ratio of it to the original size of specimen was the frost heav-
ing rate [11]. In addition, the displacement meter was
replaced with a load sensor. When a sample did not continue
to freeze heave at an interval of 2 h after loading a certain
level of load (frost heave ≤ 0:01mm), the sample was consid-
ered stable under this level of load, and the frost heaving
force at this moment was recorded [12]. The frost heaving
test device is shown in Figure 2.

According to the above test method and steps [13], frost
heave characteristics tests were conducted at -5, -10, and
-15°C, respectively. The results of maximum frost heaving
rate and maximum frost heaving force of different soil sam-
ples are shown in Table 2.

The frost heaving curves of different soil samples with
time were collected by computer in real time [14, 15], as
shown in Figure 3. Curves of frost heaving rate with time
at all temperatures are shown in Figure 4.

During the frost heaving force tests, the axial frost heaves
were recorded according to the reading of the displacement
meter [16]. The ratio of the axial frost heave to the original
size of the specimen is the frost heaving rate, as shown in

η = δ

H
× 100%, ð1Þ

where η is the frost heaving rate, δ is the axial frost heave,
and H is the original size of the specimen.

According to the frost heaving tests, it is found that
under the action of tidal current, the frost heaving force of
frozen clay in Nantong metro is between 0.33 and
0.62MPa, and the corresponding frost heaving rate is
between 2.34% and 5.34%. By observing the frost heaving
curves, it can be seen that in general, the frost heaving force
and rate of the same soil layer increase with the decrease of
freezing temperature. In addition, due to the comprehensive
influence of freezing temperature, natural water content, dry
density, tidal current peak, and other parameters, the frost
heaving characteristics of different soil samples show obvi-
ous uncertainty.

Therefore, in the complex environment, in order to mas-
ter the frost heaving law of freezing engineering more effec-
tively, artificial intelligence algorithms and appropriate
improvement are needed to help us predict the frost heaving
characteristics of frozen soil more accurately.

3. BP Neural Network and Its Improvement

3.1. BP Neural Network. In 1986, the scientist Ruml Hart
proposed the error backpropagation intelligent algorithm

Thermal
insulation

layer

Temperature
sensor

Lateral
restraint

Hot end Load transducer

Cold endSpecimen
𝛷50 × 100

Figure 2: Diagram of freezing heave test device.

Table 2: Maximum frost heaving rate and frost heaving force of
different soil samples.

Soil sample
Frost heaving force

(MPa)
Rate of frost heave (%)

-5°C -10°C -15°C -5°C -10°C -15°C

1 0.33 0.40 0.46 2.34 3.26 3.97

2 0.48 0.54 0.62 3.91 4.59 5.34

3 0.36 0.42 0.53 2.45 3.16 3.92

4 0.43 0.49 0.57 3.64 4.28 4.83
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(BP algorithm), which solved the problem of learning the
connection weights between hidden layer elements in multi-
layer neural networks through the forward circulation of
information elements and the feedback transmission of error
elements and established the BP neural network model [17,
18]. The network topology of the model consists of input,
intermediate, and output, as shown in Figure 5. The infor-
mation flow of the model is divided into positive flow and
negative feedback. In the initial operation, the information
flows in the traditional order of input layer⟶ hidden
layer⟶ output layer. If there is an error between the out-
put value and the expected value, the negative feedback

propagation is started. The error signal is returned along
the original neurons, and the weights of neurons in each
layer are modified so that the iteration is repeated until the
error disappears or is within the allowable range [19, 20].

The algorithm steps of BP neural network as shown in
Figure 4 are as follows [21, 22]:

(1) Random initialization of connection weights

ωsp = Random ⋅ð Þ, ð2Þ
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Figure 3: Relation curve between frost heaving force and time.
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where s and p are different nodes of network neurons, ω is
the corresponding node connection weight, and RandomðÞ
is the random number generator

(2) According to the network model, P samples are
input to promote network learning in turn, and the
input serial number of the current sample is assumed
to be P

(3) Calculate the signal output of each layer in turn by
Sigmoid function: f0ðxÞ, f1ðxÞ, f iðxÞ,⋯, y0, y1, yi

(4) Calculate the feedback error of each layer,
respectively

δ
pð Þ
kl = d pð Þ

l − y pð Þ
l

� �
y pð Þ
l 1 − y pð Þ

l

� �
, ð3Þ

f0 (x)

f1 (x)

fi (x)

x0

x1

xi

y0

y1

yi

… … …

Input layer Hidden layer Output layer

Figure 5: BP neural network.

START

Weight initialization

t = 1, p = 1

Input sample P

Compute each network layer output

p<P

END

Yes

No

p = p + 1

Calculate the back
transmission error

Update evaluation function and value

Recalculate the output and
error of each layer

Satisfy termination
condition

t = t + 1No

Yes

Figure 6: Improved BP network algorithm flow.
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where l = 0, 1, 2,⋯,m − 1,

δ
pð Þ
jk = 〠

m−1

l=0
δ

pð Þ
kl ω′

′
klx′

′ pð Þ
k 1 − x′′

pð Þ
k

� �
, ð4Þ

where k = 0, 1, 2,⋯, n2,

δ
pð Þ
ij = 〠

n2

k=0
δ

pð Þ
jk ω′jkx′

pð Þ
j 1 − x′ pð Þ

j

� �
, ð5Þ

where j = 0, 1, 2,⋯, n1
Write down the values ofx′′ðpÞk , x′ðpÞj , and xðpÞi when trans-

mitting feedback signals.

(5) Judge whether the current number of learning sam-
ples meets the requirements. When p < P, the itera-
tive learning continues, and the algorithm goes to
step (2); if p = P, the iterative learning ends, and
the algorithm jumps to step (6)

(6) Recalculate the connection weights of network nodes
according to the weight correction formula

(7) According to the modified weights, calculate xi′, ∈,
and yl; if each p and l can make jdðpÞl − yðpÞl j < ε or
reach the maximum learning times, then the algo-
rithm ends and the result is output. Otherwise, go
to step (2) to continue the iterative calculation

3.2. Fuzzy Random Improvement of BP Network. Although
BP neural network algorithm is widely used in engineering,

it is found in practice that the algorithm has obvious short-
comings in the analysis of randomness problems, especially
the selection of evaluation function has a great influence
on the network performance, which may lead to the overfit-
ting phenomenon of the network and make the inaccurate
output results of BP model. Therefore, the following
improvements were adopted to address the shortcomings
of evaluation functions in the traditional algorithm [23, 24].

Re g = γmse + 1 − γð Þmsw, ð6Þ

where γ ∈ ½0, 1� is a random correction factor and mse is the
mean square error between network layers, as shown in

mse = 1
P
〠
P

n=1

d pð Þ − y pð Þ
� �2

2 , ð7Þ

where msw is the weight of the network layer, and the fuzzy
membership function can be determined according to the
following methods:

msw1 =
1
Nω

〠
Nω

i=1
ωið Þ2,

msw2 =
1
Nω

〠
Nω

i=1
ωij j,

msw3 =
1
Nω

1
α
〠
Nω

i=1
lg 1 + α2ωi

2� �
,

ð8Þ
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where Nω is the weight number of adjustable neurons in BP
network, α is a random number less than 1, and ωi is the
weight of neurons at the current network layer.

Including the above modification of the network evalua-
tion function, the improved algorithm flow is shown in
Figure 6. Taking the 600 algorithm iterations of the same
complexity as an example, the efficiency comparison
between the traditional BP algorithm and the improved
fuzzy random BP algorithm is shown in Figure 7. It can be
seen that the response of the new network is smoother than
that of the traditional network. In addition, the new network

has smaller weights and biases, which greatly reduces
overfitting.

4. Fuzzy Random BP Network Prediction
Model for Frost Heave Characteristics

4.1. Determination of Input and Output. The practice of
underground freezing engineering shows that the frost
heave characteristics under the action of tidal flow have
obvious uncertainty. Combined with the previous tests
on frost heave characteristics, it was found that both frost

Table 3: Training results of the prediction model.

Serial
number

Input parameters Output value and error

Tidal flow peak
value (cm)

Freezing
temperature

(°C)

Moisture
content (%)

Dry
density (g/

cm3)

Frost heaving
force (MPa)

Error of frost
heaving force (%)

Frost
heaving rate

(%)

Error of frost
heave rate (%)

1 78 -5 22.43 1.70 0.33 -7.92 4.33 6.40

2 82 -10 22.43 1.70 0.45 -4.97 3.70 -4.94

3 117 -15 22.43 1.70 0.56 7.59 5.49 5.75

4 85 -5 22.43 1.65 0.41 3.43 3.51 -4.06

5 195 -10 22.43 1.65 0.52 -7.76 4.25 7.62

6 154 -15 22.43 1.65 0.68 4.77 5.03 -6.36

7 104 -5 26.17 1.46 0.39 5.88 5.23 5.06

8 128 -10 26.17 1.46 0.54 -5.74 5.04 -4.63

9 217 -15 26.17 1.46 0.63 -4.35 5.86 -2.48

10 98 -5 26.17 1.53 0.43 7.57 4.75 4.40

11 174 -10 26.17 1.53 0.48 5.17 5.15 -6.73

12 257 -15 26.17 1.53 0.59 3.01 6.07 -4.20

13 148 -5 19.33 1.76 0.42 -4.53 2.81 2.95

14 96 -10 19.33 1.76 0.51 5.36 3.50 3.08

15 157 -15 19.33 1.76 0.66 -6.94 4.43 -8.54

16 111 -5 19.33 1.72 0.39 7.82 3.03 -3.95

17 96 -10 19.33 1.72 0.48 -5.02 3.74 -2.86

18 177 -15 19.33 1.72 0.56 -2.66 4.18 4.64

19 56 -5 17.06 1.80 0.32 7.10 3.23 5.70

20 173 -10 17.06 1.80 0.40 8.57 4.01 6.26

21 231 -15 17.06 1.80 0.53 -6.15 4.61 -4.63

22 84 -5 17.06 1.84 0.46 3.22 3.43 5.68

23 137 -10 17.06 1.84 0.53 -6.47 4.84 -3.20

24 195 -15 17.06 1.84 0.66 7.59 5.06 -3.13

25 79 -5 24.52 1.51 0.43 4.06 3.09 5.40

26 143 -10 24.52 1.51 0.50 5.05 3.42 4.15

27 190 -15 24.52 1.51 0.58 5.44 4.69 6.40

28 127 -5 24.52 1.43 0.39 -6.74 3.84 7.34

29 103 -10 24.52 1.43 0.44 -5.35 3.03 2.75

30 195 -15 24.52 1.43 0.52 7.57 4.82 -1.66

31 214 -5 20.98 1.79 0.46 -8.01 3.73 4.53

32 98 -10 20.98 1.79 0.51 6.45 4.22 -6.02

33 171 -15 20.98 1.79 0.60 -4.53 5.05 5.63

34 78 -5 20.98 1.74 0.50 7.36 3.91 3.23

35 126 -10 20.98 1.74 0.59 -4.06 4.77 6.28

36 225 -15 20.98 1.74 0.64 3.82 5.32 -2.80
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Table 4: Engineering prediction results of frost heave characteristics.

Serial
number

Input parameters Compare the predicted and measured values

Tidal flow peak
value (cm)

Freezing
temperature

(°C)

Moisture
content (%)

Dry
density (g/

cm3)

Frost heaving
force (MPa)

Error of frost
heaving force (%)

Frost
heaving rate

(%)

Error of frost
heave rate (%)

1 81 -5 19.13 1.55 0.36 4.40 4.40 5.15

2 96 -10 19.13 1.55 0.43 -4.78 4.68 3.61

3 137 -15 19.13 1.55 0.52 6.64 6.42 -4.50

4 99 -5 23.19 1.50 0.41 -5.15 5.13 5.33

5 228 -10 23.19 1.50 0.48 5.37 5.68 6.31

6 180 -15 23.19 1.50 0.59 -6.49 6.38 -7.88

7 122 -5 16.28 1.64 0.27 -2.87 2.82 4.23

8 150 -10 16.28 1.64 0.37 4.18 4.08 5.31

9 254 -15 16.28 1.64 0.43 -4.40 4.88 -6.50

10 115 -5 17.92 1.59 0.33 3.54 3.32 4.24

11 204 -10 17.92 1.59 0.39 3.93 4.17 5.44

12 301 -15 17.92 1.59 0.49 -4.83 4.57 -3.16

13 173 -5 20.25 1.52 0.38 3.57 3.37 5.05

14 112 -10 20.25 1.52 0.46 4.07 3.89 4.89

15 184 -15 20.25 1.52 0.56 -4.83 4.72 -5.91

16 130 -5 24.61 1.44 0.42 3.51 3.88 6.15

17 112 -10 24.61 1.44 0.49 3.98 4.33 -4.03

18 207 -15 24.61 1.44 0.60 5.60 5.36 5.57

19 74 -5 21.94 1.48 0.39 4.12 3.77 4.18

20 116 -10 21.94 1.48 0.47 -7.09 4.32 -6.32

21 174 -15 21.94 1.48 0.57 3.46 5.29 3.98
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Figure 8: Comparison of fuzzy random model predicted and measured values of frost heaving force.
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heaving force and rate produced fuzzy random distribu-
tions under the comprehensive action of different tidal
flow peak value, freezing temperature, natural water con-
tent, and dry density, so the above four parameters were
used as the input of the fuzzy random BP network for
predicting frost heave characteristics [25, 26].

In this study, the frost heaving force and rate of frozen
soil were tested; the purpose of which was to master the frost
heaving law of the construction layer of metro contact pas-
sage and to prevent safety accidents caused by tunnel posi-
tion deviation and segment damage. To simplify the
model, the frost heaving rate force and rate were taken as
the output of the prediction model of frost heave character-
istics of the fuzzy random BP network.

4.2. Determination of Hidden Layer Elements. In a BP neural
network, it is also very important to select the number of hid-
den layer elements. If the number of hidden elements is too
small, the whole network cannot train samples and process
information well. If the number is too large, it will directly lead
to structural redundancy and local minimum. To balance the
relationship between them, the following formula is usually
used to determine the number of hidden units in the predic-
tion network model [27, 28].

Z =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn + 1:68n + 0:93

p
, ð9Þ

where Z is the number of hidden layer units, n is the num-
ber of inputs for the network, andm is the number of outputs
for the network.

Substituting the number of inputs and outputs of this
prediction model into Equation (9), Z was equal to 3.96.
Therefore, the number of hidden layer elements in the pre-
diction model for frost heave characteristics of fuzzy random
BP network was set as 4.

4.3. Training of Fuzzy Random BP Network Prediction
Model. In order to effectively train the fuzzy random BP net-
work and make the prediction model accurately simulate the
frost heave characteristics of underground frozen soil, the
frozen soil parameters of the contact passages between dif-
ferent stations of Nantong metro line 1 were selected as
the training samples of the model. The network took the
peak value of tidal flow, freezing temperature, moisture con-
tent, and dry density as inputs and the frost heaving force
and rate as outputs. According to the algorithm principle
of the improved fuzzy random BP neural network, sufficient
sample data were used for training, and the condition of ter-
minating learning ε was set to e−6. The initial value of ms w
was 4.5, γ = 0:68, α = 0:7, Nω = 6, ω1 = 4:5, ω2 = 3:2, ω3 = 5:4
, ω4 = 2:9, ω5 = 8:3, and ω6 = 1:8. The training set P was 150,
and the training sample error was controlled within 10% [29,
30]. Results of the network training are shown in Table 3.

With the focus on improving the fuzzy random BP net-
work prediction model, the frost heave characteristics of fro-
zen soil samples in the Nantong metro tunnel were used for
training. The results show that the error of frost heaving
force and rate is less than the training error when consider-
ing the tidal current peak value, freezing temperature, natu-
ral water content, and dry density. Therefore, the network
prediction model in the study can better identify the frost
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Figure 9: Comparison of fuzzy random model predicted and measured values of frost heaving rate.
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heave characteristics of the horizontal frozen clay layer in
the Nantong metro and effectively reflect the frost heaving
uncertainty in underground freezing engineering.

5. Engineering Example for
Checking Calculation

In order to further verify the applicability of the fuzzy ran-
dom BP network prediction model for frost heave character-
istics, the freezing condition of the underground clay layer in
Nantong metro line 2 was selected as a validation example.
The frost heaving force and rate under different tidal flow
peak values, freezing temperature, natural water content,
and dry density were compared with the measured values
[31]. The results are shown in Table 4.

It can be seen from the results in Figures 8 and 9 that the
fuzzy random BP network prediction model can make the
predicted values of frost heaving force and rate basically
coincide with the measured values under different working
conditions, and the error is less than 8%. Compared with
the traditional BP network model, the prediction error is
reduced by 7%. Therefore, this prediction model can be used
as an effective tool to predict the horizontal frost heaving
characteristics during the freezing method construction of
Nantong metro contact passage.

6. Conclusions

(1) The frost heaving test of the clay layer in the metro
contact passage shows that the frost heave character-
istics of clay are influenced by tidal current, freezing
temperature, natural water content, and dry density,
and the change rules are different. According to the
frost heaving curve, the frost heaving force and rate
of the same soil layer increase with the decrease of
freezing temperature. In addition, due to the com-
prehensive influence of freezing temperature, natural
water content, dry density, and tidal current peak,
the frost heave characteristics of different soil sam-
ples are obviously uncertain

(2) With the goal of improving the deficiency of the tra-
ditional BP neural network algorithm in solving ran-
dom engineering problems, random factors and
mean square error between layers were used to mod-
ify the evaluation function of the network model. On
this basis, the peak values of tidal flow, freezing tem-
perature, natural water content, and dry density were
taken as input values, the frost heaving force and rate
of frozen soil were taken as output values, the num-
ber of middle hidden layer elements was set as 4, and
an improved prediction model of frost heave charac-
teristics of fuzzy random BP network was estab-
lished. The new network prediction model has
better weights and smaller biases, and its response
tends to be smoother than that of the traditional net-
work, which greatly reduces the phenomenon of
overfitting

(3) The engineering example shows that the improved
BP neural network prediction model can make the
predicted value of frost heaving force and rate basi-
cally coincide with the measured value under differ-
ent working conditions, and the error is controlled
within 8% after effective training. Therefore, the pre-
diction model can be used as an effective tool for the
prediction of frost heave characteristics in Nantong
metro freezing construction, and the corresponding
model and method can also be extended to similar
engineering cases
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