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The accurate time prediction of seepage pressure in the dam has essential significance for the safety of the dam body and the life
and property of people. To predict the time sequence of seepage pressure, the grey self-memory model is introduced at first, and its
calculative procedure is analyzed. Then, the engineering overview in the Nuer dam is narrated, and the prediction model of
seepage pressure in the Nuer dam is established and analyzed based on the grey self-memory theory. Finally, the conclusions
are drawn that relatively to GM (1,1), the grey self-memory model has higher accuracy, and it not only can predict the time
sequence of seepage pressure in the Nuer reservoir accurately but also provide a new method for the development trend of
seepage flow in the hydraulic engineering in the future.

1. Introduction

The dam is the basis of hydroelectric power. Different types
of dams have been built continuously since 1949 in China,
for example, embankment dams, gravity dams, and arch
dams; the total numbers arrive at 100 thousand [1]. These
dams have significant influences on the rapid development
of the national economy. However, when the dam break
occurs, the life of people and property safe at the downwards
of the river will be significantly endangered, so the safety of
the dam has always become a hot issue [2, 3]. Many factors
affect the safety of embankment dam, such as the seepage
flow and deformation, especially, the seepage flow is one of
the essential factors [4]. According to corresponding statis-
tics, more than 52% of embankment dam crashes originate
from seepage damage [5, 6], so the investigation on the seep-
age flow prediction of embankment dams has excellent sig-
nificance for the safety of hydraulic engineering [7].

To assure the dam’s safety in advance, the prediction
of seepage flow in the dam has aroused many researchers’

attention [8]. The researchers in many countries have per-
formed plenty of experiments; their investigation results
provide the firm basis for the development of seepage flow the-
ory [9]. With the development of mathematics science and
computer technology, many methods are provided by many
researchers [10] to determine the seepage prediction of dam
body; a nonlinear elastic deformation and unsteady seepage
coupling model are used by Chen et al. [11] to predict the
seepage and deformation process; Larese et al. [12] proposed
an improved Navier-Stokes equation to simulate the seepage
and free surface flow in the porous embankment dam. The
seepage behavior is investigated by Choo et al. [13] in the
drainage area about an embankment dam with a centrifugal
experiment and numerical simulation. The Monte Carlo sim-
ulation and random field theory are used to simulate the seep-
age of an embankment dam by Tan et al. [14]. Abnormal
seepage behavior is detected by comparing the measured and
calculated values in the finite element model [15]. Besides,
the numerical simulation of seepage flow has always been per-
formed by many researchers [16–18], for example, the finite
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element method, the finite difference method, and boundary
element method [19]; Rafifiezadeh et al. suggested an efficient
over relaxation algorithm of block to solve the seepage flow of
the dam [20]. In 1988, Kazemzadeh-Parsi et al. [21] provided a
new iterative algorithm to predict the variation of seepage flow
in the dam. In 2011, Chen [22] suggested a numerical simula-
tion based on the finite element method to solve the complex
seepage problem of drainage systems; its results are validated
by two other numerical models. Besides, other many methods
[23, 24] are also applied to predict the time sequence of seep-
age flow in the dam body.

The above methods improve the development of seepage
flow prediction in the dam, but these models or methods are
complex, and many physical parameters are difficult to be
obtained. It is inconvenient to apply the actual engineering,
so the grey self-memory model is introduced in the paper.
The method avoids the collection and treatment of data
about the different factors, and it is convenient and practical;
the excellent accuracy can be obtained, so it is widely applied
to hydraulic engineering.

The paper is organized as follows: In Section 2, the basic
theory of grey self-memory is introduced at first. In Section
3, an engineering application example in Nuer dam is ana-
lyzed based on the grey self-memory model. In Section 4,
conclusions are drawn.

2. The Basic Theory

2.1. The Grey Theory GM (1,1). The seepage time sequence
of the dam is affected by many factors, and it has many
uncertainties, so the grey theory is applied to analyze it.
GM (1,1) approach is used to depict the model of a single
sequential dynamic case; it can perform the medium and
long prediction for the single factor.

A group of new data series with apparent trends can be
generated from the accumulative method of specific data
series by using the grey theory. The predictive model is
established according to the increasing trend of new data
series, then reverse computation is performed by using the
method of accumulative decrease, and the final prediction
results are obtained.

Its model is established as follows:

(1) It is assumed that there is a group of original datum
xðtÞ, t = 1, 2,⋯, n; n is the number of datum, and
then, the normalization treatment is performed. It
can be expressed as [25]

x 0ð Þ
t = x tð Þ

xmax
: ð1Þ

(2) The sequence xð0Þt is accumulated once, and the
result can be obtained as follows:

x 1ð Þ
t = x 1ð Þ

t

n o
, t = 1, 2,⋯, n, ð2Þ

where xð1Þt = xð0Þ1 ; xð1Þt =∑t
i=2x

ð0Þ
i = xð1Þt−1 + xð0Þt ,

t = 2,⋯, n.
(3) When new datum sequences are compared with the

original ones, their random degree is significantly
weakened, and the degree of smoothness increases.
Its variable trends can be depicted by the first-
order differential equation as follows:

dx 1ð Þ/dt + ax 1ð Þ = u, ð3Þ

where a and u can be obtained by using the least square
method, namely:

a, u½ �T = BTB
� �−1

BTYN , ð4Þ

where

B =

−
1
2 x 1ð Þ 1ð Þ + x 1ð Þ 2ð Þ
h i

1

−
1
2 x 1ð Þ 2ð Þ + x 1ð Þ 3ð Þ
h i

1
⋯ ⋯

−
1
2 x 1ð Þ n − 1ð Þ + x 1ð Þ nð Þ
h i

1

2
666666664

3
777777775
, ð5Þ

YN =

x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
⋯

x 0ð Þ nð Þ

2
666664

3
777775
: ð6Þ

In Equation (4), let dxð1Þ/dt = Fðx, tÞ, and then, its differ-
ential equation can be expressed as

F x, tð Þ = u − ax 1ð Þ: ð7Þ

2.2. Self-Memory Model. The above grey differential equation
is regarded as the dynamic core. The self-memory model of
seepage flow vs. time sequences in the dam is constructed
based on the self-memory theory.

For many time sequences tiði = −p,−p + 1,⋯, 0, 1Þ, t0 is
the initial time, t1 is predictive time, and p is backtracking
order; memory function βðtÞ is introduced. When Fðx, tÞ
is performed weighted integral from t−p to t1, a difference
integral equation can be obtained by using the partial inte-
gration and mean value theorem as follows [26]:

βtxt
1ð Þ − β‐px−p

1ð Þ − 〠
0

i=−p
x 1ð Þm
i βi+1 − βið Þ =

ðt1
t−p

β τð ÞF x 1ð Þ, τ
h i

dτ,

ð8Þ

where xð1Þmi = xð1ÞðtmÞ, ti < tm < ti+1. Equation (9) is called as
p-order self-memory equation.
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It is assumed that approximate value xð1Þmi = ½xð1Þi +
xð1Þt+1�/2, and the integral is substituted by using summation,
and αi = βi/ðβ1 + β0Þði = −p,⋯, 0, 1Þ; the approximate
expression of self-memory equation can be obtained as
follows:

x 1ð Þ
i = α−p x 1ð Þ

−p − x 1ð Þ
−p+1 + 2F−pΔt

h i
+ 〠

−1

i=−p+1
x 1ð Þ
i−1 − x 1ð Þ

i+1 + 2FiΔt
h i

αi

+ x 1ð Þ
−1 + 2F0Δt

� �
α0 + x 1ð Þ

0 α1,

ð9Þ

where Δt-sequential time interval; it is selected as 1 in the
manuscript, Fi − Fðx, tÞ.

If let A−p = xð1Þ−p − xð1Þ−p+1 + 2F−PΔt

Ai = x 1ð Þ
i−1 − x 1ð Þ

i+1 + 2FiΔt, i = −p + 1,−p + 2,⋯,−1ð Þ ð10Þ

A0 = xð1Þ−1 + 2F0Δt; A1 = xð1Þ0 ; then, Equation (9) can be
rewritten as

x 1ð Þ
i = α−pA−p + 〠

−1

i=−p+1
Aiαi + A0α0 + A1α1: ð11Þ

Equation (11) is the prediction equation of grey self-
memory. The self-memory coefficients αi of the model can be
evaluated by using the least square method; p + 2 datum is clas-
sified into a group in the sequential expression. (2) Generated
by using the sequential addition, the whole L = n − p‐1 group
data is formed by using the sequential addition, then these data
are substituted into Equation (12). A L × ðp + 2Þmatrix can be
obtained as follows:

X 1ð Þ
1 =Mα, ð12Þ

where

X 1ð Þ
1 =

x 1ð Þ
1,1

x 1ð Þ
1,2

⋯

x 1ð Þ
1,L

2
6666664

3
7777775
, α =

α−p

α−p+1

⋯

α1

2
666664

3
777775
, ð13Þ

M =

A−p,1 A−p+1,1 ⋯ A0,1 A1,1

A−p,2 A−p+1,2 ⋯ A0,2 A1,2

⋯ ⋯ ⋯ ⋯ ⋯

A−p,L A−p,L+1 ⋯ A0,L A1,L

2
666664

3
777775
: ð14Þ

2.3. The Procedure of Grey Self-Memory Model about the
Seepage Flow Prediction. Its procedure is listed as follows:

(1) The detailed datum of seepage monitoring about the
dam is collected at first. To enhance the predictive

precision, the datum of time sequence should have
enough length and equal intervals

(2) Based on the above datum, the grey differential equa-
tion of time-displacement sequence ðdxð1Þ/dtÞ +
axð1Þ = b is established using the grey system theory
GM (1,1). It can then reflect the differential equation
of nonlinear dynamics about the dynamic evolution
characteristics of the system

(3) Grey self-memory model about seepage monitoring
is established. When the self-memory principle of
the dynamic system is applied, the inversion of pro-
cedure (2) is performed to obtain the self-memory
equation with the backtracking order P. The self-
memory equation is discrete, the memory coeffi-
cients are solved by using the least square method
based on the corresponding monitoring datum of
seepage flow

(4) The prediction is performed based on the above
grey self-memory model. It is assumed that the
sequence of seepage pressure vs. time is xðtÞ, t =
1, 2,⋯, n; the time length of forecast is lðl ≤ ðp +
1Þ < nÞ. The former l monitoring datum is applied
to predict the value xn+1 at the moment ðn + 1Þ at
first; to enhance the accuracy, the actual monitor-
ing data xn+1 is inserted into time sequence, and
the old monitoring data xn+1−l in the time
sequences can be deleted in the former procedure;
new time sequences fxn‐l+2, xn‐l+3,⋯, xn, xn+1g with
the length l are constructed. They are input into
the self-memory model; the prediction value xn+2
at the moment ðn + 2Þ can be obtained. And the
prediction magnitudes of seepage flow at all
moments can be obtained

3. Engineering Application Example

3.1. Project Overview. The hydropower project under consid-
eration in this investigation is located on the Nuer River. It is
a controlled hydrojunction projection. A water diversion
power generation system is located on the left bank; a spill-
way and a diversion tunnel are located on the right bank.
The total capacity of the reservoir is 0.69 billion m3; its nor-
mal water storage level is 2497m; the dead water level is
2465m; and the fully installed capacity of the power station
is 6.2MW. The average annual generation over many years
is 0.217 billion kW·h [25], and basic information of the
dam are shown in Figure 1.

The dam is located in the riverbed. It is an asphaltic
concrete-core rockfill dam with a maximum height of
80m. Low liquid limit eolian silt is covered on the upper
of left bank slope; its thickness is about 30~53m; Pleistocene
alluvial sand and gravel are covered on the lower of Pleisto-
cene alluvial gravel. Its thickness is about 5~ 6m; upper limit
of weak weathering layer of the conglomerate in the western
region is covered with the foundation in left bank core
(0 + 000~0+040m section) [27].
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To monitor the seepage pressure of Nuer dam, the distri-
bution map of the seepage monitoring instrument is plotted
in Figure 2. The distribution map of the monitoring instru-
ment in the cross section 0+100 is plotted in Figure 3; the
distribution map of the monitoring instrument in the cross
section 0+290 is plotted in Figure 4.

To establish the seepage flow prediction model, the
monitoring reservoir water level and water level of seep-
age pressure in the dam foundation and body are, respec-
tively, plotted in Figures 5 and 6. Their date is from
2018/08/04 to 2018/12/10. It can be found from
Figures 6 to 7 that seepage water level increases as time
increases at the initial stage, but it becomes steady at
the following settings.

3.2. The Establishment of Grey Self-Memory Model

3.2.1. The Construction of Seepage Prediction Model Frame.
The seepage flow has excellent influences on the construc-
tion production and safe operation of the dam. And so the

construction of the seepage flow prediction model has great
significance. The procedure of the seepage flow prediction
model of the Nuer dam is plotted in Figure 7.

It can be found in Figure 7 that the original datum of
seepage flow in Nuer dam is collected at first; then, the grey
model GM (1,1) in the Nuer dam is established; by inversion,
the grey self-memory model is constructed about the Nuer
dam; secondly, the grey self-memory model is discretized, and
the corresponding value at the particular moment is predicted.
Finally, the predictive results are compared with monitoring
results and the ones of grey theory. Final conclusions are drawn.

3.2.2. The Establishment of Seepage Model in Nuer Dam.
According to the relevant datum of monitoring point UP1
at the cross section 0+ 110 in the dam body in Nuer reser-
voir from 4/8 to 10/12, 2018, the total 129 data is applied
to establish the model; 20 data from 9/11 to 28/11, 2018,
are used to predict the water head difference from the
upstream to downstream.
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Figure 2: Planar distribution map of seepage monitoring instrument and water level.
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Figure 4: Distribution map of seepage monitoring instrument in the cross section 0 + 290.
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5Geofluids



To establish the grey self-memory model, based on the
Equations (1)–(5), the differential equation of grey theory
can be obtained as follows:

F x, tð Þ = 8:2566 + 0:0077673x 1ð Þ: ð15Þ

Based on Equation (11), the backtracking order p is
selected as 11. Then, the prediction equation of the grey
self-memory model can be expressed as

x 1ð Þ
1 = A−11α−11 + 〠

−1

i=−10
Aiαi + A0α0 + A1α1: ð16Þ

According to Equations (11)–(14), the relevant memory
parameters of the model can be calculated as: α−11 = −8:658,
α−10 = −8:71, α−9 = −8:946, α−8 = 9:388, α−7 = −9:492, α−6 =
9:457, α−5 = −9:257, α−4 = 9:478, α−3 = −9:566, α−2 = 9:683,
α−1 = −9:269, α0 = 8:731, and α1 = −7:332. The comparison
of prediction value and monitoring value is plotted in
Figure 8. The calculative results are performed cumulative
reduction because the backtracking and accumulative reduc-
tion; only the monitoring datum in 17/8-10/12, 2018, is pre-
dicted; their error results are shown in Table 1.

Similarly, based on the datum of point P5 in the dam
foundation, their comparison between the prediction value
and monitoring value is plotted in Figure 9, and the compar-
ison of errors can be shown in Table 2.

Because of the backtracking, the former 13 values are not
predicted; only 116 data are analyzed. It can be found in
Figures 8 and 9 that there exist sound effects from GM (1,1)
and grey self-memory model. Especially for the grey self-
memory model, its magnitudes have higher accuracy than
the ones obtained from GM (1,1). The predictive characteris-
tics of the grey self-memory model have strong nonlinearity,
while GM (1,1) model demonstrates strong linearity. And it
can be found in Table 1 that there are four days within the
error range of 5%, which accounted for 20% of the total; there
are nine days within the error range between 5% and 6%, and
it occupied 45%; there are seven days within ones between 6%
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Table 1: The comparison of errors between the monitoring datum and predicting value.

Date
Monitoring
value/m

The
predicting
value/m

The
relative
error (%)

Date
Monitoring
value/m

The
predicting
value

The
relative
error (%)

9/11 17.31 17.25 -0.3 19/11 17.19 18.19 5.8

10/11 17.36 18.23 5 20/11 17.19 18.17 5.7

11/11 17.31 18.15 4.9 21/11 17.19 18.27 6.3

12/11 17.30 18.12 4.7 22/11 17.19 18.15 5.6

13/11 17.27 18.25 5.7 23/11 17.22 18.32 6.4

14/11 17.25 18.26 5.9 24/11 17.22 18.41 6.9

15/11 17.25 18.28 6 25/11 17.22 18.43 7.0

16/11 17.25 18.21 5.6 26/11 17.21 18.15 5.5

17/11 17.25 18.22 5.6 27/11 17.24 18.12 5.1

18/11 17.25 18.43 6.8 28/11 17.25 18.45 7
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Figure 8: The comparison of prediction value and monitoring value at the point UP1.
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and 7%, and it accounted for 45% of the total; their average
error is 5.56%; likely, it can be found in Table 2 that all the rel-
ative errors are within the ranges of 5%; there are two days
within the error ranges of 2%, and it accounted for 10%; there
are thirteen days within ones between 2% and 3%, and it
accounted for 65%. And there are five days within ones
between 3% and 4%, which accounted for 25%; their average
error is 2.6%. So conclusions can be drawn that the grey self-
memory model can predict the variable law of seepage pres-
sure in the Nuer reservoir accurately and provide a new
method for the development trend of seepage flow in hydrau-
lic engineering in the future.

4. Conclusions

(1) The grey self-memory model is a new method in
combination with the certainty and uncertainty; its
virtues are practical and straightforward because
the model is only concerned with the observation
sequences of seepage flow monitoring, and other
influential factors are not considered. So the grey
model GM (1,1) is adopted as the dynamic core; rel-
atively to other methods, the construction of model
is simple, and it can be calculated easily

(2) By analyzing the correlated example, the information
of many monitoring values is applied fully in the
grey self-memory model. The accuracy of prediction
can be improved enormously, and better prediction
results can be obtained. Conclusions can be drawn
that the grey self-memory model can predict the var-
iable law of seepage pressure in the Nuer reservoir
accurately and can provide a new method for the
development trend of seepage flow in hydraulic engi-
neering in the future
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