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The Sanhu Depression in Qaidam Basin is the largest Quaternary biogenic gas exploration area with the shallowest burial depth in
the world. The shallow high abundance of gas reservoirs and high-quality pure methane have become the main production areas.
The development characteristics of loose mudstone reservoirs are restricted by extreme heterogeneity. Therefore, the Quaternary
Qigequan Formation mudstone in Qaidam Basin is selected as the research object. Based on the study of the sedimentary
background, petrological characteristics, and pore structure characteristics, by comparing the characteristics of different
mudstone reservoirs, the controlling factors of the development of different mudstone reservoirs and the control of gas
migration are clarified. Research shows the following: (1) The mudstone reservoirs of the Qigequan Formation mainly develop
intergranular pores, clay mineral pores, and intragranular pores. The pore size distribution varies from nanometers to
micrometers, and mesopores mainly contribute to the specific surface area. (2) Rigid minerals and clay minerals are the main
controlling factors for the pore structure of mudstone reservoirs. The increase in the content of rigid minerals is conducive to
the development of macropores or larger micropores, while the increase in the content of clay minerals is conducive to the
development of mesopores and provides an important specific surface area for gas adsorption. (3) The gas migration form of
pure mudstone is mainly dominated by Fick diffusion and slippage flow, which has the characteristics of self-sealing
accumulation. The gas migration form of silty mudstone is the coexistence of Fick diffusion, slippage flow, and Darcy flow,
which has the features of self-sealing and Darcy flow accumulation. The gas migration form of sandy mudstone is mainly
Darcy flow, only with Darcy flow accumulation characteristics. The flow form of gas creates different accumulation modes of
mudstone biogas. The Quaternary mudstone reservoir shows different particularity under different material components, and
the exploration targets should be treated differently according to specific mudstone types.

1. Introduction

Qaidam Basin is a large Mesozoic-Cenozoic inland sedimen-
tary basin with its attitude measuring 2650-3000m, sur-
rounded by the Altun Mountain in the northwest, Qilian
Mountain in the northeast, and Kunlun Mountain in the
southwest [1, 2]. The Qigequan Formation is the primary
sedimentary strata in the eastern Qaidam Basin, with a
thickness of nearly 3000m. The Qigequan Formation pro-

vides sufficient gas source rocks to form Quaternary biogas
[3, 4]. Biogas resources account for approximately 20% per-
cent of the world’s natural gas resources and have significant
economic value. As a large-scale biogas accumulation area of
the Quaternary, the unique geological conditions of the
Sebei gas field are very representative, and its successful
exploration and development experience has specific refer-
ence significance [5]. Previous studies in this area used mud-
stone as source rock and sandstone as a conventional
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reservoir. The exploration prospect of unconventional oil
and gas was seriously underestimated. With the continuous
advancement of exploration and development technology,
primarily the breakthrough of horizontal wells and hydraulic
fracturing technology, the abundant hydrocarbon resources
in mudstone, which is the source rock or cap layer of con-
ventional oil and gas reservoirs, have received widespread
attention. Micro-nanopores are developed in mudstone res-
ervoirs, and the pore structure controls the occurrence state,
gas content, seepage capacity, and microhydrocarbon migra-
tion and accumulation mechanism of mudstone gas [6–8].
Therefore, the study of micro-nanopore structure character-
ization of mudstone is helpful to improve the prediction and
characterization of the gas storage, hydrocarbon migration,
and accumulation properties of mudstone reservoirs.

The experimental methods of pore structure characteriza-
tion can mainly be divided into imaging, fluid, and nonfluid
invasion methods [9–11]. Imaging methods mainly include
field emission scanning electron microscopy (FE-SEM),
focused ion beam scanning electron microscopy (FIB-SEM),
and atomic force microscopy (AFM), which can observe the
pore size, morphology, and distribution of samples at different
scales [12–14]. The pore morphology, distribution, and con-
nectivity of the shale were characterized using FE-SEM and
FIB-SEM techniques, and it was concluded that many pores
below 5nm were developed [15]. Fluid invasion methods
mainly include the gas adsorption method and the high pres-
sure mercury intrusion method (HPMI). Using CO2 adsorp-
tion, N2 adsorption, CH4 isothermal adsorption, and HPMI,
the pore structure of Longmaxi Formation shale in southeast
Sichuan was characterized by full pore size, and the control
of pore structure on shale gas content was clarified [16]. Non-
fluid intrusion methods mainly include nuclear magnetic
resonance, micro-nano-CT, and small-angle X-ray scattering
[17–19]. The pore characteristics and connectivity of the
Longmaxi Formation shales in the Jiaoshiba area of the
Sichuan Basin were evaluated using nano-CT and 3D recon-
struction techniques. It was concluded that the shale pores
are highly inhomogeneous and have good connectivity in gen-
eral [20]. The analysis of the pore structure of multiple sets of
shale in North America using HPMI, N2/CO2 gas adsorption,
and SANS/USANS shows that the measurement results of
shale pores by SANS/USANS and N2/CO2 gas absorption
methods are in good agreement [21].

In this study, the mudstone of the Qigequan Formation
of the Quaternary in the Sanhu Depression of the Qaidam
Basin is taken as the research object. Through SEM, gas
adsorption, and HPMI, the pore structure characteristics of
mudstones of different lithofacies in Tainan, Sebei No. 1,
and Sebei No. 2 gas fields are identified, and the influence
of pore difference development on the mudstone reservoir
space is analyzed. Ultimately, it will guide the optimal selec-
tion of mudstone reservoirs and biogas exploration and
development in the study area.

2. Geological Setting

The Qaidam Basin is a Mesozoic-Cenozoic intermountain
basin developed since the Indo-China Movement. The

formation of the Quaternary System is the product of the
overall migration of the sedimentary center from west to east
under the action of neotectonic movement at the end of the
Tertiary [22]. The Sanhu Depression is located in the south-
eastern part of the Qaidam Basin. Under the action of the
Late Himalayan Movement, the sedimentary center of the
basin migrated from west to east, forming the Quaternary
subsidence and deposition center in the Sanhu Depression
[23, 24]. The Sebei Gas Field is located in the second struc-
tural unit of the north slope of the Sanhu Depression and
is the leading natural gas producing area in the Qaidam
Basin (Figure 1).

The exploratory well in the Sanhu Depression reveals the
Quaternary Qigequan Formation from top to bottom (Q1

+2), Shizigou Formation of Upper Tertiary (N2
3), Upper

Youshashan Formation of Upper Tertiary (N2
2), Lower

Youshashan Formation of Upper Tertiary (N2
1), Upper

Ganchaigou Formation of Upper Tertiary (N1), Lower
Ganchaigou Formation of Lower Tertiary (E3), and Lulehe
Formation of Lower Tertiary (E1+2). The exploration practice
has confirmed that the Qigequan Formation and Shizigou
Formation are the biogas reservoirs in the Sanhu area and
the main exploration intervals at present [25].

Therefore, this paper only studies the mudstone of the
Qigequan Formation. The mudstone of the Qigequan
Formation of Quaternary is in the early diagenetic stage.
The lithology is mainly light gray mudstone and sandy
mudstone, with light gray siltstone, argillaceous siltstone,
fine sandstone, thin calcareous mudstone, and grayish-
black carbonaceous mudstone, and various lithologies fre-
quently interact with each other.

3. Sampling and Laboratory Methods

The 30 samples selected in this study are mudstones from
the Tainan, Sebei No. 1, and Sebei No. 2 gas fields. The
samples used are located in the K7 to K9 interval of the
Qigequan Formation. The TOC and mineral composition
analysis of mudstone is carried out by organic carbon ana-
lyzer and X-ray diffraction analyzer.

3.1. SEM. The SEM image was taken by the Institute of
Geology and Geophysics, Chinese Academy of Sciences.
The instrument was a Zeiss SUPRA 55 Sapphire SEM. The
diameter of the mudstone sample was 0.5~3.0 cm, and the
thickness was 0.2~1.0 cm. The mudstone samples were cut
into flakes and then observed by instruments. Firstly, the
surface of each sample was mechanically polished, and then,
the surface of mudstone samples was ground by argon-ion
for two hours on Hitachi IM4000 equipment to remove
uneven parts and surface attachments. SEM images can
intuitively provide information such as pore morphology
and pore structure parameters.

3.2. N2 Adsorption. When the relative pressure (P/P0) is
0.01~1, the N2 adsorption experiments can test the pore size
distribution, surface area, and pore volume parameters for
pore sizes from 0.3 nm to 200nm pores. Before the experi-
ment, the mudstone sample was ground into 200 mesh and
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then dehydrated for five hours and degassed for 24 h at
110°C. The isothermal adsorption-desorption experiment
was completed at 77.35K.

3.3. HPMI. HPMI can characterize macropore size distribu-
tion and pore volume distribution of mudstone samples. The
instrument is an AutoPore IV 9500 automatic mercury
porosimeter produced by Mac Company. The samples were
dried at 60°C for 48 hours before the experiment, then
underwent vacuum treatment, after meeting the require-
ments of the HPMI. According to the injection volume of
the Washburn equation under different pressures, the pore
volume of varying pore sizes can be obtained.

3.4. TOC. Total organic carbon (TOC) content was deter-
mined by an ELTRA CS 800 carbon-sulfur analyzer, and
the samples were pulverized to a particle size of about
0.12mm before analysis. After the first weighing, the carbon-
ate minerals in the samples were treated with dilute hydro-
chloric acid, and the second weighing was performed. After
rinsing and drying, the samples were reweighed, and the
TOC was obtained by calculating the mass of the samples
before and after combustion and the amount of carbon diox-
ide generated after high-temperature combustion.

4. Results

4.1. Lithological Characteristics. According to the results of
the TOC analysis (Table 1), the TOC value of mudstone
samples is 0.06%~0.23%, with an average of 0.13%, indicat-
ing the abundance of organic matter in the study area is

extremely low. XRD results show that the mudstone samples
in the study area are mainly quartz, feldspar, clay minerals,
and carbonate minerals. The quartz content of mudstone
samples is 25.36%~62.53%, with an average of 38.35%. The
clay mineral content is 13.29%~38.42%, with an average of
26.56%. The feldspar mineral content was 13.60%~23.73%,
with an average of 18.38%. The carbonate mineral content
is 2.57%~23.63%, with an average of 15.44%. The Quater-
nary strata in the Sanhu Depression are thin interbeds of
sandy and argillaceous sediments from top to bottom and
generally have longitudinal and lateral heterogeneity. Qua-
ternary mudstone can be divided into pure mudstone, silty
mudstone, and sandy mudstone according to the size and
relative content of mineral particles.

The pure mudstone is gray or dark gray as a whole, with
extremely thin organic interlayers, and some layers are rich
in bioclasts. Horizontal bedding is more developed. The
pores are difficult to observe under the optical microscope.
The silty mudstone has horizontal bedding, and microfrac-
tures are developed under the microscope. The grains are
mainly quartz and feldspar, and micron-scale intergranular
pores can be seen. Sandy mudstone is poorly cemented
and easily fractured. The overall color is mainly light gray.
The core particles are relatively coarse, the horizontal
bedding is not developed, and most of them are massive
structures. Under the microscope, it can be observed that
the sandy particles are distributed in bands, and the particles
are mainly quartz and feldspar. The interstitial material is
mainly muddy, with a content of about 25%, mixed with a
small amount of calcite. The rock contains powdered pyrite,
partially agglomerated into lumps. Intergranular pores are
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Figure 1: The structure of the Sanhu Depression and the histogram of Quaternary stratigraphy. Sanhu Depression is divided into the
southern slope belt, central sag belt, and northern slope belt. The gas field is located in the northern slope belt. The experimental
samples were taken from wells Tn-18, Ts-1, St-1, and S-23.
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developed in the sandy strips, which are characterized by
poor connectivity (Figure 2).

4.2. Pore Morphology Characteristics. Many SEM experi-
ments found that the pores of Quaternary mudstone res-
ervoirs have significant heterogeneity on the microscopic
scale, and as the observation scale decreases, the hetero-
geneity characteristics increase significantly. Previous
research has done much research on mudstone pore mor-
phology and classification [26–28]. Based on the classifi-
cation of the contact relationship between pores and
mineral components, a large number of rigid mineral
intergranular pores, mineral intragranular pores, and clay
minerals pores can be observed by SEM. The pore size
ranges from nanometer to micron, providing ample stor-
age space for free gas. A small amount of organic matter
was observed, and the organic matter pores were rela-
tively undeveloped (Figure 3).

4.2.1. Intergranular Pores of Rigid Minerals. The intergranu-
lar pores of rigid minerals are mainly developed between
rigid minerals such as quartz, feldspar, pyrite, and calcite,
which are triangle, strip, and irregular, and are one of the
main types of Quaternary mudstone reservoirs [29]. The
pore diameter is mainly distributed in the range of
20~500nm, and the length of intergranular pores of rigid
minerals can reach the micron level. These pores are gener-
ated with the burial depth and diagenesis of the mudstone,
and they can be partially preserved under the conditions of
more vital compaction and diagenesis due to the rigid min-
eral crystals such as quartz, feldspar, pyrite, and calcite,
which have some resistance to compression.

4.2.2. Clay Mineral Pore. The Qigequan Formation mud-
stone mainly develops two types of pores related to clay min-
erals. Type I is related to pores developed along the bed of
terrigenous clastic sheet clay minerals, and the shape of such

Table 1: TOC and mineral content of Quaternary mudstone samples.

Sample number Depth (m)
TOC
(%)

Clay
(%)

Quartz
(%)

Feldspar
(%)

Carbonate
(%)

Pyrite
(%)

Lithology

H-1 1592.5 0.12 37.06 25.74 16.62 20.16 0.30 Pure mudstone

H-2 1596.4 0.15 35.56 30.60 14.08 19.01 0.60 Pure mudstone

H-3 1597.0 0.18 34.80 27.47 15.94 20.11 1.50 Pure mudstone

H-4 1589.3 0.23 22.10 37.04 20.60 19.43 0.60 Silty mudstone

H-5 1596.8 0.12 29.80 42.08 13.80 13.92 0.28 Silty mudstone

H-6 1852.0 0.17 28.89 37.62 19.47 11.95 1.90 Silty mudstone

H-7 1850.8 0.11 13.29 62.53 20.20 2.57 1.30 Sandy mudstone

H-8 1856.5 0.09 17.00 53.87 19.92 7.41 1.71 Sandy mudstone

H-9 1594.8 0.12 21.78 38.10 19.35 19.57 1.08 Silty mudstone

H-10 1595.0 0.16 26.31 29.83 20.92 22.13 0.65 Silty mudstone

H-11 1596.3 0.21 30.48 28.32 15.84 23.59 1.56 Pure mudstone

H-12 1596.5 0.08 32.80 27.50 16.71 21.49 1.42 Pure mudstone

H-13 1856.6 0.13 16.44 54.68 18.16 8.59 2.00 Sandy mudstone

H-14 1598.9 0.11 28.04 33.58 17.19 19.76 1.32 Silty mudstone

H-15 1599.3 0.15 28.93 38.31 18.77 11.98 1.86 Silty mudstone

H-16 1592.3 0.13 37.18 26.72 17.45 18.11 0.41 Pure mudstone

H-17 1851.0 0.21 35.61 30.49 14.16 19.07 0.46 Pure mudstone

H-18 1588.9 0.07 36.22 28.15 16.31 17.93 1.32 Pure mudstone

H-19 1589.2 0.16 24.30 33.10 22.53 19.29 0.62 Silty mudstone

H-20 1596.1 0.14 38.42 31.12 13.60 16.08 0.64 Pure mudstone

H-21 1599.2 0.12 26.76 38.72 19.79 12.93 1.68 Silty mudstone

H-22 1856.8 0.06 15.66 55.34 20.61 7.45 0.88 Sandy mudstone

H-23 1603.9 0.14 24.59 30.59 20.18 23.63 0.87 Silty mudstone

H-24 1851.7 0.07 14.64 51.45 23.73 9.68 0.43 Sandy mudstone

H-25 1590.1 0.09 26.86 35.70 16.33 19.96 1.06 Silty mudstone

H-26 1604.5 0.09 17.22 53.84 19.67 7.39 1.79 Sandy mudstone

H-27 1853.1 0.23 34.69 25.36 17.49 20.92 1.31 Pure mudstone

H-28 1604.6 0.06 13.95 56.48 20.84 7.22 1.45 Sandy mudstone

H-29 1605.0 0.10 19.44 51.59 18.43 9.41 1.03 Sandy mudstone

H-30 1855.5 0.13 27.95 34.61 22.67 12.54 2.10 Silty mudstone
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Figure 2: Continued.
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pores is related to the distribution of clay minerals. Type II is
the intercrystalline pores of clay minerals, which are formed
by compaction and dehydration transformation between
clay minerals. It is manifested as layered pores between clay
mineral sheets or pores between clay mineral crystals [30].
The clay mineral pores are controlled by the direction of
mineral crystal growth and are laminated primarily, with
pore size generally ranging from 20 to 100nm, which is
more commonly developed. The pore development of clay
minerals is concentrated, with complex cementation and
poor sorting. The clay minerals have small particle sizes
and strong plasticity, which are easy to transport after
hydration and expansion, blocking the pore channel and
reducing the permeability of the reservoir. The surface area
of clay minerals is more significant than that of quartz and
other minerals, and the more developed the clay mineral
pores, the stronger the gas adsorption capacity. When the
organic carbon content of the mudstone is low, the adsorp-
tion of clay minerals is very significant. Thus, it can be seen
that clay mineral pores provide very considerable storage
space for the Quaternary mudstone reservoir.

4.2.3. Intragranular Pores. Controlled by geological action,
quartz, feldspar, calcite, and other minerals in the mudstone
are dissolved under the action of stratigraphic water, form-
ing intragrain soluble pores [31]. In the SEM images of the
Quaternary mudstone reservoir samples in the study area,
more intragrain dissolution pores can be observed. It is
mainly developed on the surface of carbonate mineral
grains, and the intragrain soluble pores formed on the sur-
face of quartz and feldspar grains are less common. The
intragranular pores in the granules are mostly round and
irregular polygons. Due to the weak compaction effect, the
intragranular pores have not suffered compaction damage,
and the development range of the intragranular pores within
the granule ranges from nanometers to micrometers.

4.2.4. Organic Matter Pore. Organic matter pores are irregu-
lar elliptical pores developed within organic matter due to
hydrocarbon generation of organic matter [32]. Taking the
marine shale of the Longmaxi Formation as an example,
organic pores in shale are abundant, one of the most critical
pore types [33]. However, organic matter pores are rarely
developed in the Quaternary mudstone reservoirs, and only
a tiny amount of organic matter pore development is
observed in some samples of pure mudstone, which is not
observed in silty mudstone and sandy mudstone. Because
organic pores are controlled by the abundance and maturity
of organic matter, the TOC of Quaternary mudstone ranges
from 0.07% to 0.23%, and vitrinite reflectance of organic
matter is mostly less than 0.5%. The organic matter content
of the Quaternary mudstone is low and in the immature
period, so it cannot meet the demand for organic matter
pore development in large quantities.

4.3. Pore Distribution Characteristics

4.3.1. N2 Adsorption. According to IUPAC classification, the
pore structure of pure mudstone and silty mudstone is the
H3 type. The H3-type hysteresis loop is narrow, the adsorp-
tion curve is almost parallel to the desorption curve, notice-
able capillary condensation occurs when the vapor pressure
is close to saturation, and the adsorption curve rises sharply.
It reflects the existence of parallel plate-shaped slit-type
pores in the sample. Sandy mudstone has H4 type of pore
structure, which represents a slit-type parallel plate-like pore
structure. It also has the characteristics of some ink bottle
pores and mainly develops rigid granular materials. This
type of pores has a large adsorption hysteresis loop
(Figure 4). On the whole, the Mesoporous pore structure
of Quaternary mudstone in the Sanhu Depression is irregu-
lar, mainly with parallel-walled slit-type pores, as well as
some cone-shaped flat holes, cone-shaped tube holes, and
ink bottle holes. Many mesopores and macropores in the

(i)

Figure 2: Photos of cores and thin sections of mudstones of different lithofacies in the Qigequan Formation. (a) S-23: pure mudstone;
horizontal bedding develops and sandwiches organic layers. (b) Tn-18: pure mudstone; pores are difficult to observe. (c) Tn-18: pure
mudstone; pores are difficult to observe. (d) Tn-18: silty mudstone; horizontal bedding is developed and microfractures are visible.
(e) Tn-18: silty mudstone; the grains are mainly quartz and feldspar, and a small number of pores can be seen. (f) Tn-18: silty
mudstone; the grains are mainly quartz and feldspar, and a small number of pores can be seen. (g) Tn-18: sandy mudstone; the
mudstone diagenesis is weak. (h) Ts-1: sandy mudstone; the sandy particles are distributed in bands, and the particles are mainly
quartz and feldspar. (i) Ts-1: sandy mudstone; obvious intergranular pores are developed in the sandy belt.
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mudstone are arranged in series, forming a complex pore
throat system, and the pore structure is very complicated.

The distribution characteristics of pore volume and spe-
cific surface area change rate of mudstone are obtained by
BJH and BET equations, respectively [34, 35]. It is found
that the pore volume and specific surface area of mesopo-
rous mudstone have similar distribution characteristics to
pore size. The pore volume and specific surface area of
mesoporous mudstone are mainly contributed by pores in
the range of 5~20 nm (Figure 5). The pores in the range of
20~30 nm of individual samples also provide part of the pore
volume and specific surface area, while the mesopores in the
mudstone range have less contribution to the pore volume
and specific surface area of mudstone. It shows that the pore
volume and specific surface area of the Quaternary mud-
stone reservoir in the Sanhu Depression are mainly provided
by pores of 5~20 nm (Figure 6).

4.3.2. HPMI. According to the typical characteristics of cap-
illary pressure curves under different sorting and skewness
summarized by Chilingar, mudstone shows various features
(Figure 7). The threshold pressure of pure mudstone is the
highest, ranging from 6.88MPa to 9.64MPa, with an average
of 8.49MPa, and the average maximum mercury saturation
is about 76.58%. The sorting coefficient of pure mudstone
is small, and the pore size distribution is relatively uniform.
The threshold pressure of silty mudstone is high, ranging

from 0.41MPa to 3.78MPa, with an average of 2.04MPa,
and the maximum mercury saturation is about 85.22%.
The sorting coefficient of sandy mudstone is significant,
the flat section shown in the mercury injection curve is
short, and the pore size distribution is uneven. The capillary
pressure curve image of sandy mudstone tends to lower left,
and the threshold pressure is relatively lowest, with an aver-
age of 0.06MPa. The initial curve of mercury injection is
gentle, indicating that the capillary pressure at this time
corresponds to a relatively large number of pores controlled
by the throat. A temporary flat section appears when the
mercury intake reaches more than 15%, indicating more
pores in this radius range.

The pore size distribution curve of mudstone based on
HPMI shows that the rate of change of pore volume of
Quaternary mudstone increases and then decreases with
the growth of pore size (Figure 8). The pore volume of pure
mudstone shows a bimodal phenomenon with the pore size
distribution, mainly developing pore sizes 6~20 nm and
40~90nm. The curves for pore sizes less than 100 nm vary
significantly, which indicates that pores in the range of pore
size less than 100nm contribute considerably to the total
pore volume. The pore volume of silty mudstone has a wide
distribution with pore size, mainly in the range of 40-
200 nm. Some samples have micron-scale pore development,
indicating uneven pore size distribution. The pore size
distribution of the sandy mudstone shows a single peak

1 𝜇m

Clay mineral pore

(i)

2 𝜇m

Clay mineral pore

(j)

5 𝜇m

Organic matter

(k)

10 𝜇m

Organic matter pore

(l)

Figure 3: SEM photographs of different types of pores in mudstone samples of the Qigequan Formation (by backscattered electron). (a) Tn-
18: pure mudstone and the overall morphology characteristics of minerals and pores. (b) Tn-18: pure mudstone, micron organic matter, and
organic matter pore. (c) Tn-18: silty mudstone and nanoorganic matter. (d) Tn-18: silty mudstone and nanoclay mineral pore. (e) Tn-18:
silty mudstone and micron intergranular pore. (f) Tn-18: sandy mudstone and micro-nanointragranular pore. (g) Tn-18: sandy
mudstone and intergranular pore. (h) Tn-18: sandy mudstone and intragranular pore. (i) Tn-18: pure mudstone and clay mineral
pore. (j) Tn-18: pure mudstone and clay mineral pore. (k) St-1: pure mudstone and organic matter. (l) St-1: silty mudstone and
organic matter pore.
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Figure 4: Continued.
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phenomenon, and a large number of pores with 10~20μm
pore size are developed. The pore volume with pore size
distribution curves of different mudstone samples is incon-
sistent, indicating that the pores are strongly nonhomoge-
neous. The change rate of surface area decreases with the
increase of pore size, and pores mainly contribute to the sur-
face area of different mudstones within the pore size range of
less than 30nm (Figure 9).

5. Discussions

5.1. Whole-Aperture Distribution Characteristics. At present,
domestic and foreign scholars have carried out many
experimental studies on the whole-aperture distribution
characteristics of unconventional reservoirs. The leading
technologies are as follows [36]: the gas adsorption technol-
ogy and mercury injection technology are combined to
determine the whole-aperture distribution characteristics of
mudstone. According to the advantages of different charac-
terization techniques, the pore distribution characteristics
of micropores (<2nm), mesopores (2~ 50 nm), and macro-
pores (>50nm) in Longmaxi Formation shale and North
American shale reservoirs in southeastern Sichuan were
obtained by CO2 adsorption, N2 adsorption, and HPMI
[37]. Due to the shallow burial depth, weak diagenesis, and
uncemented state, Quaternary mudstone in Sanhu Depres-
sion rarely has micropore development. Therefore, the
authors only discuss the distribution characteristics of meso-
pores and macropores. According to the different pore size
characterization ranges and accuracy of the two experimen-
tal methods, the N2 adsorption experimental data were
selected for the mesopores, and the HPMI experimental data
were chosen for the macropores. Thus, the whole-aperture
size distribution characteristics of mudstone are obtained.

The pore volume of the Quaternary pure mudstone
reservoir can reach 0.08~0.12ml/g, with an average of
0.10ml/g, and the main development pore size range is
6~90nm. The proportion of macropore is 42.21%~60.85%,
with an average of 52.06%. The proportion of mesopore
volume ranged from 39.15% to 57.79%, with an average

of 47.94%. The pore volume of silty mudstone is
0.12~0.15ml/g, with an average of 0.13ml/g. The main pore
size range is 40~200 nm, and some samples develop micron
pores. The proportion of macropore is 37.64%~84.62%, with
an average of 61.06%. The proportion of mesopore vol-
ume ranged from 15.38%~62.36%, with an average of
38.94% %. The pore volume of sandy mudstone can
reach 0.23~0.24ml/g, and the main developed pore size
range is 0.5~10μm. The proportion of macropore volume
is 89.96%~96.26%, and the proportion of mesopore volume
is 3.74%~10.04% (Table 2). The pore space is mainly contrib-
uted by macropores (Figure 10).

The surface area of the Quaternary pure mudstone reser-
voir is 14.75~28.27m2/g, and the average is 20.47m2/g. The
surface area of mesopores is 83.49%~91.19%, and the
average is 86.35%. The surface area of macropores is
8.81%~16.51%, and the average is 13.65%. The surface area
of the silty mudstone reservoir is 9.55~23.17m2/g, with an
average of 16.97m2/g. The surface area of mesopores ranged
from 77.49% to 93.49%, with an average of 86.29%. The sur-
face area of macropores ranged from 6.21% to 22.51%, with
an average of 13.71% (Table 2). The sandy mudstone lacks
mesopores, so the average surface area is only 7.68m2/g
(Figure 11).

Compared with silty mudstone and sandy mudstone,
pure mudstone has more mesopores and fewer macropores.
The relatively high content of clay minerals in pure mud-
stones suggests that clay minerals are the main factor in
the development of mesopores in Quaternary mudstones.
In contrast, silty mudstones and sandy mudstones have
higher contents of rigid minerals such as feldspar and
quartz, indicating that the content of rigid minerals is the
main controlling factor for macropore development. Rigid
minerals are dominated by intergranular pores, intragranu-
lar dissolution pores, and cracks, so the pores associated
with rigid minerals are relatively large. Mesopores also
occupy an absolute advantage in the pore specific surface
area, ranging from 65.71% to 93.49%, with an average of
83.49%. The contribution of macropores to the pore surface
area of the pores is relatively tiny.

A
ds

or
pt

io
n 

qu
an

tit
y 

(m
l/g

)

Relative pressure (P/P0)
0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Adsorption
Desorption

(g)

A
ds

or
pt

io
n 

qu
an

tit
y 

(m
l/g

)

Relative pressure (P/P0)
0.0 0.2 0.4 0.6 0.8 1.0

Adsorption
Desorption

0

2

4

6

8

10

(h)

Figure 4: N2 adsorption isotherms of different mudstones. (a) H-1: pure mudstone; (b) H-2: pure mudstone; (c) H-3: pure mudstone;
(d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone; (h) H-8: sandy mudstone.
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5.2. Genesis of the Pore Structure of Mudstone Reservoir. The
pore types in the mudstone are complex, so the develop-
ment characteristics of micro-nanopores in mudstone
reservoirs are comprehensively controlled by sedimentary
diagenesis, mineral composition, organic carbon content,
and thermal evolution degree of organic matter [38].
Some external and internal factors control the develop-

ment of the mudstone pore network. External factors
include the influence of diagenesis on fluid properties,
abnormal pressure generated during hydrocarbon genera-
tion, mineral transformation, and other factors. At the
same time, the internal factors include organic matter
abundance, thermal maturity, and mudstone composi-
tion, which are interrelated and have a significant impact
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Figure 5: BJH desorption model pore volume distribution of Qigequan Formation mudstone samples. (a) H-1: pure mudstone; (b) H-2:
pure mudstone; (c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy
mudstone; (h) H-8: sandy mudstone.
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on the pore network system [39]. A more detailed dis-
cussion on internal factors affecting pore structure is as
follows.

5.2.1. Organic Matter. The pore network of the mudstone
reservoir is composed of pores associated with organic mat-
ter and inorganic matter. Each mudstone reservoir has

unique properties controlled by the amount of organic mat-
ter and minerals and thermal maturity. The reservoir quality
depends on the pore structure, which relies on the develop-
ment of primary and secondary pores, and the pores associ-
ated with organic matter are considered secondary pores
[40]. Generally, organic matter content and maturity control
the pore network in mudstone.
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Figure 6: BET desorption model pore specific surface area distribution of Qigequan Formation mudstone samples. (a) H-1: pure mudstone;
(b) H-2: pure mudstone; (c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy
mudstone; (h) H-8: sandy mudstone.
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Figure 7: Capillary force curves of different mudstone samples. (a) H-1: pure mudstone; (b) H-2: pure mudstone; (c) H-3: pure mudstone;
(d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone; (h) H-8: sandy mudstone.

13Geofluids



Through the correlation analysis between pore struc-
ture and TOC of Quaternary mudstone reservoirs in the
study area, it is found that TOC has a reverse relation-
ship or no apparent correlation with pore surface area
and volume. The mesopore volume and surface area

have a weak positive correlation with TOC (R2 = 0:0074
and 0.0265), and the macropore volume and specific
surface area have a weak negative correlation with
TOC (R2 = 0:1215 and 0.0185). It shows that TOC has
no noticeable control effect on the development of
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Figure 8: HPMI pore volume distribution of typical Qigequan Formation mudstone samples. (a) H-1: pure mudstone; (b) H-2: pure
mudstone; (c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone;
(h) H-8: sandy mudstone.
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mesopores and macropores that constitute the main body
of pore surface area and volume (Figure 12). The Quater-
nary mudstone in the Sanhu Depression has low organic
matter content and is in the immature stage. Organic

matter has not reached a large amount of hydrocarbon
generation to form micro-nanopores, so the effect of
organic matter on the pore structure development of
mudstone is weak.
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Figure 9: HPMI pore surface area distribution of typical Qigequan Formation mudstone samples. (a) H-1: pure mudstone; (b) H-2: pure
mudstone; (c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone;
(h) H-8: sandy mudstone.
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5.2.2. Rigid Minerals. Rigid minerals are equivalent to skele-
tons in mudstone and provide large amounts of intergranu-
lar pores, including minerals such as quartz, feldspar, and
carbonate. The results of the influence of rigid minerals on
the pore structure development of the Quaternary mudstone
are similar for quartz and feldspar. The volume of meso-
pores is weakly negatively correlated with the content of
quartz and feldspar (R2 = 0:3651 and 0.4862), and the vol-
ume of macropores is positively correlated with the content
of quartz and feldspar (R2 = 0:7740 and 0.6273). The surface
area of mesopores is negatively correlated with both quartz
and feldspar contents, and the surface area of macropores
is not significantly associated with quartz and feldspar
contents. The volume and surface area of mesopores are
weakly positively correlated with carbonate mineral content
(R2 = 0:2329 and 0.2985). There is a negative correlation
between macropore volume and carbonate mineral content
(R2 = 0:6003), and there is no significant correlation between
macropore surface area and carbonate mineral content
(Figure 13).

Rigid minerals such as quartz and feldspar easily form
micron-level cracks after compression. At the same time,
because rigid minerals such as quartz and feldspar can resist
inevitable compaction, they can effectively retain part of the
pores, providing space for mudstone reservoir pores and
increasing pore volume. However, the contribution of the
surface area of rigid minerals is not apparent or even inhibits
the development of the surface area. The carbonate minerals
in the study area have an evident influence on the mesopore
and surface area of the mudstone. It may be that the acid
fluid in the formation water of the study area acts on the car-
bonate rock to generate tiny dissolution pores and promote
the development of mesopores.

5.2.3. Clay Minerals. Clay minerals have a unique layered
crystal structure. Some pores are formed within the mineral
particles, between the mineral particles, and between the
crystal layers, which are usually ribbon, strip, plate, and flake
[41]. The pore size distribution of pores of different types of
clay minerals varies greatly, such as montmorillonite micro-
pores are the most developed, ilmenite/montmorillonite

mixed level is the next, kaolinite develops medium to large
pores, and illite and chlorite create micron-level pores.

The pore volume and surface area of the Quaternary
mudstone reservoir are positively correlated with clay min-
eral content (R2 = 0:5418 and 0.6141). There is a negative
correlation between macropore volume and clay minerals
(R2 = 0:9228) and a weak positive correlation between
macropore surface area and clay minerals (R2 = 0:0323).
The results show that clay minerals play an essential role
in controlling the mesopore development of the main body
of surface area and total pore volume (Figure 14). The pore
size of the clay mineral pore in Quaternary mudstone reser-
voirs is mainly in the mesoporous range (<50 nm), so high
clay mineral content promotes the development of meso-
pores and inhibits the growth of macropores. Clay minerals
provide an important adsorption area for gas adsorption in
Quaternary mudstone reservoirs without organic matter.

5.2.4. Compared with Marine Shale. Regarding the marine
shale of the Longmaxi Formation in the Sichuan Basin, the
development characteristics of shale pores are mainly con-
trolled by TOC content, organic matter maturity, and
mineral composition [42]. The TOC content of the marine
shale of the Longmaxi Formation has a strong control effect
on the pore volume and specific surface area, and the poros-
ity is positively correlated with the TOC content. At organic
matter maturity below 2.5%, porosity increases with thermal
maturity but decreases with samples with higher thermal
maturity. The porosity of organic matter and clay minerals
tends to be preserved by the presence of rigid particles.
These particles provide a framework that prevents these
pores from collapsing. The porosity of marine shale frame-
work minerals is mainly related to carbonate dissolution.
The increase in the organic matter content of marine shale
will lead to an increase in the content of micropores. There-
fore, the micropores contribute a larger specific surface area.
The carbonate mineral content can lead to an increase in the
content of macropores [43].

Compared with the marine shale of the Longmaxi
Formation in Sichuan [44], the lacustrine mudstone of
the Qigequan Formation in the Qaidam Basin has very
different geological characteristics [43]. The TOC content

Table 2: Pore volume and specific surface area of mudstone of Qigequan Formation.

Sample number
Pore volume (ml/g) Surface area (m2/g)

The proportion of
volume (%)

The proportion of surface
area (%)

Mesopore Macropore Mesopore Macropore Mesopore Macropore Mesopore Macropore

H-1 0.052 0.058 15.338 3.034 46.88 53.12 83.49 16.51

H-2 0.031 0.049 12.447 2.308 39.15 60.85 84.36 15.64

H-3 0.072 0.053 25.781 2.490 57.79 42.21 91.19 8.81

H-4 0.024 0.131 7.400 2.150 15.38 84.62 77.49 22.51

H-5 0.077 0.046 21.661 1.509 62.36 37.64 93.49 6.51

H-6 0.050 0.077 15.975 2.201 39.08 60.92 87.89 12.11

H-7 0.009 0.220 2.788 0.519 3.74 96.26 84.30 15.70

H-8 0.025 0.220 7.913 4.130 10.04 89.96 65.71 34.29

Average 0.042 0.107 13.663 2.293 34.30 65.70 83.49 16.51
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Figure 10: Continued.
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Figure 10: The pore volume distribution of mudstone in the Qigequan Formation. (a) H-1: pure mudstone; (b) H-2: pure mudstone;
(c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone; (h) H-8:
sandy mudstone.
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Figure 11: Continued.
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Figure 11: The specific surface area distribution of mudstone in the Qigequan Formation. (a) H-1: pure mudstone; (b) H-2: pure mudstone;
(c) H-3: pure mudstone; (d) H-4: silty mudstone; (e) H-5: silty mudstone; (f) H-6: silty mudstone; (g) H-7: sandy mudstone; (h) H-2: sandy
mudstone.
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of lacustrine mudstone is low, and there is no obvious cor-
relation between porosity and pore surface area, and TOC
content. Because of the low TOC content and the degree
of thermal evolution, the organic matter has not reached
a large amount of hydrocarbon generation to form pores.
Therefore, micropores related to organic matter are rarely
developed. The lacustrine mudstone of the Qigequan For-
mation is characterized by relatively high clay mineral
content. Clay minerals are the main factor for the develop-
ment of mesopores, and the content of mesopores and
specific surface area is significantly correlated with clay
minerals. Similar to marine shale, lacustrine mudstone also
has the feature that pores are preserved due to the exis-
tence of rigid mineral particles. Due to the weak diagenetic
compaction in the later stage, there is an obvious correla-
tion between macropores and the content of the rigid
mineral particle.

5.3. The Controlling Effect of Pore Structure on Gas
Migration. There are two basic types of natural gas migra-
tion: seepage and diffusion. The gas transmission mecha-
nism in nanopores includes continuous flow, slippage flow,
Fick diffusion, transition flow diffusion, and Knudsen
diffusion [45, 46]. These migration types summarize the
mechanism and power of mudstone gas migration and have
their mechanism and control factors.

The average free path is the linear path between a mole-
cule and other molecules through two successive collisions.
According to the ideal gas collision theory, the average free
path of gas molecules is [47]

λ = KT
ffiffiffi

2
p

πd2mP
, ð1Þ

where λ is the average free path of gas molecules, m; K is
a Boltzmann constant, J/K; T is the gas temperature, K;
dm is the diameter of the gas molecule, m; and P is gas
pressure, Pa.

The Knudsen number is the ratio of the average free path
of gas molecules to the characteristic length of objects in the
flow field [48]. Generally, the Knudsen number is used to
determine whether the fluid is suitable for the continuum
hypothesis. The Knudsen number formula for mudstone
gas migration is [49]

Kn = λ

2r : ð2Þ

The transport mechanism can be divided into various
forms according to the intensity of the interaction between
the gas molecules of nanopores and the pore wall, namely,
the Kn numerical range. The gas transport mechanism in
the pores of mudstone at different scales is different, and
the corresponding transport capacity is also different. When
the pore diameter of mudstone is much larger than the free
path of gas molecules, that is, Kn is less than 0.001, the gas
migration form is Darcy seepage [50]. When the pore size
of mudstone continues to decrease, the Kn number is
between 0.001 and 0.01, the gas migration form is slippage
seepage [51]. When Kn is between 0.01 and 0.1, the pore
diameter is much larger than the average free path of meth-
ane gas molecules. At this point, the collision of methane gas
molecules mainly occurs between free methane gas mole-
cules, and the collision opportunities between molecules
and capillary walls are relatively small. Such diffusion fol-
lows the Fick theorem, known as the Fick-type diffusion
[52]. When Kn is between 0.1 and 10, the pore diameter is
similar to the average free path of methane gas molecules,
and the collision between molecules and the clash between
molecules and the wall is equally essential. Therefore, the
diffusion is a transition between Fick and Knudsen diffu-
sion [53]. The pore size of mudstone decreases further,
that is, Kn > 10, the characteristic value of gas migration
is pore diameter, and the gas migration form is Knudsen
diffusion [54].
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Figure 12: Plots showing the relationship between pore structure and TOC content. (a) Pore volume has a weak correlation with TOC;
(b) no obvious correlation between specific surface area and TOC.
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Figure 13: Plots showing the relationship between pore structure and rigid mineral content. (a, c) Macropore pore volume is positively
correlated with quartz and feldspar; (b, d) mesopore specific surface area is negatively correlated with quartz and feldspar; (e) macropore
pore volume is negatively correlated with carbonate; (f) mesopore specific surface area has a weak positive correlation with carbonate.
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Based on the differential enrichment mathematical
model of mudstone gas, based on the full-scale pore size
distribution characteristics of mudstone reservoirs and com-
bined with the critical conditions of mudstone gas diffusion
and seepage in areas, the distribution interval and migration
ability of mudstone full-scale pore size diffusion and seepage
can be calculated. Based on the characteristics of the Quater-
nary mudstone gas reservoir in the Sanhu Depression
(18MP, 60°C), the different transport forms to the pore size
range are Knudsen diffusion (<0.4 nm), transition flow diffu-
sion (0.4~ 4.0 nm), Fick diffusion (4.0~ 40.0 nm), slippage
flow (40.0~398.0 nm), and Darcy flow (>398.0 nm). The
proportion of pore volume corresponding to different gas
migration forms in pure mudstone reservoirs is 2.11%,
50.34%, 38.17%, and 9.37%. The proportion of pore volume
corresponding to different gas migration forms in silty mud-
stone reservoirs is 0.64%, 40.86%, 44.65%, and 13.85%. The
proportion of pore volume corresponding to different gas
migration forms in sandy mudstone reservoirs is 0.00%,
3.97%, 5.65%, and 90.42%. Fick diffusion occurs in 50.34%
and 40.86% of pore volume in pure mudstone and silty
mudstone, and mesopores are the main diffusion space.
The Darcy flow occurs in 90.42% of the pores of sandy mud-
stone, and the pores with pore size greater than 400 nm are
the main space for Darcy flow (Figure 15).

From pore structure and gas migration control, the
Quaternary mudstone reservoir has unique development
characteristics. Compared with conventional reservoirs,
Quaternary mudstone reservoirs also possess considerable
pore volume (0.08~0.23ml/g) and develop many nanopores.
In particular, the percentage of mesoporous (<50 nm) pores
in pure mudstone and silty mudstone can reach 47.94% and
38.94%, respectively. The massive development of nano-
pores causes the adsorption of mudstone medium and the
binding of capillary force, which leads to the failure of
long-distance migration of biogas. Many pores can only
migrate in the form of Fick diffusion, the mudstone reservoir
is in a “self-sealing” state, and biogas is generated and
accumulated in situ. The “self-generation and self-storage”

accumulation characteristics of the Quaternary mudstone
reservoir are not possessed by the conventional reservoir.

Compared with the tight reservoir, the surface area of
some pure mudstone and silty mudstone can also reach
20m2/g due to the development of many nanopores. The
difference is that the surface area of tight reservoirs is mainly
contributed by micropores and a small number of meso-
pores, while a large number of developed mesopores provide
the surface area of Quaternary mudstone reservoirs. These
mesopores can provide considerable surface area and con-
tribute a lot of free gas enrichment space, which is the
advantage of Quaternary mudstone reservoir development.

The particularity of the pore structure of the Quaternary
mudstone reservoir creates its unique accumulation model.
The pure mudstone reservoirs are mainly dominated by Fick
diffusion and slippage flow, accounting for 50.34% and
38.17% of the pore volume, respectively, which have the
characteristics of self-sealing enrichment and accumulation.
The sandy mudstone reservoir is the coexistence of Fick dif-
fusion, slippage flow, and Darcy flow, and the pore volume
can reach 48.86%, 44.65%, and 13.85%, respectively. It shows
the characteristics of both self-sealing accumulation and
Darcy flow accumulation. The sandy mudstone is mainly
Darcy flow, accounting for 90.42% of the pore volume. It
has difficulty in self-sealing and only has Darcy flow enrich-
ment characteristics.

Combined with the development characteristics of mud-
stone reservoirs, its controlling effect on gas accumulation is
further analyzed. In the deep depressions of the Sanhu area,
the porosity of mudstone gradually decreases with the
deepening of strata burial. Mudstone forms a self-enclosed
environment. The depth of 1500m is the peak area of gas
production by methanogens, and the amount of methane
generated is far greater than the amount of gas diffusion
and loss, forming a self-sealing overpressure mudstone
biogas reservoir. In the slope zone of the Sanhu area,
groundwater is continuously replenished by the melting
water of ice and snow in the Kunlun Mountains, resulting
in the overall water saturation of mudstone reaching more
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Figure 14: Plots showing the relationship between pore structure and clay mineral content. (a) Macropore volume has a negative correlation
with clay; (b) mesoporous specific surface area is positively correlated with clay.
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Figure 15: Gas migration form of different pores in Qigequan Formation mudstones. (a) H-3: pure mudstone, Fick diffusion, and slippage
flow; (b) H-6: silty mudstone, Fick diffusion, slippage flow, and Darcy flow; (c) H-7: sandy mudstone and Darcy flow.
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than 70%. Mudstone expands with clay minerals under
high salinity and water content and has the characteristics
of low permeability and high breakthrough pressure. Due
to changes in lithology, methane gas in silty mudstone and
sandy mudstone is blocked by water-bearing pure mudstone
layers, lithofacies assemblages control the formation of bio-
gas reservoirs. In the northern structural high of the Sandhu
area, the porosity of mudstone becomes relatively larger.
Mudstone cannot form a self-contained environment to store
gas. However, the methane gas generated in the center of the
depression migrated to the high strata by means of diffusion
and sandstone seepage. The organic matter in the mudstone
in the high position continuously generates hydrocarbons,
and the sealing of hydrocarbon concentration plays a role
in sealing the underlying strata. At the same time, methane
is continuously supplied to the overlying sandstone.
Therefore, the superimposed dynamic normal pressure
gas reservoir of mudstone unconventional biogas reservoir
and sandstone conventional biogas reservoir can be
formed in the structural high position (Figure 16).

6. Conclusions

(1) The mudstone of the Qigequan Formation mainly
develops rigid mineral intergranular pores, clay min-
eral pores, intragranular dissolved pores, and rare
organic matter pores. The pore size distribution of
different mudstones is complex, and the peak range
of the pore size distribution curve is widely distrib-
uted. Pure mudstone and silty mudstone develop
many nanopores, and the main pores developed
range from 6 to 90 nm and 40 to 200nm. However,
the micron pores of sandy mudstone are mainly
developed in the range of 0.5~10μm. The mesopores
of mudstone contribute 65.71%~93.49% of the total
specific surface area and 3.74%~62.36% of the total
pore volume, indicating that the ability of mesopores

to provide specific surface area is much larger than
that of macropores, which is the prominent place
for methane adsorption in mudstone reservoirs

(2) The contents of rigid and clay minerals in the mud-
stones of the Qigequan Formation have a perfect lin-
ear relationship with the pore structure parameters
of the mesopores and macropores of the mudstone
reservoirs. It shows that rigid minerals and clay min-
erals are the most important controlling factors for
the micro-nanopore structure of mudstone. The
increase in rigid mineral content is not conducive
to the development of mesopores but favors the
development of macropores or larger micron pores
or microfractures. The rise of clay mineral content
benefits mesopore development and provides essen-
tial specific surface area for gas adsorption

(3) The development characteristics of mudstone reser-
voirs in the Qigequan Formation create its unique
gas accumulation form. The migration form of pure
mudstone gas is mainly Fick diffusion and detach-
ment flow, which has the characteristics of self-
sealing accumulation. The migration form of silty
mudstone gas is the coexistence of Fick diffusion,
slippage flow, and Darcy flow, which has the charac-
teristics of self-sealing and Darcy flow accumulation.
The flow model of sandy mudstone gas is mainly
Darcy flow, which only has the features of Darcy
flow accumulation. Therefore, the difference in the
development of reservoir pore structure creates
different biogas accumulation models
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Figure 16: Model figure of biogas enrichment and accumulation in Qigequan Formation.
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