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Rare earth elements (REE) are important raw materials for electronic products and green-energy technology and deep-sea
sediment as an important potential source of REE mineral. It is of great scientific significance to understand the influence of
REE in deep-sea sediments. In this paper, thirty sediments samples and eleven sediments samples were collected at the site
SH3 and SH1 of Shenhu area, respectively. The trace elements, major elements, and different Fe-Mn minerals were analyzed to
investigate the role of anaerobic oxidation of methane (AOM) in the enrichment of rare earth elements in the marine
sediments. The result showed that the content of ∑REE/Ti increased at the top of sulfate and methane transition zone (SMTZ)
at site SH1 and SH3. Combined with the analysis of different forms of ferromanganese minerals and the REE patterns, it is
inferred that there is little influence of terrigenous input to the REE content. In contrary, the REE-rich carbonate phase and
REE-rich Fe-Mn oxides (hydroxides) phase have important contribution of REE enrichment at the top of SMTZ. Meanwhile,
the calculations of the quantitative relationship between the REE-rich carbonate phase and REE-rich Fe-Mn oxides
(hydroxides) phase also confirm this conclusion. And the AOM caused the decrease of the REE-rich Fe-Mn oxides
(hydroxides) phase and increase of the REE-rich carbonate phase. This is the potential explanation of ∑REE/Ti enrichment at
the top of SMTZ. This study is of great scientific significance for the study of REE enrichment mechanism in the methane
seeps and provided a new sight of REE enrichment mechanism in deep-sea sediments.

1. Introduction

Anaerobic oxidation of methane (AOM) is a very important
biogeochemical process in marine sediments. It is consid-
ered to be of significant impact on climate change, atmo-
spheric evolution, and related element cycle [1–5]. During
AOM, the residual porewater sulfate was consumed at the
sulfate-methane transition zone (SMTZ). Here, an upward
flux of methane reacts with a descending flux of sulfate
[6–10], which is mediated by the metabolisms of methane-
oxidizing archaea (MOA) and sulfate-reducing bacteria

(SR) [3, 11–16]. During the AOM, the methane-driven
authigenic carbonates (MDAC), pyrite, and other minerals
are enriched at the sulfate and methane transition zone
(SMTZ) [11, 17–20]. Of course, SMTZ was not static and
moved with the accumulation of sediments and the continu-
ous supply of methane from below (Xie et al., 2021). There-
fore, the sediment profile appeared multistage carbonate,
and pyrite increases with the depth. The anomalies of the
content of pyrite can help identify the paleo-SMTZ. Previous
researches have shown that metal oxides and hydroxides
could be served as the electron acceptor during methane
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oxidation [15, 21–24]. In addition, seafloor observation at
seeps revealed that chemical and physical parameters, such
as fluid flux, temperature, thermal diffusivity, pH, and alka-
linity, are also changed at the SMTZ [25–27]. Numerous
studies have also demonstrated the AOM plays an important
role in the cycle of P, S, Fe, Ca, Mg, B, and Cl [28–31]. How-
ever, up to now, there is little research about the influence of
AOM on REEs.

Kato et al. [32] suggested that the deep-sea sediments
would be an important source of REEs in the future [32].
Therefore, it is particularly important to understand the
REE enrichment mechanism and the influencing factors in
marine sediments. At present, the REE patterns are often
used in indicating the source, reconstructing the redox envi-
ronment, and investigating the impact of climate change
[33–36]. While carbonates formed in the oxygenated bottom
water usually show a smooth seawater REE profile character-
ized by the enrichment of heavy REEs (HREEs) and positive
La and negative Ce anomalies [37]. And Pol et al. [38] sug-
gested that four lighter REEs (LREES) supported the growth
of acidophilic methanotroph in volcanic mud pots, however,
the higher atomic weight REEs (HREEs) were less conducive
to growth [38]. These conclusions confirmed that the
methane-rich marine sediments influence the REE distribu-
tion. Keltjens et al. also showed that light REE (LREEs) are
an important constitute of methanotrophs [39, 40]. Shiller
et al. [40] found the depletion of LREEs at methane-rich sed-
iments of Gulf of Mexico [40]. Bayon et al. [41] observed Nd
in the methane enriched plums above the cold seeps on the
Niger Delta margin [41]. Otosaka and Noriki [42] discussed
the compositional variations among REEs in settling parti-
cles to elucidate the sources of the REEs ([42]; Xiong et al.,
2012; [10]). Although the REE enrichment mechanism has
been studied in some sea areas by predecessors, the REE
enrichment mechanism in the methane seeps has been rarely
studied. In general, the Fe-Mn oxyhydroxides are sensitive to
the early diagenetic remobilization in marine sediments [15,
16, 36, 43], which can be used in understanding the REEs
influenced by the early diagenetic processes. In this paper,
we want to answer the question of the mechanism of REE
enrichments at the methane seep sediments and reveal the
relationship between the AOM and REE cycle.

2. Geological Settings

The South China Sea is the largest marginal sea in the
Western Pacific Ocean, formed under the convergent plate
boundary of the Eurasian plate, the India Australia plate,
and the Pacific plate [44–46]. Large and medium-sized
Cenozoic sedimentary basins were developed on the north-
ern slope of the South China Sea. Since the late Pliocene, a
large amount of terrigenous organic matter has been trans-
ported and deposited on the northern slope of the South
China Sea, which results in rapid sediment deposition and
provides favorable conditions for the formation of gas
sources [10, 47]. The studied sites SH1 and SH3 are distrib-
uted in the Shenhu area (Figure 1). The Shenhu area is
located in the zhu II depression area of the Pearl River
Mouth Basin on the northern slope of the South China

Sea. Influenced by the formation and evolution of the Ceno-
zoic sedimentary basin in the Pearl River Estuary, a wide
range of submarine canyons, central diapir belts, and various
types of diapir structures were developed in the Shenhu area
[48], which provide good channels for the migration of deep
source fluids [49]. The deposition rate in the Shenhu area
increased and the content of organic matter was high during
the Neocene. Guangzhou Marine Geological Survey carried
out five gas hydrate drilling expeditions in the Shenhu area
[50]. Geochemical analysis of the sediments and pore water
at several stations in the Shenhu area also indicated that
methane enriched fluid is active in this area [51, 52].

3. Samples and Methods

3.1. Sampling Locations and Sample Collection. The samples
used in this study were obtained at the sites SH1 and SH3 by
the Guangzhou Marine Geological Survey in the Shenhu
area of the South China Sea (SCS) in 2007 (Su et al. 2015).
Among them, SH3 is of particular interest because of its high
gas hydrate saturation and thick hydrate-bearing sediments.
The sediments at sites SH1 and SH3 are mainly silty clay. In
this study, 31 samples were obtained from site SH3 at 0-25
mbsf, and 11 samples were collected from site SH1.

3.2. Separation of Different Forms of Fe-Mn Minerals. The
following Fe-Mn minerals were separated from all collected
samples a. Fecarb-carbonate iron, mainly siderite (FeCO3)
and iron dolomite [Ca (Fe2+, Mg2+, Mn2+) (CO3)2]; b.
Feox1—easy to reduce (amorphous) iron (hydrogen) oxides;
c. Feox2 reducible (crystalline) iron oxides, Femag—magnetite;
d. Femag—iron contained in magnetite (Fe3O4).

The separation of said Fe-Mn minerals was carried out
by the following procedure:

(1) Accurately weigh 0.25 g of dry sediment in a 50mL
clean centrifuge tube, drop 25mL of 1mol·L-1
NaAc-HAc buffer (pH = 4:5) into it, and place it
after sealing. Shake on a shaker for 24 hours, adjust
the speed to ensure that the sediment is suspended
in the solution. After shaking, centrifuge at 4,000 rpm
for 15 minutes, pass the supernatant through a
0.4μm filter membrane, and put the filtrate into a clean
and dry centrifuge tube, 4°C cold storage is used to
determine Fecarb content

(2) Add 25mL HONH3Cl solution with a concentration
of 50 g·L-1 dropwise to the solid residue in (1), seal it
with a parafilm, put it in a shaker and shake for 2 h,
then put it in a centrifuge and centrifuge at 4000 rpm
15min, pass the supernatant through a 0.4μm filter
membrane, put the filtrate into a compiled centri-
fuge, and store it in a refrigerator at 4°C for determi-
nation of Feox1 content in the sediment

(3) Add 25mL of 50 g·L-1 Na2S2O4 solution dropwise to
the residual sediment in (2), seal and shake for 2
hours, centrifuge at 4 000 rpm for 15 minutes, and
filter the supernatant through 0.4μm membrane,
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and filtrate is stored in a refrigerator at 4°C for deter-
mining Feoxl content

(4) Add 25mL of 0.2mol·L-1 (NH4)2C2O4 dropwise to
the residual sediment in (3), seal and shake for 6
hours, centrifuge at 4 000 rpm for 15min, and pass
the supernatant through 0.4μm membrane, the fil-
trate is stored in a refrigerator at 4°C for determina-
tion of Femag content

3.3. The Calculation Methods of δCe and δEu. δCe and δEu
anomalies were calculated from the relationships.

δCe = CeN/ðLaN × PrNÞ1/2.
δEu = EuN/ðSmN × GdNÞ1/2,
where N represents chondrite normalization (data from

Taylor and McClennan, 1985).

3.4. Major and Rare Earth Element Analysis of Bulk
Sediments. In all samples, the major elements were deter-
mined at the Analytical and Testing Center of the Guang-
zhou Institute of Energy Conversion, Chinese Academy of
Sciences. A Thermo ARL ADVANTta IntelliPower TM
2000 X-ray diffraction spectrometry (XRF) instrument was
used to determine the contents of the major elements (Fe,
Mn, and Ti) in sediments. Measured XRF spectral data were
converted to elemental and oxide contents by UniQuant
semiquantitative analysis software.

The contents of rare earth elements in the whole rock were
analyzed by inductively coupled plasma mass spectrometry
(ICP-MS) on an Agilent 7700e instrument at the Wuhan
Shangpu Analysis Technology Co., Ltd. And rare earth ele-
ment analysis was carried out by the following procedure:

(1) The 74μm sample was placed in an oven at 105°C
for 12 h; (2) 50mg of the powder sample was
weighed in a Teflon bomb; (3) 1mL of high-purity
nitric acid followed by 1mL high-purity hydrofluoric
acid was added to the sample; (4) the Teflon sample

bomb was put into the steel sleeve, tightened, and
placed in an oven at 190°C for more than 24 h; (5)
the sample bomb was cooled and place on a 140°C
hotplate after opening the lid, the mixture was
evaporated, and 1mL of HNO3 was added prior to
conducting another evaporative step (to a liquid free
state); (6) 1mL of high-purity nitric acid, 1mL of
Milli-Q water, and 1mL of the internal standard
(concentration, 1 ppm) were then added, and the
Teflon bomb material was dissolved again, after
which the bomb was placed into a steel jacket, tight-
ened, and placed in an oven at 190°C for more than
12h; (7) lastly, the solution was transferred to a poly-
ethylene bottle and diluted to 100 g with 2% HNO3
for ICP-MS testing

4. Result

4.1. The Data of Rare Earth Elements at Site SH1 and Site SH3.
All data of rare earth elements at site SH1 and site SH3 are
listed in Table 1, the ∑REE at site SH1 and site SH3 shows
continuous fluctuation with the depth. There is no obvious
anomaly, however, the∑REE/Ti (Table 1) displays abrupt
increase of at 25mbsf of site SH1 and the∑REE/Ti represents
an abrupt increase of at 16mbsf of site SH3. The content of Al
and Fe shows the same tendency of varied ∑REE/Ti. The
UCC-normalized patterns of site SH1 and Site SH3 show
LREE and HREE deficits and MREE enrichment.

4.2. The Date of Fe-Mn Oxides (Hydroxides) and Fe-Mn
Carbonate at Site SH3. All Fe-Mn oxides (hydroxides) and
Fe-Mn carbonate are listed in Table 2. At site SH3, the con-
centration of Fe (oxl) and Mn (oxl) decreased at SMTZ
(Figure 2). The concentration of Mn (carb) increased and
the concentration of Fe (carb) slight increase at the SMTZ
(Table 2). What is more, the content of REE has a positive
correlation with the change of Fe-Mn oxides (hydroxides)
and Fe-Mn carbonate phase.

SH3

South China Sea

PRMB

Fig. 1b

Pearl River
Subaqueous
Delta

SH1

106° E

24° N

22° N

20° N
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Figure 1: The location of the study site SH1 and site SH3.
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5. Discussion

5.1. The Influence Factors on the Source and Composition of
REE. REEs are usually used to identify the sediment sources
and help to reconstruct the bottom-water redox conditions
[28, 53–55]. At present, the contents of REEs in marine
sediments are often influenced by the input of terrigenous
sediments, the removal of REEs from the water column by
authigenic minerals, and diagenetic alteration [56, 57]. Pre-
vious studies have also demonstrated that the REE patterns
show the same characteristics as the source characteristics,
therefore, the REE patterns can be applied to understand
the REE provenance. In the Shenhu area, the sediments are
mainly from the Pearl River, SW Taiwan, Luzon Rivers,
and some authigenic minerals [58, 59]. Beyond that, Wu

et al. (2017) also proved that aeolian transport from land
and volcanic ash accounts for less of Shenhu marine sedi-
ments [15, 60]. Moreover, most sediments transported into
the SCS by the Pearl River and Mekong River are deposited
on the inner shelf and along the shore. In contrast, SW Tai-
wan rivers supply a large amount of sediments (>70Mt yr−1)
to the northern SCS through a deep-water bottom current
along the 2000m isobath.

In this paper, the upper continental crust- (UCC-) nor-
malized REE patterns at sites SH1 and SH3 are characterized
by slight light REE (LREE (La, Ce, Pr, and Nd)) and heavy
REE (HREE (Ho, Er, Tm, Yb, and Lu)), and the enrichment
of middle REE (MREE (Sm, Eu, Gd, Tb, and Dy)) (Figure 3).
This MREE-bulge type pattern is a typical feature of anoxic
pore water in the marine sediments [61], and the anoxic
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Figure 2: The Fe (crab), Mn (crab), Fe (oxl), and Mn (oxl) change with the depth at site SH3. The gray area is the AOM action area.

Table 2: The content of different forms of Fe-Mn at site SH3.

Core name Depth (m) Fe(crab) (ppm) Mn(crab) (ppm) Fe(oxl) (ppm) Mn(oxl) (ppm)

SH3

0.87 3.693 1.547 / /

1.68 4.13 1.605 10.64 0.061

2.57 0.521 1.242 10.34 0.057

4.27 2.459 1.048 10.23 0.083

5.93 4.171 0.968 3.75 0.037

6.22 0.626 0.714 3.448 0.186

9.68 0.663 0.933 3.598 0.182

10.57 1.109 0.858 8.635 0.083

11.42 7.789 1.024 8.924 0.075

13.12 1.089 0.981 9.024 0.063

14.82 5.663 1.132 5.82 0.016

16.85 1.124 1.00 12.01 0.085

17.68 0.877 1.016 15.13 0.109

18.57 0.364 0.896 13.42 0.115

19.42 0.726 1.241 11.29 0.125

20.27 1.581 1.467 10.76 0.129

21.08 1.194 1.034 10.64 0.061

21.93 0.711 1.089 5.581 0.028

22.82 0.902 1.038 7.68 0.096
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environment is interpreted as the consequence of AOM,
because, during the AOM process, oxygen will gradually
consume [62, 63]. Previous studies have demonstrated that
Ce occurs as Ce3+ like other REE elements in anoxic condi-
tions, whereas under oxic conditions, the soluble Ce3+ is oxi-
dized to insoluble Ce4+ [64, 65]. In the studied area, all the
samples at sites SH1 and SH3 showed weak negative Ce
anomalies, indicating a reduced environment (Figure 3).
And this conclusion is consistent with the previous result.
Furthermore, sites SH1 and SH3 show lower content of
HREE and LREE compared with those of the SW Taiwan,
Luzou Rivers, and Parel Rivers. The result suggests that the
REE receives less influence of the input of Pearl River, SW
Taiwan, and Luzhon Rivers (Figure 4(b)). Ce3+ is oxidized
to Ce4+ under oxidizing conditions, resulting in a negative
Ce anomaly, which therefore is an effective indicator of oxic

conditions, and negative Ce anomalies in marine carbonates
have been shown to reflect seawater oxygenation. At site
SH1 and SH3, the δCe and δEu were obviously higher than
the δCe and δEu of the Parel rivers, SW Taiwan, and Luzhon
rivers (Figure 4(a)). Indicating an anoxic and methane seep
sediment environment at site SH1 and SH3, such a sediment
environment is very favorable for AOM. The conclusion is
consistent with the previous study. Therefore, the contents
of REE at sites SH1 and SH3 are mainly influenced by the
authigenic minerals and later diagenesis induced by the
AOM. Combined with the reduced environment, we believe
that the REEs are mainly influenced by the authigenic min-
erals and diagenetic alteration rather than detrital minerals
that usually contain much higher REES [61]. However, the
northern part of The South China Sea is a high incidence
area of detrital input; to eliminate the impact of detrital
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input on REE, the REE/Ti ratios were used to eliminate the
influence of terrigenous sediment input. At site SH1, the
∑REE/Ti (Table 1) contents changed from 318ug/g to
407 ug/g and show high values at 25mbsf with decreased
content of Fe and Al. At site SH3, the ∑REE/Ti contents var-
ied from 318ug/g to 375 ug/g, and the highest value is at
17mbsf with a slightly increase of Fe and Al (Figure 5). This
characteristic indicates that the abrupt increase at 25mbsf of
site SH1 and 17mbsf of site SH3 is not influenced by the input
of terrigenousmaterial. It is more likely to be influenced by the
later diagenesis or effects of authigenic minerals.

5.2. The Influence of AOM on the Enrichment of REEs. REE
content is usually increased with the sediment depth [66,
67]. However, the content of REEs does not increase with
the depth at sites SH1 and SH3. As mentioned above,
the∑REE/Ti increases abruptly at sites SH1 and SH3 at
25mbsf and 17mbsf, respectively (Figure 5). However, the
sulfate and methane transition zone (SMTZ) is at 27-
36msbf of site SH1 and the SMTZ at 18-25mbsf of site
SH3 [15, 16, 24]. The results show that the ∑REE/Ti
increased above the SMTZ. As the previous discussion, the
REE is mainly influenced by the later diagenetic and authi-
genic minerals. Theoretically, REE should be enriched in
SMTZ instead of above of SMTZ. Hence, the main question

is to explain the enrichment of REE at the top of SMTZ.
Akagi et al. [53] found that the content of REE contributed
from the carbonate with a higher REE concentration at the
North Pacific Ocean and Bering Sea [53]. Liao et al. [68]
considered that biogenetic apatite is one of the most impor-
tant REY carriers in REY-rich deep-sea sediment [68]. Kato
et al. [32] also suggested that the main host of the REE is an
Fe-hydroxide precipitate from hydrothermal plumes that
have taken up rare earth elements from ambient seawater.
No matter how the REE forms, as a major process of early
diagenesis, AOM often results in the enrichment of authi-
genic minerals in marine sediments. Meanwhile, AOM also
influences the metal oxides and the apatite [15], indicating
that it is likely to affect the distribution of REE. To further
investigate the relationship between AOM and the content
of REE, the Fe-Mn oxides (hydroxides) and Fe-Mn carbon-
ate phase at site SH3 were analyzed.

At site SH3, there is no correlation between the con-
tent of REE and the content of Fe-Mn oxides (hydroxides)
at 0-6mbsf. However, at the paleo-SMTZ (8-15mbsf) and
current-SMTZ, it showed an obviously positive correlation
(Figure 6). At the same time, the Fe-Mn carbonate phase also
showed a positive correlation with the content of REE
(Figure 6). This characteristic shows that the REE-
carbonate phase and REE-metal oxides (hydroxides) have
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an important contribution to the content of REE at the top of
SMTZ. To better comprehend the role of LREE and HREE in
SMTZ, the relationship between HREE and Fe-Mn oxides
(hydroxides) is also investigated (Figure 7). The result
showed the HREE has a positive correlation with the authi-
genic mineral (Figure 7). Therefore, it is proved that the
REE-rich Fe-Mn carbonate phase and REE-rich Fe-Mn
oxides (hydroxides) affect the HREE. During the AOM, HS-

and HCO3
- are generated, and the HCO3

- will react with
the Ca2+ to form the carbonate. Therefore, it is often found
the vast carbonate at methane seep areas. Meanwhile, HS- is
also produced by the AOM, which reductively dissolves iron
oxides (FeOx), leading to the precipitation of Fe sulfides (e.g.,
greigite, mackinawite, and pyrite) (Riedinger et al., 2014).
During the reductive of Feox dissolution, the Feox-associated

REE is released to the ambient pore water and accumulates
in different forms, such as the REE-rich carbonate phase.

5.3. Quantitative Calculation of Enrichment of REE. During
the AOM, the Fe-Mn oxides (hydroxides) were reduced by
the HS- and the content of authigenic minerals increased
at SMTZ. The specific reaction is as follow:

CH4 + SO2−
4 ⟶HCO−

3 + HS− + H2O, ð1Þ

2HCO−
3 + Ca2+ Mg2+

Sr2+
� �

⟶ Ca Mg
Sr

� �
CO3 + CO2 + H2O,

ð2Þ
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2FeO OHð Þ +H2S + 4H+ ⟶ 2Fe2+ + S0 + 4H2O: ð3Þ
As can be seen from formulas (1), (2), and (3), when 1

mole of carbonate is produced, 4 moles of metal oxide are
reduced.

a Carbonate phaseð Þincrease
a Fe −Mnoxides hydroxidesð Þð Þreduces

= 1
4 : ð4Þ

[69] analyzed the different forms of REE in different sed-
iments. And conclude that the content of REE in Fe-Mn
oxides phase (hydroxides) is about 12.3 times than the con-
tent of REE in the carbonate phase.

REE − rich carbonate pahse
Ree − rich Fe −Mnxoides hydroxidesð Þ = 1

12:3 : ð5Þ

According to formulas (4) and (5), it can be seen that the
content of rare earth elements in the sediment will decrease

by 50 ppm when 1mol carbonate is produced and 4-mole
Fe-Mn oxide reduction. The above discussion has confirmed
that REE is primarily affected by the carbonate phase and
Fe-Mn oxides (hydroxides). Therefore, the content of REE
change should follow this quantitative relationship at SMTZ.
At site SH1, the content of REE at 20mbsf is 162.35 ppm,
and the content of REE at 37.98mbsf is about 113 ppm,
the difference is about 49 ppm. The same quantitative rela-
tionship can also be found in site SH3. Therefore, the con-
clusion is consistent with the above.

5.4. The Enrichment Mechanism of REE Influenced by AOM.
Previous studies have demonstrated that sulfate-driven anaer-
obic oxidation of methane (SD-AOM) can cause the enrich-
ment of carbonate. At the same time, most of the metal
oxides will convert to metal sulfide in the presence of excess
hydrogen sulfide [2, 3, 70]. With the deepening of research,
metal-driven anaerobic oxidation of methane (MD-AOM) is
found at the bottom of the SMTZ worldwide [15, 24, 38, 71].
During the metal-driven anaerobic oxidation of methane

REE (ppm)
(at paleo-SMTZ sediments)

REE (ppm)
(at modern-SMTZ sediments)

REE (ppm)
(at normal sediments)

M
n 

(o
xi

de
s)

 (p
pm

)
Fe

 (o
xi

de
s)

 (p
pm

)
M

n 
(c

ra
b)

 (p
pm

)
Fe

 (c
ra

b)
 (p

pm
)

4

6

8

2

0
14 15 16 17 18

14 15 16 17 18

4

3

5

2

1

0

1413 15 16 17

1413 15 16 17

1413 15 16 17

1413 15 16 17

0.8

1.2

1.6

0.4

0

1

1.1

1.2

0.9

0.8

14 15 16 17 18

14 15 16 17 18

8

12

16

4

9

0.08

0.12

0.16

0.2

0.04

0

0.08

0.12

0.16

0.2

0.04

0

15.6 16 16.4 16.8 17.2

8

10

12

6

4

15.6 16 16.4 16.8 17.2

0.08

0.12

0.16

0.04

0

8

10

12

6

4

2

0.8

1.2

1.6

1.8

1.4

1

0.6

14.5 15 15.5 16 16.5 17

1.2

1.4

1.6

1

0.8
14.5 15 15.5 16 16.5 17

Figure 7: The correlation of HREE and different forms metal oxides or carbonate presented at paleo-SMTZ sediments or modern-SMTZ
sediments.

9Geofluids



(MD-AOM), more metal oxides are converted to metal
sulfides compared to the SD-AOM. The previous discussion
suggested that the REE-rich carbonate phase and REE-rich
Fe-Mn oxides (hydroxides) have an important contribution
to the REE. The question is that why the REEs are not enriched
at the SMTZwhile enriched on top of the SMTZ. Based on our
results, it is inferred that the metal oxides (hydroxides) are
reduced at the SMTZ; meanwhile, the REE-rich Fe-Mn oxides
(hydroxides) will release REE in the pore water during the
AOM. The released REE will reconvert to the REE-rich car-
bonate phase. At the SMTZ, the REE-rich Fe-Mn carbonate
phase increased and the REE-rich Fe-Mn oxides (hydroxides)
decreased. Therefore, the REE is not enriched in the SMTZ
while enriched at the top of the SMTZ (Figure 8). And this
study revealed the influence of AOM on REE at methane seeps
areas. It can help us to better understand the mechanism of
REE in methane seep area.

6. Conclusion

In this paper, there is an obvious increase of ∑REE/Ti at the
top of SMTZ of sites SH1 and SH3. Based on the analysis of
δEu vs. δCe, HREE vs. LREE, and the REE-UCC normalized
patterns, the REE characteristics of SH1 and SH3 are differ-
ent from the Pearl River, SW Taiwan, and the Luzhon river,
indicating that the terrigenous sediment input has little con-
tribution to the REE enrichments. Hence, the REE was sug-
gested to be more influenced by the authigenic minerals and
later diagenesis. Combined the analysis of the different
forms of Fe-Mn oxides (hydroxides) minerals, carbonate
phase, and the REE patterns, the Fe-Mn oxides (hydroxides)
and Fe-Mn carbonate phase have a positive correlation with
the REE content, indicating that the REE-rich carbonate
phase and REE-rich Fe-Mn oxides (hydroxides) phase have

the important contribution of REE enrichment at the SMTZ.
However, there is little increase of REE at the SMTZ, it
increased at the top of the SMTZ. It is inferred that the
AOM results in the decrease of the REE-rich Fe-Mn oxides
(hydroxides) phase and a decrease of the REE-rich carbonate
phase. This is the reason why the ∑REE/Ti is enriched at the
top of the SMTZ. Our results are of great scientific signifi-
cance for understanding the REE enrichment mechanism
in the methane seeps.
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