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Organic matter (OM) and carbonate are the important organic and inorganic components, respectively, in the shales of the upper
fourth member of the Eocene Shahejie Formation, Dongying Depression, Eastern China. Their enrichment affects the
hydrocarbon generation capacity and reservoir development of shales. The development mechanism of sequence stratigraphy
and the influence of sequence stratigraphy on OM enrichment and carbonate deposition are investigated in this study. Based
on the petrological, mineralogical, and geochemical analyses, a third-order sequence is recognized, including the lowstand
systems tract (LST), transgressive systems tract (TST), and highstand systems tract (HST). The total organic carbon (TOC)
content is 0.11–9.05wt% (average 2.2 wt%), and the carbonate content is 3–95wt% (average 51wt%). Organic matter and
carbonate are enriched in TST and gradually reduced in HST and LST. The decrease in the relative lake level in LST results in
the deposition of abundant siltstone, leading to both poor OM preservation and carbonate precipitation. The rapid rise in the
relative lake level in TST may be triggered by marine transgression, promoting OM enrichment in terms of both production
and preservation. Seawater input brought abundant Ca2+ and Mg2+, which facilitated the precipitation of carbonates. The
enrichment of OM and carbonate improves the capacity of hydrocarbon generation and reservoir performance of shales in the
TST. The decrease in the relative lake level in HST causes a slight increase in the terrigenous clastic content, which, on the one
hand, accelerates the sedimentation rate and OM deposition and, on the other hand, reduces carbonate precipitation. This
study not only explains the differential distribution of OM and carbonate but also helps to improve the accuracy of the
evaluation of shale oil sweet spots.

1. Introduction

Sequence stratigraphy was proposed some 30 years ago with
the publications of Society for Sedimentary Geology (SEPM)
Special Publication 42 and the American Association of
Petroleum Geologists (AAPG) Methods in Exploration
Series No. 7 [1, 2]. It has been used successfully in passive
continental margin environments and lacustrine basins
[3–7]. In recent years, with the exploration and development
of shale oil and gas, a large number of studies on sequence
stratigraphy have been carried out for shales [5, 7]. Three
main methods have been applied to the identification of

the sequence stratigraphic framework. (1) Apply mineral
composition and petrological variation to identify
sequence stratigraphic boundaries and units. The type
and variation of mineral compositions and lithofacies are
influenced by relative sea/lake level fluctuations and thus
can be used as indicators for establishing sequence strati-
graphic frameworks [8, 9]. (2) Apply geochemical indica-
tors to establish a sequence stratigraphic framework.
Inorganic geochemical indicators mainly include Th/U, V
/ðV +NiÞ, and Cr/Al ratios, and organic geochemical indi-
cators mainly include total organic carbon (TOC) content
and relative hydrocarbon potential [10, 11]. (3) Establish a
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sequence stratigraphic framework using logging data [12,
13]. The gamma curve reaches a maximum at the maxi-
mum flood surface [11]. Compared with marine shales,
lacustrine shales have a small depositional scale, large spa-
tial and temporal variability, complex mineralogical com-
position, and diverse depositional processes, which lead
to the complexity and specificity of sequence stratigraphy
of lacustrine shales. Thus, the sequence stratigraphy of
lacustrine shales needs further study [14]. In addition,
organic matter (OM) is an important component of shale
[15]. It influences the deposition and diagenesis of min-
erals (i.e., carbonate, clay minerals, and feldspar) and the
formation of shale reservoirs [16, 17]. Carbonate is one
of the important minerals of lacustrine shales in China
(average 65wt%) and influences reservoir and hydraulic
fracturing of shale formations [18, 19]. Studying the influ-
ence of sequence stratigraphy on OM enrichment and car-
bonate deposition is helpful for stratigraphic comparison
and prediction of the distribution of shale oil and gas
sweet spots.

The Dongying Depression has the most abundant oil
and gas resources in the Cenozoic fault basin in Eastern
China. The upper fourth member of the Eocene Shahejie
Formation (Es4u) is a prolific source rock interval, which
has become a significant exploration target for shale oil in
recent years [19–21]. Well A within the Dongying Depres-
sion covers nearly 200m of lacustrine organic-rich shale,
providing an excellent opportunity to study the sequence
stratigraphy. This study will help in understanding the
mechanism of source rock quality differences in a sequence
stratigraphic context, which is of significance for improving
the accuracy of the evaluation of source rocks and shale oil
resources.

2. Geological Background

Developed as a result of the Tertiary rifting, the Dongying
Depression is located at the southeastern corner of the Bohai
Bay Basin in China (Figure 1(a)) [22], with an area of
5700 km2. It is surrounded by the Luxi uplift to the south,
Chenjiazhuang uplift to the north, Qingtuozi uplift to the
east, and Binxian-Qingcheng uplift to the west (Figure 1
(b)) [19]. The Dongying Depression is subdivided into four
sags: the Boxing, Niuzhuang, Lijin, and Minfeng sags. The
tectonic evolution of the Dongying Depression consists of
a rifting stage, a fault-depression conversion stage, and a
thermal subsidence stage. The rifting stage is subdivided into
three phases (Figure 2).

The Dongying Depression comprises a Cenozoic rift
basin stratum, which is composed of the Paleogene Kong-
dian, Shahejie (Es), and Dongying formations, the Neogene
Guantao and Minghuazhen formations, and the Quartern-
ary Pingyuan Formation [23]. These formations are domi-
nated by fluvial, delta, and lacustrine deposits (Figure 2).
The Es Formation can be further subdivided into four mem-
bers: Es4, Es3, Es2, and Es1 members (Figure 2). The lower
member of the Es4 (Es4l) is characterized by fine sandstones,
siltstones, and red mudstones. Dark gray shales are devel-
oped in the middle and upper parts of the Es4u member,
and gray siltstones are developed in the lower part [23].

3. Methods

A total of 368 samples were collected from Well A in this
study (sampling depths from 3450 to 3251m; see Figure 1
(b) for the location). Samples were taken at 0.5m intervals.
Detailed analyses of minerals, petrology, Rock-Eval
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Figure 1: Geological background of the Es4u shale within the Dongying Depression. (a) Location of the Dongying Depression, Bohai Bay
Basin, Eastern China. (b) Structural map of the Dongying Depression, including the position of the wellsite [21, 24].
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pyrolysis, and multiple geochemical proxies were performed.
All tests were conducted at the Geoscience Institute of the
Shengli Oilfield, SINOPEC.

Trace elements (Fe, Al, etc.) analyses were conducted on
49 powdered samples with inductively coupled plasma
atomic emission spectrometry (ICP-AES). The relative stan-
dard deviation was less than 4%. TOC analysis was done on
93 samples by a CS344 carbon-sulfur analyzer (LECO Com-
pany, US). These samples were also analyzed for Rock-Eval
pyrolysis tests to determine the free hydrocarbons (S1, mg
HC/g rock), hydrocarbons generated from kerogen (S2, mg
HC/g rock), and temperature of the maximum S2 yield
(Tmax). A total of 368 samples were collected for the
whole-rock X-ray diffraction (XRD) analysis. This analysis
was conducted by a Bruker D8 DISCOVER automatic pow-
der XRD analyzer. Thin section examination using a polariz-
ing Zeiss microscope was completed on 36 samples. Natural
gamma spectroscopy logging data (including K, Th, and U)
was collected for the sequence stratigraphic analysis.

4. Results

4.1. Petrological Characteristics. We identified four major
lithofacies in the Es4u member based on mineral composi-

tions and sedimentary structures: calcareous shale, mixed
shale, clayey shale, and siltstone (Figure 3). The clayey shale
(clay mineral content > 50wt%) and the siltstone (silt
content > 50wt%) are limited to the lower part of the Es4u
member. The laminae are developed in the clayey shale,
while cross-bedding and massive bedding are developed in
the siltstone (Figures 3(a) and 3(b)). The calcareous shale
and mixed shale are the most common lithofacies, which
are distributed in the middle and upper parts of the Es4u
shale, respectively (Figures 3(c)–3(f)). The laminae are both
developed in these two lithofacies. The carbonate content of
the calcareous shale is more than 50% (Figure 3(c)), while
the carbonate content, siliceous mineral content, and clay
mineral content of the mixed shale are approximately simi-
lar (Figure 3(f)).

4.2. Mineralogical Characteristics. Carbonates are the most
abundant mineral in the Es4u shale (Figure 4). The carbon-
ate content is 3–95wt%, with an average of 51wt%. Carbon-
ates are composed of calcite (average 38wt%), dolomite
(average 14wt%), and siderite (average 1wt%). The remain-
ing inorganic compositions of the Es4u shale are mainly
quartz, clay minerals (illite, kaolinite, chlorite, and illite/
smectite mixed layers), and feldspar. Quartz content ranges
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from 2 to 60wt%, with an average of 24wt%. Clay mineral
content is 2–57wt% (average 16wt%). In addition, a very
small amount of gypsum is found in the Es4u shale.
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Figure 3: Characteristics of main lithofacies in the Es4u member in the Dongying Depression. (a) Massive bedding developed in the
siltstone, 3439m. (b) Gray clayey shale and cross-bedding developed in the siltstone, 3444m. (c) Calcareous shale: light laminae
comprise calcite; dark laminae are composed of clay minerals, 3397.5m. (d) Dark gray calcareous shale developing dark and light
laminae, 3397.5m. (e) Gray mixed shale developing laminae, 3331.5m. (f) Mixed shale composed of calcite, quartz, clay minerals, and
pyrite, 3331.5m.
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4.3. Geochemical Parameters. The TOC content of 93 sam-
ples ranges from 0.11 to 9.05wt%, with an average of
2.2wt%. Among them, most of the samples have a TOC con-
tent between 1 and 4wt% (Figure 5). Only 3% of the samples
have a TOC content of less than 1wt%. Thus, the Es4u shale
as a whole is rich in OM. The U content ranges from 1.71 to
7.33 ppm, with an average of 4.04 ppm, and the Th content is
in the range of 1.77–14.98 ppm (average 5.72 ppm, Figure 6).
The U/Th ratio ranges from 0.36 to 8.01 (average 1.55). The
Fe content varies between 1.20 and 7.72% (average 2.97%),
and the Al content varies between 1.08% and 7.61% (average
4.11%, Figure 6). The Fe/Al ratio ranges from 0.39 to 3.81
(average 0.90).

5. Discussion

5.1. Sequence Stratigraphic Framework. Based on the above
petrological and geochemical characteristics, a third-order
sequence in the Es4u member has been recognized, compris-
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ing the lowstand systems tract (LST), transgressive systems
tract (TST), and highstand systems tract (HST) (Figure 6).

5.1.1. Lowstand Systems Tract (3439-3450m). The bottom
boundary of the LST is also the bottom boundary of the
Es4u member. This boundary separates the Es4u member
from the Es4l member characterized by the red mudstone.
Gray siltstone is dominantly developed in the LST and has
been interpreted as a beach bar deposition in the shallow
lake based on the sedimentary structures (cross-bedding,
massive bedding, etc.) and lithofacies combination [23, 25].
The top boundary of the LST is the initial flooding surface
[3]. Additionally, elements (such as uranium and thorium)
are sensitive to changes in redox conditions of bottom water
and are widely applied in sequence stratigraphy research [10,
26, 27]. U/Th < 0:75 indicates an oxic condition, 0:75 < U/
Th < 1:25 suggests a dysoxic condition, and U/Th > 1:25
represents an anoxic condition [28]. During the LST, the
U/Th ratio is consistently low between 0.15 and 1.27, with
a mean value of only 0.49. 88% of the U/Th ratios are less
than 0.75. The petrological and geochemical characteristics
in the LST suggest an oxic condition in the shallow lake
(Figure 7).

5.1.2. Transgressive Systems Tract (3357-3439m). The TST
begins after the initial flooding surface [3]. The siltstone is
no longer developed in the TST. The development of abun-
dant calcareous shales indicates that the lake basin is less
influenced by terrigenous input. The development of stable
laminae in the calcareous shale suggests a quiet water body
in the lake basin. Fe (ferrum) and Al (aluminum) are also
sensitive to redox conditions of bottom water [26, 29]. The
Fe/Al ratio is an effective proxy for bottom-water redox con-
ditions and is positively proportional to the redox potential
[26, 29, 30]. Within the TST, the Fe/Al ratio ranges from
0.43 to 3.81 and the U/Th ratio ranges from 0.27 to 2.80.
The mean values of Fe/Al and U/Th ratios increase to the
maximum (1.03 and 0.95, respectively), indicating a contin-
uous deepening of the water body to the maximum. In par-
ticular, 40% of the U/Th ratios indicate a dysoxic condition
and 39% of the U/Th ratios indicate an anoxic condition

(Figure 7). Eventually, the maximum flooding surface
develops at the end of the TST.

5.1.3. Highstand Systems Tract (3251-3357m). Alternation of
calcareous shale and mixed shale occurs in the HST. Com-
pared with the TST, the relative enrichment of siliciclastics
(quartz, clay minerals, etc.) indicates an increased influence
of terrigenous input in the HST. The Fe/Al ratio ranges from
0.39 to 2.96, and the U/Th ratio ranges from 0.17 to 2.08.
The values of Fe/Al and U/Th are 0.77 and 0.73 on average,
respectively. The Fe/Al and U/Th ratios show a decreasing
trend upward, indicating an increased oxygen concentration
and a decrease in the relative lake level.

5.2. The Influence of Sequence Stratigraphy on OM
Enrichment. Two fundamental models have been established
for OM enrichment: (1) the paleoproductivity model (i.e.,
phytoplankton blooms) [31, 32] and (2) the preservation
model (i.e., bottom-water redox conditions) [33, 34]. During
the TST, rapid deepening of the water body may be related
to a marine transgression and warm-humid climate condi-
tion, which is inferred from the petrological and geochemi-
cal characteristics [35]. Seawater input not only raises the
relative lake level and enhances the redox potential of bot-
tom water but also brings nutrients and increases paleopro-
ductivity. This satisfies the conditions for OM enrichment in
terms of both the paleoproductivity and preservation condi-
tions. The enrichment of OM can improve the capacity of
hydrocarbon generation in shale. Moreover, during the evo-
lution of OM, a large number of organic pores are developed
within OM, which can provide pore space and permeation
channels for shale oil [17, 21, 36, 37]. Therefore, OM enrich-
ment in the TST is beneficial not only to the generation of
shale oil but also to the storage of shale oil. In contrast, the
relatively strong hydrodynamic force and oxic environment
of the shallow lake in the LST are not conducive to the pres-
ervation of OM. The relative enrichment of terrigenous clas-
tics in the HST accelerates the sedimentation rate. This
results in the rapid accumulation and enrichment of OM
[38]. Moreover, the terrigenous input in the HST is not as
strong as that in the LST; otherwise, the OM will be difficult
to preserve as in the LST.
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Figure 8: Characteristics of intercrystalline pores in the Es4u shale in the Dongying Depression. (a) Recrystallized intercrystalline pores.
During the recrystallization process of calcite, the crystal volume becomes smaller, thus forming recrystallized intercrystalline pores. (-),
3397.5m. (b) Recrystallized intercrystalline pores. The pore size is about 10 μm, and some of the pores are filled with oil. (+), 3397.5m.
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5.3. The Influence of Sequence Stratigraphy on Carbonate
Deposition. The analysis of mineralogical characteristics,
occurrence, isotopes, electron probes, and element geochem-
istry suggest that the calcite in the study area is derived from
chemical precipitation and photosynthesis of planktonic
algae [18, 19, 39]. During the TST, the lack of terrigenous
clastics and warm climate conditions are favorable for the
deposition of carbonate [39, 40]. Additionally, seawater
input brought abundant Ca2+ and Mg2+, which is conducive
to carbonate precipitation [41]. The carbonate content is 4–
94wt%, with an average of up to 54wt%. According to Sec-
tion 5.2, OM is enriched in TST, which can catalyze carbon-
ate minerals to form intercrystalline pores, providing
abundant storage space for shale oil (Figure 8) [18]. In con-
trast, the deposition of large amounts of siltstone in the LST
hinders carbonate precipitation, and the average content of
carbonate is as low as 12wt%. In the HST, a decrease in
the relative lake level leads to an enhanced input of terrige-
nous clastics. The mean value of quartz increases from
21wt% in TST to 27wt% in HST, and the corresponding
mean value of carbonate decreases from 54wt% in TST to
50wt% in HST. The reduction of carbonate content leads
to the reduction of intercrystalline pores.

6. Conclusions

A third-order sequence is recognized in the Es4u member,
Dongying Depression, Eastern China. It contains the low-
stand systems tract (LST), transgressive systems tract
(TST), and highstand systems tract (HST). Organic matter
(OM) and carbonate (the most dominant minerals) are
mainly enriched in the TST, followed by the HST and LST.
The development of different sequence stratigraphic units
affects the paleoproductivity and redox conditions of the
bottom water, which further influences the production and
preservation of OM. The development of sequence stratigra-
phy determines the enrichment of OM, which therefore
affects the hydrocarbon generation and reservoir develop-
ment of shales. The development of the stratigraphic units
also impacts the distribution and variation of carbonate
deposition. Combined with the catalytic effect of OM on car-
bonates during diagenesis, the development of sequence
stratigraphy further affects the formation of intercrystalline
pores of carbonate, providing abundant storage space for
shale oil. This study helps to understand the sedimentary
environment and identify the spatial and temporal distribu-
tion pattern of high-quality shale reservoirs in the Eocene
Dongying Depression.
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