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The movement of rock formations caused by mining eventually leads to the mining subsidence damage of the surface. In order to
accurately and efficiently predict the surface subsidence caused by mining, an object-oriented method combined with the classical
probability integration method is introduced in this paper, and an object-oriented probability integration prediction model
framework is established. MATLAB2019 is used to develop the application program of the prediction model, the reliability of
the prediction model is tested by engineering cases, and the main influencing factors of mining subsidence are analyzed at the
same time. The results show that the predicted results of the model are basically consistent with the case. The prediction
model developed in this paper using the object-oriented method combined with the probability integration method is reliable.
It is feasible to apply the object-oriented method to mining subsidence prediction.

1. Introduction

Surface subsidence caused by mining leads to the destruction
of surface land resources, collapse of buildings, and destruc-
tion of roads and induces geological disasters and soil ero-
sion, which seriously threatens the ecological environment
and infrastructure safety of mining areas [1]. A series of sec-
ondary problems, such as vegetation and water environment
pollution and land resource destruction caused by mining,
have seriously affected the sustainable development of the
mining industry [2, 3]. A large number of scholars have
studied the prediction of mining subsidence, and by antici-
pating the basic information of surface subsidence in
advance, it can not only guide mine production and disaster
prevention but also reduce the environmental and resource

damage caused by mining subsidence through optimizing
the mining plan and treatment countermeasures in advance
[4, 5]. The study of mining subsidence has been a hot
research topic in the mining industry, and the common
research methods mainly include similar simulation and
numerical simulation [6–8]. Accurate prediction and assess-
ment of mining subsidence is an important prerequisite for
reducing mining damage and subsidence disasters, as well
as protecting ecological environment [9]. Simulation-based
methods have strong versatility and can adapt to a large
number of complex engineering application requirements.
Similar models have high costs and are difficult to analyze
a large number of changing model parameters. The reliabil-
ity of numerical models is closely related to the professional
background and engineering experience of the modeler [10,

Hindawi
Geofluids
Volume 2022, Article ID 8107024, 14 pages
https://doi.org/10.1155/2022/8107024

https://orcid.org/0000-0002-3028-3297
https://orcid.org/0000-0002-1840-5298
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8107024


11]. In recent years, with the development of AI technology,
mining scientists and technicians have introduced AI
models into the field of mining subsidence prediction and
obtained certain research results [12–14]. The research on
mining subsidence prediction has achieved many research
results, and each method has its own advantages and disad-
vantages. Artificial intelligence, machine learning, and other
methods are mainly good at mining and analyzing the non-
relationship between data labels and features from a large
amount of data. Linear relationship often has higher require-
ments and dependence on the quality of data [15]. At pres-
ent, the main prediction method for mining subsidence
research and engineering practice in China is the probability

integration method, which is widely employed due to its rich
theory and convenient calculation [16]. There are many
methods for predicting mining subsidence, and each has cer-
tain characteristics; however, in most cases, decision makers
are more concerned with the reliability and applicability of
the prediction model, rather than a particular research
method or model, since each has its own advantages and
drawbacks. Therefore, those with simpler algorithm princi-
ples, easier development procedures, higher reliability, and
easier way of implementation have better application value
in engineering practice, program design, and decision sup-
port. The rapid development of computer technology has
provided an important basis for the design and development
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Figure 1: Mining subsidence model diagram.
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Figure 2: Basic model of mining subsidence probability integration method.
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of complex models and mathematical principles, especially
in the complex prediction process of mining subsidence.
To take full advantage of the computing performance can
effectively promote the progress of mining subsidence
research. Instead of consuming a lot of energy to study the
program development and algorithm design, researchers
are more likely to study the performance and improvement
strategies of the predicted model [17]. In view of the above
analysis, this paper combines the classical object-oriented
methodology with the probability integration method of
mining subsidence to design the framework of the object-
oriented probability integration prediction model, develop
the prediction procedure of the combined model, and also
verify the correctness and feasibility of the developed model
through engineering cases. Meanwhile, the main factors
affecting mining subsidence were analyzed to provide scien-
tific guidance for mining subsidence management decisions.

2. Object-Oriented Probability
Integration Model

2.1. Mining Subsidence Model. After extraction of the ore
body, the roof collapses and breaks with the expansion of
the goaf. Mining activities have an influence in the upward
direction, causing a series of complex activities such as frac-
ture penetration, bending, delamination, and dislocation in
the overlying rock layer, which eventually lead to violent
mining subsidence on the surface [18, 19]. After scientific
research and field practice by a large number of scholars, a
variety of methods and models for surface subsidence pre-
diction have been developed, mainly including numerical
simulation, physics experiment, mechanical model, proba-
bility integration method, and nonlinear model [20, 21].
The probability integration method is one of the most widely
used mining subsidence prediction methods in China due to
its high accuracy and convenience with fewer parameters
[22]. The mining subsidence model is shown in Figure 1,
where H denotes the burial depth of the ore body, m the
thickness of the ore body, s0, the inflection point offset, r
the radius of influence, w0, the maximum subsidence value,
and q the subsidence coefficient.

2.2. Basic Principles of Probability Integration Method. The
probability integration method based on the random
medium theory has become relatively mature and most
widely applied prediction theory in China [23], named due
to the fact that the movement and deformation prediction
formula used contains probability integration. With rigorous
mathematical derivation and a large amount of domestic
field practice data for theoretical improvement and correc-
tion, the method has been fully applied and improved in
mining subsidence prediction, guiding a large number of
field engineering practice, and a typical probability integra-
tion theory model is shown in Figure 2 [24], in which (a)
is semi-infinite mining model, (b) is horizontal-limited min-
ing model, (c) is inclined mining model, and (d) is main
influence radius model.

The basic mining model of surface subsidence caused by
mining of the ore body is mainly depicted in Figure 2. In order
to facilitate the program development of the model, on the
basis of previous research, this paper organizes the calculation
formulas of the probability integral method predicted by the
subsidence model and organizes the main subsidence calcula-
tions and horizontal movement calculations with other for-
mulas [25]. The basic mathematical models of mining
subsidence values, horizontal movement, inclination, defor-
mation, and other indicators involved in the probability inte-
gration method are shown in the following equations [26, 27].
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Handle

Semi-infinite

-H;%mining depth

+W_clc ();%subsidence function
-a;%dip angle

+U_clc ();%movemont function

Horizontal limited

-H;%mining depth

+W_clc ();%overwrite

-a;%dip angle....

+U_clc ();%overwrite
...

Inclined mining

-H;%mining depth

+W_clc ();%overwrite

-a;%dip angle...

+U_clc ();%overwrite
...

Figure 4: The UML model of the main classes in the prediction
model.
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Figure 3: Object tree of the prediction model.
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W0 =mq cos α,
U0 = bW0,

tan β = H
r
,
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In the equations, erf ðxÞ − is error function, m is the
thickness of the ore body, α is the dip angle of the ore body
(°), q is the subsidence coefficient, b is the horizontal move-
ment coefficient, H is the burial depth of the ore body, r is
the influence radius, tan β is the main influence tangent, W
is the subsidence value, U is the horizontal movement value,
K is the curvature, i is the inclination, and ε is the horizontal
deformation.

2.3. Basic Principles of Object-Oriented Method. The objec-
tive world is a mixed system composed of a large number
of various complex entities interacting and linking with each
other, and each entity has its own internal state and activity
mechanism, so the system of the objective world is also a
complex giant system formed by the combination of a large

number of subsystems. Object-oriented methodology pro-
vides a unified method and framework for analyzing, design-
ing, and implementing systems by simulating human way of
thinking, decomposing the solution problem layer by layer,
and realizing the mapping isomorphism of problem space
and solution space. Object-oriented technology shows great
potential and advantages in dealing with large and complex
problems [28, 29], which is essentially a method of analyzing,
designing, and developing software systems using techniques
such as objects, classes, encapsulation, and inheritance [30].
After continuous research and improvement, it has been
widely employed in scientific research and engineering cases
in various industries and has achieved many practical results
[31–33]. Compared with the traditional process-oriented anal-
ysis methods, object-oriented technology is object-centered
and message-driven and simulates the properties and behav-
iors of objective entities through object-encapsulated data
and methods, which improves the stability and cohesiveness
of programs, reduces coupling, and provides greater conve-
nience for the analysis and program development of complex
problems [34]. In this work, parameters are calculated by
object-encapsulated probability integration method to define
subsidence and horizontal movement calculation methods,
and model calculation in complex limited and inclined situa-
tion is achieved through polymorphic techniques with basic
semi-infinite mining as a base class. Combining the probabil-
ity integration method model with the object-oriented

Semi-infinite

H; % Mining depth (m)
α; % Angle of coal seam (°)
m; % Thickness (m)
q ; % Subsidence coefficient
b ; % Coefficient of horizontal movement
tanβ; % Mainly affects the tangent
s0 ; % Inflection point offset
Function w=W_clc ();
Function u=U_clc ();
Function i=I_clc ();
Function k=K_clc ();
Function ε=ε_clc ();

Inclined mining

H1; % Upper mining depth (m)
H2; % Lowermining depth (m)
α; % Angle of coal seam (°)
m; % Thickness (m)
q ; % Subsidence coefficient
b ; % Coefficient of horizontal movement
Semi-infinite_upper ; % Semi-infinite obj
Semi-infinite_lower ; % Semi-infinite obj
% Combinatorial function solution
Function w=W_clc ();
Function u=U_clc ();
Function i=I_clc ();
Function k=K_clc ();
Function ε=ε_clc ();

Horizontal-limited

Semi-infinite; % Inheritance
L; % Mining size

Function w=W_clc (); % Overwrite
Function u=U_clc (); % Overwrite
Function i=I_clc (); % Overwrite
Function k=K_clc (); % Overwrite
Function ε=ε_clc (); % Overwrite

MATLAB

Input and output

Function input ();

Function output ();

Mian (< matlab.apps.AppBase)

App.menu

App.ButtonGroup

App.Panel

Subsidence curve

Script
extension

The calculation
results

App designe designer

Figure 5: Research framework of object-oriented probability integration model.
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technology, the object-oriented probability integration model
is developed and designed, and the object tree of the model
is also established as to the inheritance system of the main
classes and the needs of management control, etc., as shown
in Figure 3.

According to the object tree structure of the model, we
established the abstract design and organizational relation-
ship of the main classes used in the prediction model
through UML as shown in Figure 4. All user-defined classes
inherit from the handle class of MATLAB and define com-
mon variables such as mining depth (H), dip angle (a),
and function methods for calculating subsidence and hori-
zontal movement in the semi-infinite mining class value.
Horizontal finite mining and inclined mining are inherited
from the semi-infinite mining model. By adding unique var-
iables and rewriting related function methods, code reuse
and mining subsidence prediction functions of different
models are realized.

2.4. Research on Object-Oriented Probability Integral
Subsidence Prediction Framework. The broken ore pillar
extraction subsidence model based on probability integration
theory is difficult to achieve efficient, fast, and repeated adjust-
ment operations through manual calculation due to its large
number of prediction parameters and large variation in the
selection of empirical values of parameters. The use of
object-oriented programming technology to establish a com-
mon program script can realize fast calculation and efficient
adjustment of parameters, thus contributing to model solving.
A high-cohesion, low-coupling object-oriented probability
integration model based on MATLAB2019 was established
by combining object-oriented abstract analysis and probability
integration model and using object-oriented encapsulation,
inheritance, polymorphism, and other technical features, the
framework of which is shown in Figure 5. The framework
includes the encapsulation and abstraction of semi-infinite
mining, finite mining, and inclined mining models. The main
parameters involved in the probability integration method are
defined as variables, and the calculations such as subsidence
and horizontal movement are defined as function interfaces.
The subsidence visualization module and the data input and
output interface are developed to enhance the interactivity of
the model, improve the user experience, and improve the
computing efficiency [35, 36].

3. Case Verification

In order to test the object-oriented probability integration
model, the combinatorial model is validated in the paper
using a practical case studied by previous scholars [27], as
shown in Figure 6, where (a) is a semi-infinite mining model
while (b) is a limited one.

The computational flow of the combinatorial model
employing the combined probability integration method
with object-oriented technology is presented in Figure 7.

Selecting calculation mode

Data interaction

Data visualization

Data calculation

Data check

Start

Exit

Semi-infinite Horizontal-
limited Inclined-mining

Calculate

Import coordinates Input parameters

Curve drawing Data visualization

Correct No

Yes

Figure 7: Model calculation flow chart.
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Table 1: Calculation results of case (a).

x/m W (mm) U (mm) i (mm/m) k (mm/m2) ε (mm/m)

-200 18.28332 38.89253 0.648209 0.020366 1.221941

-160 67.39606 120.5151 2.008586 0.050485 3.029115

-120 198.8809 290.4471 4.840785 0.091254 5.47523

-80 474.0437 544.4303 9.073838 0.114034 6.842052

-40 924.2129 793.7202 13.22867 0.083125 4.987484

0 1500 900 15 0 0

40 2075.787 793.7202 13.22867 -0.08312 -4.98748

80 2525.956 544.4303 9.073838 -0.11403 -6.84205

120 2801.119 290.4471 4.840785 -0.09125 -5.47523

160 2932.604 120.5151 2.008586 -0.05049 -3.02911

200 2981.717 38.89253 0.648209 -0.02037 -1.22194
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The calculated results of movement and deformation on
the main section in case (a), Figure 6, are shown in Table 1,
which are basically consistent with the conclusions of the
case. The subsidence and horizontal movement curves of
the semi-infinite mining towards the main section are dem-
onstrated in Figure 8. The curve change law in Figure 8 sug-
gests that in the case of semi-infinite mining, the mining
subsidence gradually changes from 0 to a relatively fixed
range and then reaches stability. The horizontal movement
gradually grows to the peak and then starts to decrease.
Under the semi-infinite mining conditions, certain strategies
should be adopted to reduce the subsidence value, so as to
control mining damage.

The calculation results of case (b) in Figure 6 are shown
in Table 2, which basically match with the case, indicating
that the object-oriented probability integration model for
calculating mining subsidence is feasible. The movement
deformation law of the finite mining case is presented in
Figure 9, implying that the subsidence value of the center
of the mining area is the largest in the limited mining case,
the overlying rock body shows movement towards the center

of the mining area, the monitoring of the subsidence above
the mining area should be strengthened under the limited
mining conditions, and the mining-induced subsidence
damage can be prevented by optimizing the mining pillar
or improving the mining method.

4. Sensitivity Analysis

When mining subsidence is predicted using the probability
integration method, the application of the prediction model
is significantly affected by different actual geological occur-
rence conditions, selection of prediction parameters, and
the need for accuracy and safety. According to the actual
engineering experience on site, the mining thickness of the
ore body is an important factor that directly causes mining.
Generally, the larger the mining thickness, the more severe
the subsidence and the more serious the surface damage.
The existence of the dip angle of the ore body leads to the
reduction of the equivalent mining thickness, which can alle-
viate the subsidence damage caused by mining to a certain
extent. Generally, as the dip angle of the coal seam increases,
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Figure 8: Calculation curve diagram of case (a).

Table 2: Calculation results of case (b).

x (m) W (mm) U (mm) i (mm/m) k (mm/m2) ε (mm/m)

-60 59.63406 80.61439 3.224575 0.141728 3.543191
-30 237.316 226.6547 9.066188 0.225875 5.646873
0 598.7774 355.971 14.23884 0.068359 1.708963
30 1006.873 281.2501 11.25001 -0.26793 -6.69831
60 1188.023 0 0 -0.43089 -10.7723
90 1006.873 -281.25 -11.25 -0.26793 -6.69831
120 598.7774 -355.971 -14.2388 0.068359 1.708963
140 339.1057 -281.537 -11.2615 0.207617 5.190415
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the subsidence caused by mining decreases. After increasing
to a certain extent, the accuracy of the model will decrease.
The selection of mining subsidence coefficient is mainly used
to quantitatively describe comprehensive geological condi-
tions. In practical applications, methods such as engineering
analogy are mainly used for determination, and its selectivity
has certain subjective factors, which have a great impact on
the accuracy of model prediction. To this end, based on pre-
vious research, we selected indicators such as dip angle (a),
thickness (m), and subsidence coefficient (q) to study the
sensitivity of the object-oriented probability integration
model [37–38], which is shown in Figure 10.

As shown in Figure 10(a), as the dip angle increases, the
maximum subsidence value tends to weaken, indicating that
the mining subsidence caused by the horizontal ore body
mining may be more severe than the mining subsidence
caused by the inclined ore body mining. The reduction of
mining thickness improves the subsidence damage caused
by mining [39]. Due to the influence of the dip angle, the
peak value of the horizontal movement will increase after
mining. The main reason is the existence of the dip angle
of the ore body, the change in the shape of the gob, and
the overlying strata, in addition to the horizontal movement
pointing to the center of the gob, which is easier to send
along the gob. Shear movement depends on the dip of the
ore body. Therefore, attention should be paid to horizontal
movement deformation during the mining of high-dip ore
bodies to prevent secondary disasters caused by rock shear
dislocation [40]. Figure 10(b) suggests that both subsidence
and horizontal movement value increase with the growing
of the thickness of the ore body, and the magnitude of
increase is more than obvious, which indicates that the min-
ing thickness is an important factor to cause subsidence.
When the mining thickness is large, the filling method can
be considered to deal with the goaf to reduce the mining
thickness of the ore body, so as to reduce the impact of min-
ing and control the surface subsidence [41–43]. As shown in
Figure 10(c), selection of subsidence coefficient also has a
significant effect on the prediction of mining subsidence,
which is mainly related to overlying lithology and treatment
method of the goaf. When the lithology is poor and the goaf
is large, the subsidence is more violent. In the actual predic-
tion, the selection should be made by analogy with the actual
engineering geological conditions or similar engineering

cases, so as to improve the prediction accuracy of the model
and the reliability of the conclusion.

5. Engineering Application

Guangxi Tongkeng Mine has complex geological conditions
and poor ore body occurrence conditions. In order to study
the impact of pillar mining on the surface, the prediction
model established in this paper is used to predict the mining
subsidence of No. 92 pillar of the mine. At the same time, the
predicted results are compared with those predicted by dis-
crete element numerical model. The average thickness of
No. 92 pillar in Tongkeng Mine m = 15m, the average dip
angle a = 20°, the surface dip angle of 10°, and the ore body
occurrence structure are shown in Figure 11.

The predicted mining subsidence results adopting the
combined model established in the paper are demonstrated
in Figure 11. It can be seen that the central area of the goaf
has the most severe subsidence, the maximum subsidence
value is about 11.5m, the maximum horizontal movement
is about 2.5m, the maximum subsidence is less than the
mining thickness of the ore body, and the maximum subsi-
dence value appears in the center of the goaf. The subsidence
curve is similar to the common coal mine stope subsidence
law. It can be seen from the figure that after the ore body
is mined, the overlying strata subside, and a subsidence basin
is likely to appear near the center of the goaf. At the same
time, due to the influence of the inclination angle of the
ore body and the mining direction, the overlying rock mass
does not completely move towards the center of the goaf.
After the model is excavated, the overall model is inclined
and deformed, which hinders the migration characteristics
of the lower rock mass to the gob, while the upper rock mass
increases the tendency to migrate to the gob along the
inclined direction, so the horizontal shift curve offset occurs.
This is also consistent with the actual mining rock move-
ment law.

In the paper, the discrete element numerical simulation
technique was applied to construct the mining model of
No. 92 pillar and analyze the surface subsidence and defor-
mation law during the backfilling process, shown in
Figure 12.

As seen in Figure 13, with the mining of the ore pillar,
the top plate breaks and collapses, the overlying rock layer
bends and deforms, the surface subsidence gradually
increases, and the mining impact area expands. Due to the
influence of the dip angle of the ore body, after the ore body
is extracted, the overlying rock body has a tendency to move
to the center of the mining area in addition to the overall dip
deformation of the mining model, which limits the horizon-
tal movement of the overlying rock body to the mining area.
The numerical simulation results imply that subsidence is
the most intense in the center of the goaf, the value of which
reaches about 12 meters, basically consistent with the theo-
retical calculation conclusion. The horizontal movement is
approximately 2 meters, which is smaller compared with
the theoretical calculation. The main reason may be that
the overall inclined deformation of the model causes the
overlying rock body in the goaf to have a tendency to move

backfill

survey line

mining direction

707 m

955 m

551 mpillar (92)

roof (back fill)

Figure 11: Mining model of No. 92 pillar.
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Figure 13: Continued.
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Figure 12: Numerical model of No. 92 pillar backfilling.
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towards the center of the mining area but also superimposes
the movement along the inclined direction, reducing the
horizontal movement of the overlying rock body towards
the center of the goaf. The numerical simulation is basically
consistent with the conclusion of theoretical predicted min-
ing subsidence.

6. Conclusion

By analyzing the occurrence and mining conditions of ore
pillars, a mining subsidence predicted model applicable to
the principle of random media was established by applying
the principle of equivalent mining, and a visualized and

interactive graphical prediction system was developed with
the help of the MATLAB object-oriented programming
technology. After analyzing the influence of commonly used
empirical parameters in China, the theoretical projection
was carried out with reference to similar engineering cases,
while a numerical model of mining pillar mining was estab-
lished employing discrete element numerical simulation
technology for comparison and verification, and the main
conclusions were obtained as follows.

(1) In this study, object-oriented technology combined
with traditional probability integral method is
applied to the prediction of mining subsidence. The
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Figure 13: Numerical simulation results of No. 92 pillar backfilling.
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multivariate and complex calculation formulas
involved in the abstract prediction model are
abstracted by the object method as the internal attri-
butes and methods, and an object-oriented develop-
ment framework and application interface are
constructed to improve the solution efficiency of
the model and reduce the development and mainte-
nance costs. It can quickly provide reasonable and
reliable prediction results for designers and related
departments. The correctness of the mining subsi-
dence prediction model was verified through case
tests, which proved that it is feasible to adopt the
object-oriented technology to combine the probabil-
ity integration method to build a model for mining
subsidence prediction

(2) Sensitivity analysis was conducted on the main fac-
tors affecting mining subsidence, namely, dip angle,
thickness, and subsidence coefficient. The mining
thickness of the ore body has the most drastic effect
on mining subsidence, and the dip angle can reduce
the maximum subsidence peak caused by mining to
a certain extent. The selection of the subsidence coef-
ficient has a significant impact on the accuracy of the
mining subsidence prediction and should be selected
in conjunction with similar engineering cases in
application. The case test proves that it is feasible
to use the object-oriented method combined with
the probability integration method to abstract the
complex multivariate and nonlinear prediction
methods and to construct a combined prediction
model for mining subsidence prediction

(3) It is difficult to analyze the dynamic mining process
and the structural support effect formed by overlying
damage for the prediction of mining subsidence by
the probability integration method, so the factors
affecting the accuracy and reliability of the mining
subsidence are more complicated in the process of
metal mining. In the future, the mechanical proper-
ties of the overlying structure of the mining stope
and the influence of the dynamic mining process,
as well as more geological and mining influence fac-
tors, could be considered to improve the effective-
ness of the model in the actual mining subsidence
prediction
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