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In the evaluation and prediction of slope stability, the traditional numerical analysis method, which is over reliant on experience,
takes a large amount of computing time and lacks the ability to reflect the fuzzy and nonlinear characteristics of slope parameters
well. Considering the above characteristics, this study proposes an improved particle swarm optimization of support vector
machine (IPSO-SVM) algorithm model, which combines optimized particle swarm optimization (IPSO) and support vector
machine (SVM) and applies it to slope stability prediction. Based on 28 groups of slope engineering data, the stability
prediction results of IPSO-SVM, PSO-SVM, and SVM models were compared with real values for analysis. The results show
that the maximum relative error of the IPSO-SVM model is only 1.3%, and the average relative error is 1.1%, which is far
lower than the prediction error of the PSO-SVM model and SVM model; therefore, the prediction result of IPSO-SVM is the
closest to the real value. This method can accurately predict the slope safety factor under the influence of different indexes, and
the research results can provide guidance for practical engineering.

1. Introduction

As a common natural disaster, slope instability causes huge
economic losses every year. To prevent or alleviate the
occurrence of slope disasters, it is of great significance to
provide timely and accurate predictions of slope stability.
In recent years, Chinese and foreign scholars have continu-
ously established new research models in the study of slope
stability evaluation through combining interdisciplinary
knowledge, effectively promoting the development of slope
stability evaluation study [1–7]. At present, the evaluation
and prediction methods of slope stability include the rigid
limit equilibrium calculation method and the elastic–plastic
theoretical calculation method. However, due to many fac-
tors that can affect slope stability, the actual slope engineer-
ing is often affected by nonlinear factors, which makes it
difficult for these conventional analysis methods to meet
the application requirements to evaluate and predict slope
stability. With the continuous development of computer

science and technology in recent years, the machine learning
prediction analysis method based on nonlinear characteris-
tics has gradually entered the field of vision due to its char-
acteristics of small error, wide applicability, and fast
operation speed, providing a new idea for slope stability pre-
diction research [8, 9].

Moayedi et al. investigated the applicability of combin-
ing machine learning-based models in slope stability assess-
ment [10]. Zhou et al. presented a novel prediction method
that utilizes the gradient boosting machine (GBM) method
to analyze slope stability [11]. Cho et al. developed predictive
models for seismic slope displacement by using the artificial
neural network (ANN) approach and compared the result-
ing ANN model with a classical regression model derived
from the same data set [12]. Zhang et al. presented a hybrid
model of support vector regression (SVR) and a teaching-
learning-based optimization technique (TLBO) to predict
reservoir bank slope stability [13]. Meng et al. used an
artificial neural network to predict three-dimensional slope
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stability [14]. Based on the finite element fraction and field
measured data, Kardani et al. proposed a hybrid stacking
integration method to enhance the predictive accuracy of
slope stability [15]. Foong and Moayedi suggested the use
of equilibrium optimization (EO) and a vortex search algo-
rithm (VSA) for optimizing a multilayer perceptron neural
network (MLPNN) employed to anticipate the factor
influencing the safety of a single-layer soil slope [16]. Ling
et al. researched slope reliability evaluation based on a multi-
objective gray wolf optimization-based extreme learning
machine agent model [17]. Pham et al. applied parallel
learning and sequential learning to implement ensemble
classifier models for slope stability analysis [18]. Liao et al.
explored the use of multivariate adaptive regression splines
(MARS) to capture the intrinsic nonlinear and multidimen-
sional relationship among the parameters that are associated
with the evaluation of slope stability [19]. Yuan and Moayedi
assessed the superiority of the metaheuristic evolutionary
when compared to the conventional machine learning classi-
fication techniques for landslide occurrence estimation [20].
Huang et al. proposed an improved slope stability prediction
model based on a KNN neural network [21]. Deng et al.
investigated a new regularized online sequential extreme
learning machine incorporated with the variable forgetting
factor (FOS-ELM) based on intelligence computation to pre-
dict the factor influencing the rock slope’s safety [22]. Hu
et al. proposed a new response surface method (RSM) for
slope reliability analysis based on Gaussian process (GP)
machine learning technology [23]. Qi and Tang proposed
and compared six integrated artificial intelligence (AI)
approaches for slope stability prediction based on metaheur-
istic and ML algorithms [24]. Lin et al. predicted slope sta-
bility based on four supervised learning algorithms [25].
Xu et al. proposed a sensitivity analysis method for slope sta-
bility based on the least squares support vector machine
(LSSVM) to examine the factors that influence slope stability
[26]. Kang et al. presented an intelligent response surface
method to evaluate the system failure probability of soil
slopes based on least squares support vector machines
(LSSVM) and particle swarm optimization [27]. Zhang
et al. presented the adaptive relevance vector machine
(ARVM) for stability inference of soil slopes [28]. Liu et al.
presented an approach of a fast robust neural network,
named the extreme learning machine (ELM) in slope stabil-
ity evaluation and prediction [29]. Cheng et al. proposed a
Swarm-Optimized Fuzzy Instance-based Learning (SOFIL)
model for predicting slope collapses [30].

Support vector machine (SVM) is an intelligent discrim-
inant prediction method developed rapidly in recent years. It
has excellent learning ability and is suitable for solving prob-
lems such as small samples, nonlinearity, high dimensions,
and local minima [31–41]. However, SVM also has certain
shortcomings; for example, its penalty parameters and ker-
nel function parameters have a great influence on prediction
accuracy, and different parameters will show different pre-
diction accuracy. Based on support vector machine (SVM)
model and particle swarm optimization (PSO) model, the
improved particle swarm optimization of support vector
machine (IPSO-SVM) model is established by introducing

nonlinear weight method, which can effectively overcome
the problem that PSO is easy to fall into local optimal and
improve the prediction accuracy and learning ability of sup-
port vector machine algorithm. Then 28 groups of data
about slope from practical engineering are used to establish
the slope stability data set under the influence of multiple
indexes. Finally, in order to prove the superiority of IPSO-
SVM model, the prediction accuracy of IPSO-SVM, PSO-
SVM, and SVM models was compared in the same slope
stability data set. The machine learning method established
in this study can provide guidance for stability prediction
methods used in slope engineering.

2. Slope Stability Analysis Model Based
on IPSO-SVM

2.1. Support Vector Machine. The SVM model is a general
learning method developed on the base of statistical learning
theory and the principle of structural risk minimization. In
the face of pattern recognition problems with small samples
and nonlinear and high dimensions, SVM can show strong
generalization ability.

The sample is set to T = fðxi, yiÞji = 1, 2,⋯,Ng, where
xi ∈ Rd and yi ∈ f+1,−1g. The optimal classification hyper-
plane (w ⋅ x) + b=0 is obtained by nonlinear mapping. It is
required not only to correctly distinguish samples but also
to maximize the classification interval. The principle is
shown in Figure 1.

Solving the optimal classification hyperplane can be trans-
formed into solving the following optimization problems:

w

ð1Þ

In the Formula (1), w is the normal vector of the hyper-
plane, b is the bias, and C is the penalty parameter, which is
used to achieve the compromise betweenmaximizing the clas-
sification interval and minimizing the number of wrong sam-
ples and is one of the important parameters affecting the
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Figure 1: Schematic diagram of the SVM model.
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classification performance of SVM. ξ is the relaxation variable,
approximately representing the number of misclassified sam-
ples. To solve this convex quadratic programming problem,
the Lagrange function is introduced, and the original optimi-
zation problem is transformed into

max 〠
N

i=1
αi −

1
2 〠

N

i,j=1
yiyjαiαjK xi, xj

� �
 !

s:t:〠
N

i=1
αiyi = 0, 0 ≤ αi ≤ C i = 1,⋯,N

8
>>>>><

>>>>>:

ð2Þ

In the Formula (2), αi is the Lagrange multiplier and
Kðxi, yiÞ is the kernel function. The commonly used kernel
function types include the polynomial kernel function,
Gaussian radial basis function, and multilayer perceptron
kernel function.

The kernel function can be expressed as follows:

K xi, xj
� �

= φ xið Þ ⋅ φ xj
� �

: ð3Þ

In the Formula (3), φðxÞ is the nonlinear mapping from
the sample set to a higher dimensional space. According to
Formulas (2) and (3), the nonlinear support vector machines
are expressed as

f xð Þ = sgn 〠
N

i=1
αiyiK xi, xð Þ + b

 !

: ð4Þ

2.2. Particle Swarm Optimization (PSO). Particle swarm
optimization (PSO) is a swarm intelligence optimization
algorithm that uses the cooperation between different parti-
cles to realize information sharing in the whole swarm and
find the optimal solution in the swarm space. The PSO algo-
rithm first initializes a group of particles in the solution
space by constantly updating the individual particle’s posi-
tion, the velocity vector, and the fitness function calculation
fitness values. After comparing the local and global fitness
values of particles, the individual extreme values were
selected. At the same time, using the local optimal value
compared with the global optimal value, the optimal group
extremum is selected. Second, by constantly adjusting the
position and velocity of the particle swarm, the individual
extreme value and the group extreme value are constantly
updated. Finally, the calculation is finished when the optimal
solution is obtained or the maximum number of iterations is
reached.

Suppose that in a D-dimensional space, given a total
X = ðX1, X2,⋯, XnÞ with n particles, the position and veloc-
ity of particle i are Xi = ðXi1, Xi2,⋯, XiDÞ and V = ðVi1,
Vi2,⋯, ViDÞ, respectively, and the positions of the optimal
particle i and the corresponding whole population are
Pi = ðPi1, Pi1,⋯, PiDÞT and Pg = ðPg1, Pg2,⋯, PgDÞT , respec-
tively. In the iterative process of particle swarm optimiza-

tion, the position and velocity of particle i are updated as
follows:

Xid k + 1ð Þ = Xid kð Þ +Vid k + 1ð Þ d = 1, 2,⋯,D i = 1, 2,⋯,nð Þ,
ð5Þ

Vk+1
id = ωVk

id + c1r
k
1,i Pk

id − Xk
id

� �

+ c2r
k
2,i Pk

gd − Xk
id

� �
d = 1, 2,⋯,D i = 1, 2,⋯,nð Þ:

ð6Þ

In Formulas (5) and (6), ω is the inertia factor, k is the
current iteration number, C1 and C2 are learning factors,
Pid is the individual extremum, Pgd is the population extre-
mum, and r1 and r2 are random numbers between (0,1).

2.3. Improved Particle Swarm Optimization (IPSO). In the
elementary particle swarm optimization algorithm (PSO),
when the inertia factor ω ratio is small, the local space search
ability of the algorithm can be improved, but the search abil-
ity of the new region is weak. In the process of optimization,
particles approach the lowest point step by step, resulting in
slow convergence speed. When the inertia factor ω is large, it
is beneficial to improve the global space search ability of the
algorithm, but the local search ability is weak, which may
make the particle miss the lowest point and cannot reach
convergence.

Aiming at the shortcoming of the inertia factor ω of ele-
mentary particle swarms, it is necessary to change the iner-
tia weight factor dynamically to balance the global and local
search capability. The nonlinear inertia weight is introduced
here, which is defined as the product of an exponential
function and a random number in the form of Formulas
(7) and (8).

ω kð Þ = ωmax
ωmin
ωmax

� �m

⋅ rand, ð7Þ

m = k2 − 0:8
K2 − 0:8

: ð8Þ

In Formulas (7) and (8), rand is a uniformly distributed
random number within [0,1], k is the current iteration num-
ber, and K is the maximum iteration number. ωmax and
ωmin are the maximum and minimum inertia factors,
respectively. ωmax = 0:9 and ωmin = 0:4 are generally used.
The maximum number of iterations K is 50~100. Through
numerical analysis of the formula, it can be seen that the
probability of ω taking a larger value is higher at the initial
stage of searching, which can enhance the global searching
ability. While in the later stage of searching, the probability
of ω taking a smaller value is higher, and the local searching
ability is enhanced. Compared with PSO, the nonlinear
inertia factor ω of IPSO can effectively avoid algorithm pre-
maturity, and the exponential function has a faster conver-
gence rate.
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The steps of improved particle swarm optimization
(IPSO) are as follows:

(1) Initialize the particle swarm. Initialize the position
and velocity of each particle with random values
between 0 and 1, and set the maximum value ωmax
and minimum ωmin of inertia weight and learning
factors C1 and C2

(2) The fitness value of each particle is calculated
through the objective function, and the fitness of
each particle is evaluated. The current position and
fitness value of each particle are stored in its corre-
sponding Pid, and the optimal position and fitness
value of all particles are stored in Pgd

(3) Update the particle’s velocity, position, and inertia
factor according to Formulas (5)–(8)

(4) Compare the fitness value of each particle with the
fitness value corresponding to the population extre-
mum Pgd. If one particle performs well, the value of
Pgd will be updated

(5) When the maximum number of iterations is reached
or the accuracy of the adaptive value meets the

requirements, the algorithm is terminated; other-
wise, return to step 3 to continue to update the veloc-
ity and position of particles

2.4. Improved Particle Swarm Optimization of Support
Vector Machine (IPSO-SVM). There are two important
parameters in the support vector machine (SVM): penalty
parameter C and kernel function parameter. Different com-
binations of parameter values have a great influence on the
performance of the SVM model. However, SVM parameters
are difficult to determine through experience or calculation
formulas, so the IPSO algorithm is used to optimize the
selection of penalty factor C and kernel function parameters
in the support vector machine algorithm. It can prevent
being influenced by the disadvantages of the traditional grid
search method of the SVM algorithm, such as large compu-
tation and difficult precise location of the search area,
improve the search speed, and intelligently optimize the
search area and accuracy. The IPSO-SVM model steps are
shown in Figure 2.

After the prediction, the mean square error (MSE) was
used as the model evaluation standard to test the accuracy
of the model. The MSE refers to the average value of the dif-
ference between the predicted value and the actual value after
summing of the squares. It is often used to measure the

Prediction model sample data processing

Data is divided into training sets and test sets

Data set normalization processing

SVM model kernel function type
determination

SVM model was optimized based on ISPO
algorithm

IPSO algorithm initialization,
parameter setting

Calculate particle fitness

Whether the iteration
is complete

The optimal values of penalty factor C and
kernel function parameters of SVM model

were determined

Input SVM model, sample data training

Result prediction and model evaluation

IPSO algorithm updates the inertia factor 𝜔

Update individual extremum and location,
total extremum and location

N

Data preprocessing stage

SVM model IPSO model

Y

Figure 2: Schematic diagram of IPSO-SVM model prediction.
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prediction model’s accuracy and evaluate the data change
degree. The smaller the value of the MSE is, the better the
model’s ability to fit experimental data. The calculation for-
mula is as follows:

MSE = 1
n
〠
n

i=1
yi − ŷij j: ð9Þ

In Formula (9), ŷi is the predicted value of sample i, yi is
the true value of sample i, and n is the sample capacity.

3. Case Analysis

3.1. Data Sources and Data Processing. To ensure the reli-
ability of the database, the sample data should comply with
the following standards: all the slope failure deformation
conforms to the basic deformation law. In this study, 28
groups of data on slope from the literature [42, 43] are taken
as samples. The whole sample data are divided into two

parts. The first 22 groups of data were used as training sam-
ples for training and learning the model. The last 6 groups
were used as test samples to test the feasibility of the
IPSO-SVM model constructed in this study: the bulk density
γ, cohesive force c, angle of internal friction ϕ, slope angle φ
and slope height H, pore water pressure ratio μ as the input,
and slope safety factor F as the output. The data set is shown
in Table 1.

The problem of slope stability is essentially a multivari-
ate nonlinear regression problem. To eliminate the differ-
ences in order of magnitude and magnitude of the factors
and to prevent features with too small values from being
swamped, the samples need to be normalized before training
so that all data fall into the interval (0,1) to achieve numer-
ical comparability of features in different dimensions, thus
reducing the training difficulty of the model:

p∗ = p − pmax + pminð Þ/2ð Þ
pmax − pminð Þ/2ð Þ : ð10Þ

Table 1: Training data and test samples.

Serial number
Bulk density Cohesive force

Angle of internal
friction

Slope angle Slope height
Pore water

pressure ratio
Factor of
slope safety

γ /(KN·m3) c /(kPa) ϕ/(°) φ/(°) H/(m) μ F

1 20.40 24.91 13.00 22.00 10.70 0.35 1.40

2 19.60 12.00 13.00 11.00 10.70 0.41 1.35

3 21.80 8.62 13.00 22.00 10.70 0.49 1.03

4 20.40 33.52 13.00 22.00 10.70 0.20 1.28

5 18.80 15.32 13.00 11.00 10.70 0.38 1.63

6 18.80 0.00 13.00 11.00 10.70 0.45 1.05

7 25.00 55.00 13.00 22.00 10.70 0.25 1.71

8 25.00 63.00 13.00 22.00 10.70 0.25 1.49

9 25.00 63.00 13.00 22.00 10.70 0.25 1.45

10 25.00 48.00 13.00 22.00 10.70 0.25 1.62

11 31.30 68.60 13.00 33.00 10.70 0.25 1.20

12 31.30 38.60 13.00 33.00 10.70 0.25 1.20

13 31.30 58.80 13.00 33.00 10.70 0.25 1.20

14 31.30 58.80 13.00 33.00 10.70 0.25 1.20

15 31.30 68.00 13.00 33.00 10.70 0.25 1.20

16 31.30 68.00 13.00 33.00 10.70 0.25 1.20

17 21.40 0.00 13.00 22.00 10.70 0.50 1.03

18 27.30 14.00 13.00 22.00 10.70 0.25 1.25

19 18.80 14.36 13.00 11.00 10.70 0.45 1.11

20 21.50 6.94 13.00 22.00 10.70 0.38 1.01

21 14.00 11.97 13.00 11.00 10.70 0.45 0.63

22 18.00 24.00 13.00 11.00 10.70 0.12 1.12

23 23.00 0.00 13.00 22.00 10.70 0.30 1.20

24 22.40 100.00 13.00 22.00 10.70 0.25 1.30

25 22.40 100.00 13.00 22.00 10.70 0.40 0.90

26 20.00 20.00 13.00 22.00 10.70 0.50 0.83

27 20.00 0.00 13.00 22.00 10.70 0.25 0.79

28 20.00 0.00 13.00 22.00 10.70 0.50 0.67
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In Formula (10), p and p∗ are the values before and after
normalization, respectively; pmax and pmin are the maximum
and minimum values of the original data set, respectively.

3.2. Performance with respect to Data Availability. To verify
the performance of the IPSO-SVM slope stability prediction
model proposed in this paper, SVM and PSO-SVM algo-
rithm were introduced as reference models for comparison.
Taking the same data set, after parameter tuning, the predic-
tion results of each model are output for analysis and com-
parison. Figure 3 lists the accuracy comparison of MSE of
different models. As the figure shows, fitting effects of pre-
dicted values and measured values for different models are
different, and the prediction accuracy decreases significantly
with IPSO-SVM, PSO-SVM, and SVM models. The accu-
racy of the IPSO-SVM model is significantly higher than
that of the other models, and the MSE is only 0.0412.
PSO-SVM followed, with a MSE of 0.2014. The MSE of a
SVM was 0.3985, which was approximately 4.9 times the

performance of the PSO-SVM model and 9.7 times the per-
formance of the IPSO-SVM model.

To further understand the prediction ability of each
model on slope stability, the prediction results of the
IPSO-SVM, PSO-SVM, and SVM models were compared
with the actual slope safety factor F, and then the error anal-
ysis was conducted. The detailed data are shown in Table 2,
and the error fluctuation range is shown in Figure 4.

As seen from Table 2 and Figure 4, the SVM prediction
results have the largest error, with an average error of 18.3%
and a maximum relative error of 23.4%. Moreover, there is a
wide range of error fluctuations, and the prediction results
are not accurate and unstable. Compared with the SVM
model, the PSO-SVM model has a certain improvement in
performance, and its error is significantly lower than that
of the SVM model, with an average error of 5.2% and a max-
imum relative error of 9.3%. The IPSO-SVM model has the
best performance among the three. The average error of the
prediction results is 1.1%, and the maximum relative error is

SVM

PSO-SVM

IPSO-SVM

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.0412

0.2014

SVM
PSO-SVM
IPSO-SVM

MSE

0.3985

Figure 3: Comparison of MSE accuracy of different models.

Table 2: Relative error table of prediction results of different models.

Number of
samples

Real value SVM SPO-SVM ISPO-SVM
Relative error
(SVM and
real value)%

Relative error
(PSO-SVM and
real value)%

Relative error
(IPSO-SVM and
real value)%

23 1.200 0.921 1.151 1.187 23.3 4.1 1.1

24 1.300 1.095 1.209 1.289 15.8 7.0 0.8

25 0.900 1.111 0.984 0.912 23.4 9.3 1.3

26 0.830 0.956 0.867 0.824 15.2 4.5 0.7

27 0.790 0.896 0.812 0.798 13.4 2.8 1.0

28 0.670 0.796 0.693 0.679 18.8 3.4 1.3

Average 0.948 0.9625 0.953 0.948 18.3 5.2 1.1
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only 1.3%. The prediction accuracy is 17.2 times higher than
that of the PSO-SVM model and 4.2 times higher than that
of the SVM model, and the error fluctuation range is small,
only floating at approximately 1%.

To more intuitively compare the prediction results of the
three models, the predicted values of the IPSO-SVM model,
PSO-SVM model, and SVM model were compared with the
real values at the same time, as shown in Figure 5.

Figure 5 shows that the predicted values of the SVM and
PSO-SVM models have a large overall deviation from the

actual values, in which the prediction of samples 23 and 25
of the SVM model is significantly deviated and that of sam-
ples 24 and 25 of the PSO-SVM model is significantly devi-
ated. The IPSO-SVM model shows a better fitting degree,
and the predicted value and actual value of each sample
point basically coincide.

4. Conclusion

This paper takes 28 groups of slope data as research samples,
bulk density γ, cohesive force c, angle of internal friction ϕ,
slope angle φ and slope height H, pore water pressure ratio
μ as the input, and the slope safety factor F as the output.
Through introducing the IPSO model of nonlinear weight
method, the penalty parameter C and kernel function
parameters of the SVM model are optimized to improve
the prediction accuracy, and an IPSO-SVM model for slope
stability prediction are proposed. Then, the feasibility of the
proposed method is verified being compared with the tradi-
tional SVM model and PSO-SVM model in the same data
set. IPSO-SVM model has excellent learning ability and pre-
diction accuracy, which provides a new research idea for
slope deformation prediction under the influence of multiple
factors. The main conclusions are as follows:

(1) The IPSO-SVM model proposed in this paper can
achieve accurate prediction of slope stability under
the influence of multiple input variables. The MSE
of the model performance evaluation index is signif-
icantly lower than that of the PSO-SVM and SVM
models, and the MSE performance in the test data
set is 3.9 times higher than that of the PSO-SVM
model. Compared with the SVM model, the
improvement is 8.7 times
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Figure 4: Error range analysis.
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(2) The analysis of the prediction results of three models
shows that the IPSO-SVM model has the minimum
error in slope stability prediction, with an average
relative error of 1.1% and a maximum relative error
of only 1.3%, which is significantly better than the
PSO-SVM and SVM models, and the error disper-
sion is small, only floating at approximately 1%,
which verifies the effectiveness and superiority of
the method
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