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This study is to present acceptable measurement values through decision tree analysis for the seepage, which is an important
measuring item of the fill dam. The seepage of the dam under study increases rapidly when rainfall occurs, when the direct
inflow of rainfall from the downstream slope and both sides occur. Therefore, the allowable seepage of fill dam considering
rainfall and water level is required. Decision tree analysis was conducted for one domestic fill dam by setting the seepage as a
response variable and setting rainfall and water level as explanatory variables. At this time, in order to analyze the effects of
rainfall on the seepage more closely, the data subject was classified into two groups consisting of a rainfall-free group and a
rainfall-occurring group. Group A, which is a rainfall-free group, had 97.7% of the seepage data distributed under the
conditions of 98.50mm/day of the antecedent 5-day rainfall selected as the first explanatory variable. The average seepage of
the group was between 12.01 L/min and 26.35 L/min. Group B, which is a rainfall-occurring group, had 85.7% of the water
leakage data distributed under conditions of 38.50mm/day of daily rainfall selected as the first explanatory variable, with an
average of 23.70 L/min.

1. Introduction

In Korea, about 20,000 dams serve an important function of
industrial infrastructure. However, recently, the aging of
dams, the increasing frequency of earthquakes, and weather
fluctuations have threatened the stability of dams, and the
development and improvement of design, construction,
and maintenance technologies to secure the stability of dams
is urgently required. In particular, the need for repair and
reinforcement is emerging as multipurpose dams, which
have been constructed in Korea since the 1960s and are
gradually aging. Among the 37 multipurpose dams and
water supply dams in Korea, about 30% have passed more
than 30 years, and more than 50% of the 14 water supply
dams have passed about 30 to 60 years. Problems with these

dams are thought to not only cause water disasters but also
negatively affect the nation’s water supply. Therefore,
various kinds of measuring instruments such as water seep-
age meter, pore pressure meter, seismometer, earth pressure
gauge, clinometer, and settlement gauge are buried and
installed in the dam and used for stability analysis through
real-time or manual monitoring [1]. And the data obtained
from these various instruments is critical as basic data for
maintenance or research of dams [2]. In particular, the
amount of seepage flowing through the dam is important
for understanding the motion and mysterious symptoms of
the dam, and accurately identifying them is a prerequisite
for dam management [3]. As shown in Figure 1, the dam
is referred to as stage 1 until it reaches normal high-water
level for the first time after the commencement of
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impoundment, and it is referred to as stage 2 from the first
normal high-water level to the time when the dam’s move-
ment reaches a safe state. And after the dam’s movement
has reached a stable state, it is called stage 3. As shown in
Figure 1, the seepage is typically at its peak in stage 1 and
stabilizes over time with a gradual decrease in the seepage,
resulting in a constant value in stage 3.

According to the US Committee on Large Dams [5], 77
cases of collapse of fill dams in the US (accidents that
occurred until the 1980s) were analyzed, and the destruction
caused by leaks and piping through dam body or foundation
ground accounted for 44%. Seepage water meter of the fill
dam is an important measuring item that can monitor this
type of destruction. In addition, it is necessary for seepage
measurement management to establish an acceptable mea-
surement, which means a safe level for the observed values,
and to evaluate the stability of the dam by comparing the
current measurement with the acceptable measurement. It
is important to establish the decision of the acceptable mea-
surement considering many assumptions or environmental
conditions included in the design [6]. However, there is an
actual difference in the predicted seepage in the design and
the measurement of the seepage of the dam considering
the surrounding environmental conditions. Therefore, the
dam shall analyze test impoundment and the measurement
data of operation period to check the normal range of the
dam and establish the acceptable measurement based on it.
However, it is common to establish acceptable measure-
ments of seepage by using measurements obtained during
operation of the dam due to no implementation of test
impoundment, absence of instruments, and deterioration
of reliability due to the inflow of rainfall.

For the dam measurements, Kuperman et al. [7] consid-
ered the behavior of the dam to be normal if the measure-
ments measured from the same instrument are within a
certain range under conditions such as water levels similar
to the past. Lee [8] calculated the upper and lower limits
by methods of the Shewhart control chart method and linear
regression analysis according to the aging characteristics
within the normal range of dam behavior and presented it
as the management criteria. Ryan [9], Lewis et al. [10], and
Myers and Montgomery [11] conducted studies on many
measurements that did not follow a normal distribution
and found that measured values by dam measuring instru-
ments often exhibited asymmetric distributions that did
not follow a normal distribution. In addition, Park and Park
[12] said that using Shewhart control chart based on nor-
mality assumption for control chart of measured values fol-
lowing asymmetric distributions is less efficient in managing
measure variability and increases the probability of making
errors as asymmetry increases, proposing a quartile control
chart as an alternative to this problem. In fact, however,
many fill dams have limitations in introducing the method
above as the water catchment wall is located at the bottom
of the downstream slope and the seepage increases due to
the direct inflow of rainfall through the downstream slope.

Decision tree analysis is easy to understand the classifi-
cation structure of the data and can explain the reasons for
the decision-making so that the effect of water levels and

rainfall, which are highly correlated with the water seepage
of the dam, can be considered [4]. In this study, the seepage
is determined as a response variable for one fill dam, while
rainfall and water level are set as explanatory variables. At
this time, in order to analyze the effects of rainfall on the
seepage more closely, the decision tree analysis was con-
ducted by classifying measured data into two groups consist-
ing of a rainfall-free group and a rainfall-occurring group,
using the daily rainfall and antecedent 5-day rainfall as
explanatory.

2. Target Dam for Research

The dam subject to the research is a central core rockfill
dam, and the cross section of the dam is constructed in order
of filter and rockfill, with the core installed on the axis of the
dam and directed upstream and downstream. The main
dimensions of the dam are shown in Table 1. The dam was
completed in 2007 and has been around 13 years since
impoundment (Figure 2).

2.1. Installation Status of Water Seepage Measuring
Instruments. The water seepage measurement instrument
of the dam under research was installed to identify the
changes in the amount of water penetrating through the
dam body and the foundation ground and to understand
the soundness of the barrier function of the dam. First of
all, a barrier water catchment wall is installed at the lower
fore-end of the dam, and the wall is connected by a seepage
measurement room and an induction pipe. The water seep-
age of the fill dam to be studied is measured in real time (1
time/hr). Figure 3 shows V-notch, a seepage measurement
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Figure 1: Management stage of fill dams [4].

Table 1: Summary of the dam for study.

Dam type Center-cored rockfill dam

Dam crest elevation (m) 44

Dam crest wide (m) 8

Upstream slope 1 : 2.2

Downstream slope 1 : 1.8

Dam crest length (m) 108

Dam height (m) 35.2

Dam volume (m3) 153,000
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instrument installed in the dam, and a water gauge. The dam
has one seepage water meter installed, with bottom width of
waterway (B) of 0.5m and height from the bottom of the
waterway to the bottom of the V-notch (D) of 0.3m. The
depth (h) and angle (a) of the V-notch are 0.2m and 90
degrees, respectively. To measure the seepage, a float type
water gauge is installed at the entrance of seepage water to
automatically measure the height flowing over the V-notch
(h) and calculate it by converting it to the rate of flow. In
the case of the dam studied, it was installed in the specifica-
tions suggested by the International Organization for Stan-
dardization ISO [13] so that its accuracy has already been
verified [14].

3. Measurement Status

3.1. Storage Level and Rainfall. Figure 4 shows changes in
water level and rainfall over time. The water level, which is
an important factor in dam management and operation,
has an excellent data management with missing rate of 0%
within the data collection period. As shown in the figure, a
surge in rainfall indicates a rise in the water level. The aver-
age water level is EL.35.68m, and the standard deviation is

2.97m. For statistical analysis of water levels and rainfall,
the measured results from June 1st, 2009 to June 10th,
2019 were used. The average daily rainfall of the reservoir
in the dam was 3.27mm/day, and the maximum daily rain-
fall was approximately 234mm/day, which occurred on
October 05, 2016.

Another explanatory variable, the antecedent 5-day rain-
fall, is shown in Figure 5. The reason for the application of
the antecedent 5-day rainfall is that the inflow of rainfall
usually lasts for several days after rainfall, and the rainfall,
which is the standard of the Antecedent Soil Moisture Con-
tent (AMC) applied in hydrological flood simulations, is the
antecedent 5-day rainfall [15]. The average of the antecedent
5-day rainfall was 16.31mm/day, and the maximum ante-
cedent 5-day rainfall was approximately 354mm/day, which
occurred on September 18th, 2012.

3.2. Seepage of Water. For statistical analysis of seepage
quantities, water levels and rainfall measurement results at
the same time were utilized. The average missing rate of
seepage during the data collection period was 21.6% (792
days/3,662 days). Also, since the barrier wall is located in
the fleet of the downstream, the seepage of water of the fill
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Figure 2: Cross-sectional plan (unit: mm).

V-notch

(a) V-notch

Float level meter installed at the
rear of V- notch

(b) Float level meter installed at the rear of V-notch

Figure 3: Instruments for measuring seepage of a fill dam.
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dam increases rapidly when rainfall occurs as the direct
inflow of rainfall from the downstream slope and the left
and right sides occurs. As shown in Figure 6, potential upper
bound outliers are distributed throughout the data, and
seepage quantities above 1000 L/min may be measured dur-
ing rainfall.

3.3. Removal of Outliers of Seepage. Statistical analysis of
seepage shows an extreme asymmetric distribution with an
average observed value of 178.74L/min, a median of 18.4L/
min, and a standard deviation of 2,950L/min. In the case of
seepage water meters, it is deemed impossible to remove out-
liers effectively by searching for outliers based on univariate

such as z-score, since they are measured in one place. There-
fore, in this study, a data analysis-based outlier removal
method using rainfall and water level data is applied for quan-
titative analysis of seepage data. The maximum capacity of the
V-notch measuring seepage is applied by the Kindsvater-Shen
equation presented by the International Organization for
Standardization ISO [13], and the calculated maximum possi-
ble observation was found to be approximately 1,500L/min
[16]. As illustrated in Figure 7(a), it can be seen that seepage
data exceeding the maximum possible observations are
distributed throughout the time series data. In addition,
Figures 7(b)–7(d), which illustrate the relationship between
seepage, rainfall, and water level, show that no extreme values
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Figure 4: Water level and daily rainfall.
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Figure 5: Water level and antecedent 5-day rainfall.
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of rainfall and water level occur when the maximum possible
observations of seepage are exceeded. Therefore, considering
the relationship between the maximum possible observations
of seepage, rainfall, and water level, observations exceeding
1,500L/min were judged as simple outliers and eliminated.

The seepage data contains approximately 22% (missing
rate) of observations recorded as “0(zero)” indicating the
missing. It was compared to rainfall and water level data to
distinguish whether the observation was missing or actual.
Figure 8(a) below illustrates the relationship between the
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Figure 7: Comparisons among seepage, rainfall, and water level.
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time recorded as “0,” and Figure 8(b) illustrates the relation-
ship with the water level. The observation was eliminated by
considering that the actual rainfall occurred when the seep-
age was recorded as “0(zero)” in Figure 8, and that the
change in the water level was distributed above and below
the average.

Figure 9 compares the seepage-rainfall and seepage-
water level after removing the measurement of seepage water
measurements determined to be outliers. In Figures 9(a) and
9(b), which illustrate the seepage and rainfall, the seepage is
shown to increase when the rainfall increases significantly.
In Figure 9(c), which illustrates the relationship between
seepage and water level, it can be seen that seepage increases
and decreases with changes in water level as well as rainfall.
In other words, the seepage of the dam subject to research is
shown to be sensitive to rainfall and water level as response
variables.

3.4. Removal of Outliers of Seepage. To closely analyze the
effects of rainfall on seepage, the data to be analyzed were
classified into two groups consisting of a rainfall-free group
(group A) and a rainfall-occurring group (group B). In the
case of rainfall, the daily rainfall and antecedent 5-day rain-
fall in net unit were generated and applied in consideration
of the hydrologic response time of the dam basin. The
detailed AMC conditions according to the antecedent 5-
day rainfall are as shown in Table 2 below [15].

Figures 10 and 11 show the classification into rainfall-
occurring group and rainfall-free group, respectively, after
removing the seepage outliers and missing values from the

raw data. Of 2854 data excluding 792 missing data and 15
outliers from total measured data of 3,662 data (June 1st,
2009~June 10th, 2019), group A, a rainfall-free group, has
2133 data, while group B, a rainfall-occurring group, has
721 data.

4. Decision Tree Analysis

4.1. Purpose and Process of Decision Tree Analysis. Decision
tree analysis is more applicable because it is easy to under-
stand the classification structure of the data and can explain
the reasons for the decision, unlike the Neural Network
Analysis which is a similar type. Algorithms for tree struc-
ture formation in decision tree analysis are currently being
developed in various ways. Decision trees start from the
roots and are formed by dividing the segmented joints until
each branch becomes the end joint. Like this, in order to
complete the decision tree, several steps must be performed
on the selection of a splitting rule, the selection of a stopping
rule to stop the splits, the selection of a pruning method,
and, if there is a defect within the input variable value, impu-
tation method [16]. Mainly known algorithms include
CART (Classification and Regression Trees), CHAID (Chi-
squared Automatic Interaction Detection), C5.0 [17], and
C4.5 [18], and this study conducted the seepage analysis
using the most commonly used CART algorithm [19].

The CART algorithm is a methodology for generating
multiple subset trees of the data and finding the optimal
subset tree among them. The CART algorithm is applica-
ble to nominal, ordinal, and continuous variables and is
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characterized by structuring the model’s composition
according to the conditions of explanatory variables in
the order of root nodes, child nodes, and branches, as
shown in Figure 12. The root node has the most influen-
tial variable among the explanatory variables describing

the change in the response variable, and it constructs a
binary branch according to the conditions of the corre-
sponding variable. The branch node includes the first
explanatory variable or other explanatory variables, and
the leaf node is the final-stage node divaricated from the
root and each joint, with one leaf node representing clus-
ters according to classified rules. Then, the regression
equations estimated from classified cluster units are aggre-
gated to produce a model that can predict the behavior of
the response variable.

In particular, the CART algorithm can be proposed as an
alternative to regression analysis for the cases such as the
presence of interactions of independent variables or the
presence of multicollinearity problems. In the CART algo-
rithm, a separation criterion is a criterion for determining
the choice of explanatory variables and the merging of
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Figure 9: Relationship after removal of outliers and missing data.

Table 2: AMC conditions according to antecedent 5-day
rainfall [15].

AMC condition
Antecedent 5-day rainfall P5 (mm)

Dormant season Growing season

I P5 < 12:70 P5 < 35:56
II 12:70 < P5 < 27:94 35:56 < P5 < 53:34
III P5 > 27:94 P5 > 53:34

7Geofluids



categories when child nodes are formed from parent nodes.
Therefore, quantifying the separation criteria requires quan-
tification of explanatory variable selection and separation
conditions that best distinguish the distribution of the
response variables. For discrete data, the separation occurs
based on the frequency of each category of response vari-
ables, while the separation of joints occurs based on the
mean and standard deviation of the target variables for
continuous data [20]. Detailed separation criteria and condi-
tions for each data type are summarized in Table 3.

In this paper, Matlab R2020a was utilized as a tool for
decision tree analysis, and the variance reduction was
applied as a separation criterion as the target data is contin-

uous. Variable reduction, RðtÞ, is defined as shown in
equation (1) for each separation node for the data set of N
-explanatory variable x1 = ðx1 ⋯ xdÞ and response variable
y1 = ðy1 ⋯ ynÞ.

R tð Þ = 1
n

〠
yi ,xi∈t

yi − �y tð Þð Þ2, ð1Þ

Here, �y = 1/nðtÞ∑yi ,xi∈t yi.
When the set of all possible branch conditions in each

separation step is called S, and each branch condition is
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Figure 10: Seepage, rainfall, and water level for group A.
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called s, the optimal branch condition is s∗as shown in the
following equation.

ΔR s, tð Þ = R tð Þ − R tLð Þ − R tRð Þ,
ΔR s∗, tð Þ =maxΔR s, tð Þ ; s ∈ S:

ð2Þ

Here, RðtLÞ and RðtRÞ are the variance reduction of the
left/right branches in each joint.

The predictor importance (PI) of the explanatory vari-
ables can be calculated by equation (3) through the explana-
tory variable ðxiÞ selected from the optimal branch condition
of each joint, s∗, and variance reduction, ΔRðs∗, tÞxi . The

RF < 71.5 RF > = 71.5

RF < 106.5 RF > = 106.5

185.8759

292.3364
RF < 88 RF > = 88

WL < 35.225 WL > = 35.225

13.80936

28.64864 72.74544 46.35588

RF < 19.75 RF > = 19.75

Splitting

Root node,
primary explanatory variable

Branch,
prediction model 01 

Child node,
secondary explanatory
variable

Branch,
prediction model 02

Figure 12: CART algorithm.

Table 3: Splitting rules for decision trees.

Categories Splitting rules Splitting conditions

Discrete distribution

p value for χ2 Under the condition that p value is minimized

Gini index Under the conditions that most reduce the Gini index

Entropy index Under conditions that reduce the most entropy index

Continuous distribution
p value for F Under conditions where p value is minimized

Decrements of variance Under conditions that maximize the amount of variance reduction

58.71288 104.4975

WL < 35.225 WL > = 35.225 RF 5d < 174.5 RF 5d > = 174.5

26.3544212.0141

RF 5d < 98.5 RF 5d > = 98.5

Figure 13: Decision tree for group A (seepage, antecedent 5-day rainfall, and water level).
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explanatory variable with larger PI means better explanation
for the response variable.

PIxi =
1
Nt

ΔR s∗, tð Þxi
� �

: ð3Þ

4.2. Decision Tree Analysis of Seepage of Seepage. The analyt-
ical tree model is organized in the order of root (the primary
explanatory variable), branch (other explanatory variables)
division, and leaf (classification group/predictive model),
which facilitates the analysis of multivariate factors with
interactions. Therefore, an analytical tree analysis using the
CART algorithm to analyze the effects of rainfall and water
level on the causes of changes in seepage was conducted.

Figure 13 and Table 4 are the results of decision tree
analysis of group A, representing the analytical tree results
of the rainfall-free group performed by setting the seepage
(LQ) as a response variable and antecedent 5-day rainfall
(RF 5d) and water level (WL) as explanatory variables.
Figure 14 shows the dimensionless variable importance PI
for the antecedent 5-day rainfall and water level applied as
explanatory variables. Here, dimensionless PI presents the
size of PI of each explanatory variable as a ratio to the total
PI. As the explanatory variable antecedent 5-day rainfall was
0.64 and water level was 0.36, the antecedent 5-day rainfall

was selected as the primary explanatory variable. The statis-
tics of the seepage group were calculated according to classi-
fied conditions to analyze the changes in seepage according
to changes in rainfall and water level. As summarized in
Table 4, the branch conditions of the antecedent 5-day

Table 4: Results of decision tress analysis for group A.

Primary explanatory variable Second explanatory variable Response variable

Antecedent 5-day rainfall (RF_5 d, mm/day) Water level (WL, m)
Seepage (LQ, L/min)

Mean Subset n

RF 5 d ≥ 174:5 104.5 18 (0.8%)

98:5 ≤ RF 5 d < 174:5 58.72 32 (1.5%)

RF 5 d < 98:5 21.8 2,083 (97.7%)

WL ≥ 35:23 26.35 1,421 (66.6%)

WL < 35:23 12.01 662 (31.0%)
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Figure 14: Predictor importance estimates for group A.

84.32844

RF < 106.5 RF > = 106.5

RF 5d < 77.5 RF 5d > = 77.5

RF < 38.5 RF > = 38.5

23.69861

105.3273

367.6304

Figure 15: Decision tree for group B (seepage, rainfall, antecedent
5-day rainfall, and water level).
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rainfall selected as the primary variable were 98.5mm/day
and 174.5mm/day, with the water level acting as the explan-
atory variable under the conditions of antecedent 5-day
rainfall below 98.5mm/day. The branch condition of the
water level was analyzed to be 35.23m. In particular, 97.7%
of the water leakage data are distributed under conditions
of antecedent 5-day rainfall below 98.5mm/day, with the
average value of the group being 12.01 L/min~26.35 L/min,
which is significantly lower than the average value of the rel-
ative group (58.72 L/min to 104.50 L/min). Therefore, it is
determined that the antecedent 5-day rainfall can be consid-
ered as a major influence factor on the leakage at the point of
no rainfall, and antecedent 5-day rainfall of 98.5mm/day
can be presented as the allowable seepage value for the
increase in the amount of water leakage.

Figure 15 and Table 5 are the results of decision tree
analysis of group B, representing the analytical tree results
of the rainfall-occurring group performed by setting the
seepage (LQ) as a response variable and antecedent 5-day
rainfall (RF 5d) and water level (WL) as explanatory vari-
ables. Figure 16 shows the dimensionless PI. As the explan-
atory variable daily rainfall (RF) was 0.81, the antecedent 5-
day rainfall (RF 5d) was 0.19, the water level (WL) was 0.00,
and daily rainfall was selected as the primary explanatory
variable. Group B, a rainfall-occurring group, was analyzed
to have no effect of water level as an explanatory variable.
To analyze the changes in seepage, the statistics of the seep-
age group were calculated according to the classified condi-

tions. As summarized in Table 5, the branch conditions of
daily rainfall selected as the first variable were 106.5mm/
day and 38.5mm/day, while the antecedent 5-day rainfall
only worked as an explanatory variable in the range of
38.5mm/day to 106.5mm/day. In other words, the effect of
antecedent 5-day rainfall on the amount of leakage is deter-
mined to be significant only at the time of occurrence of
daily rainfall bigger than medium-size. In addition, in group
B, 85.7% of the water leakage data are distributed under the
conditions of daily rainfall below 38.5mm/day, and the aver-
age value of the group was 23.70 L/min, which is signifi-
cantly lower than the average value of the relative group
(84.33 L/min~367.63 L/min). Therefore, it is determined that
the daily rainfall (RF) can be considered as a major influence
factor on the amount of water leakage at the time of rainfall,
and that the daily rainfall of 38.5mm/day can be presented
as the allowable seepage value for the increase in the amount
of water leakage.

5. Conclusions

In this study, the following results were obtained by classify-
ing the group into two groups consisting of a rainfall-free
group and a rainfall-occurring group to conduct decision
tree analysis considering the effects of dam water level, daily
rainfall, and antecedent 5-day rainfall on the seepage, which
is the primary measured item for prediction of leakage of fill
dam and piping..

Table 5: Results of decision tress analysis for group B.

Primary explanatory variable Second explanatory variable Response variable

Rainfall (RF, mm/day) Antecedent 5-day rainfall (RF_5 d, mm/day)
Seepage (LQ, L/min)

Mean Subset n

RF ≥ 106:5 367.63 9 (1.2%)

RF 5 d ≥ 77:5 105.33 48 (6.6%)

RF 5 d < 77:5 27.9 664 (92.1%)

RF > 38:5 84.33 46 (6.4%)

RF < 38:5 23.7 618 (85.7%)
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Figure 16: Predictor importance estimates for group B.
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As a result of the decision-making tree analysis on rainfall-
free group (group A), there were the most data (66.6%) with
the antecedent 5-day rainfall, selected as the primary explana-
tory variable, of less than 98.5mm/day and water level higher
than EL.35.225m, and the average seepage at this time was
26.35L/min.

As a result of the decision-making tree analysis on
rainfall-occurring group (group B), the branch conditions
of the daily rainfall, selected as the primary explanatory var-
iable, were 106.5mm/day and 38.5mm/day. In addition, it
was analyzed that the change in seepage during rainfall is
not related to the water level. 85.75% of seepage data was
distributed under the conditions with the antecedent 5-day
rainfall, the primary explanatory variable, of less than
77.5mm/day and daily rainfall less than 38.5mm/day, and
the average seepage at this time was 23.70 L/min. Also, when
daily rainfall was more than 38.5mm/day under the same
conditions, the average seepage was 84.33 L/min.

Therefore, the seepage of the dam subject to research was
found to be more directly affected by rainfall than by water
level. Rather than presenting a single value as the acceptable
seepage of the fill dam, the acceptable seepage according to
the explanatory variables determined by the decision tree
analysis can be presented, respectively.

Data Availability

The data set used in this study is available through Water
Energy & Infrastructure Research Center, K-water (http://
www.kwater.or.kr/kiwe/main.do).
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