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From a general review, most petrophysical models applied for the conventional logging interpretation imply that porosity,
permeability, or water saturation mathematically have a linear or nonlinear relationship with well logs, and then arguing the
prediction of these three parameters actually is accessible under a regression of logging sequences. Based on this knowledge,
ensemble learning technique, partially developed for fitting problems, can be regarded as a solution. Light gradient boosting
machine (LightGBM) is proved as one representative of the state-of-the-art ensemble learning, thus adopted as a potential
solver to predict three target reservoir characters. To guarantee the predicting quality of LightGBM, continuous restricted
Boltzmann machine (CRBM) and Bayesian optimization (Bayes) are introduced as assistants to enhance the significance of
input logs and the setting of employed hyperparameters. Thereby, a new hybrid predictor, named CRBM-Bayes-LightGBM, is
proposed for the prediction task. To validate the working performance of the proposed predictor, the basic data derived from
the member of Chang 8, Jiyuan Oilfield, Ordos Basin, Northern China, is collected to launch the corresponding experiments.
Additionally, to highlight the validating effect, three sophisticated predictors, including k-nearest neighbors (KNN), support
vector regression (SVR), and random forest (RF), are introduced as competitors to implement a contrast. Since ensemble
learning models universally will cause an underfitting issue when dealing with a small-volumetric dataset, transfer learning in
this circumstance will be employed as an aided technique for the core predictor to achieve a satisfactory prediction. Then,
three experiments are purposefully designed for four validated predictors, and given a comprehensive analysis of the gained
experimented results, two critical points are concluded: (1) compared to three competitors, LightGBM-cored predictor has
capability to produce more reliable predicted results, and the reliability can be further improved under a usage of more
learning samples; (2) transfer learning is really functional in completing a satisfactory prediction for a small-volumetric dataset
and furthermore has access to perform better when serving for the proposed predictor. Consequently, CRBM-Bayes-LightGBM
combined with transfer learning is solidly demonstrated by a stronger capability and an expected robustness on the prediction
of porosity, permeability, and water saturation, which then clarify that the proposed predictor can be viewed as a preferential
selection when geologists, geophysicists, or petrophysicists need to finalize a characterization of sandy-mud reservoirs.

1. Introduction

In the field of logging interpretation, petrophysical models
are the common approach applied to address predictions
of some reservoir parameters such as porosity, permeability,

and water saturation, which sometimes will be unavailable
or ineffective when lacking the support of some experimen-
tal data, e.g., resistivity of formation water, diameter of sand
grains, and content of clay minerals [1–3]. Then, to make
such parametric prediction more accessible, new solution
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or computing mechanism must be introduced. From a gen-
eral review of Table 1, the essence of most classic petrophy-
sical models implies a truth that porosity, permeability, or
water saturation mathematically presents a linear or nonlin-
ear relationship with other reservoir characters, and more
importantly, these characters can be directly measured by
well logs or indirectly calculated by logging-based petrophy-
sical models, which then argue that the prediction of three
mentioned reservoir parameters can be completed under a
regression of logging sequences [1–11]. Each computed
parameter shown in the table can be comprehended via the
help of the listed references. For example, since the shale will
exist in disperse, structural, or laminated shape around the
porous space of sandy-mud reservoirs, the real porosity
actually should be determined from a rectification of the
apparent porosity, and then the compaction factor raised
by the shale is proposed to implement a simple rectification
in the computing model. Based on the essence of the exam-
pled petrophysical models, fitting techniques become the
new key solution for the focused prediction task. Stepwise
is a well-known multivariable regression and, given its capa-
bility on the resolving of collinearity of inputs, has been
employed by many researchers to finalize the petrophysical
characterization [12–15]. Although this technique is proved
successful in the study, it is also questionable owing to two
reasons: (1) as the reasonable fitting relationship between
applied well logs and porosity, permeability, or water satura-
tion is uncertain, the linear stepwise routinely used in the
practical cases might not be a smart solution, and hence,
the calculating results of stepwise is universally unqualified
or unreliable; (2) sometimes, to gain a satisfactory fitting,
stepwise will be complicated by adding some cross terms
of inputs, which then will dramatically reduce its generaliza-
tion or extremely cause an overfitting. Thereby, stepwise
seems not to be a preferential selection.

Machine learning (ML) is partially developed for fitting
problems and, compared to stepwise, can complete a regres-
sion in an implicit computing mechanism or without con-
sidering the specific input-output relationship, thus
presenting a better generalization in the prediction
[16–19]. Conventional neural network, or called two-layer
network, is classic in the regression. Its computation imitates
the operation of human brain by the connections among
input, hidden, and output three layers and finalizes a conver-
gence via back propagation algorithm. Ahmadi et al. [20],
Ahmadi et al. [16], and Ahmadi et al. [21] have well vali-
dated the working performance of typical neural network
in the logging-based fitting of porosity and permeability.
However, its performance is much sensitive to the initializa-
tion and accordingly will easily trap in a local minimum.
Besides, its convergence appears to be much slower under
modern conditions and has a difficult trade-off between
underfitting and overfitting in the training. Thereby, this
predictor seems to be not sophisticated. K-nearest neighbors
(KNN) and support vector regression (SVR) are two ML
representatives in the fitting. KNN primarily utilizes several
learning neighbors closer to the test sample to generate an
approximate regression [22]. As such computation is simple
and easily implemented, some researchers employ KNN to

realize the data-driven petrophysical characterization and,
finally according to the analysis of validated results, confirm
the effectiveness of KNN on the prediction of reservoir
parameters [23–25]. Since KNN is featured by a lazy learn-
ing which means all learning samples will be scanned to
search out the required neighbors for each test sample, its
prediction of a test dataset with a large volume will cause a
serious time-consuming phenomenon, and then “KD-tree”
or “Ball-tree,” which will assist KNN to form a presearching
path of neighbors, is commonly used in practical case [23,
24]. However, even employing such tree-based pretraining,
KNN still will be low-efficient in the prediction, because to
obtain a stable input-output mapping, a large-volumetric
learning dataset is usually required, while training more
learning samples inevitably will decelerate the speed of con-
struction and query of “KD-tree” or “Ball-tree.” Hence, the
working performance of KNN is not desirable enough. Being
different from KNN, SVR applies some significant learning
samples that decide the computing effect as support vectors
to execute a prediction. To find out the support vectors in a
simpler way, raw data will be projected into a high-
dimensional space via a kernel function [26]. Thus, by
adopting a suitable kernel function, SVR is capable to pro-
duce an expected fitting, especially for the nonlinear regres-
sion [26]. Based on the super power of SVR shown in the
fitting, Al-Anazi and Gates [27] and other researchers
launched the SVR-based predictions for some reservoir
parameters and through a comparison verified that SVR is
a potential candidate in the petrophysical prediction [28,
29]. Nonetheless, as the support vectors produced by SVR
are unexplainable, the practical meaning of them for each
test sample becomes vague, and then a deeper analysis for
the relationship between learning and test samples is inac-
cessible, which solidly indicates the major shortcoming of
SVR in the regression.

If learning samples can be clustered and stored via a
logistic searching path, the prediction for test samples will
be explainable. Classification and regression tree (CART)
clusters the learning data by leaf nodes and connects them
through branches and then, in comparison with SVR, has
the capability to explain the practical meaning of the used
learning samples for each test point and thus presents as a
more powerful solver for the fitting of reservoir parameters
[30]. Aforementioned “KD-tree” and “Ball-tree” are good
derived cases of CART, whereas a single CART still will be
failure to fit a test sample if the achieved clusters are unqual-
ified, or in other words, the samples within each cluster are
too mathematically dissimilar to generate an acceptable fit-
ting error. Therefore, ensemble learning (EL) is created,
which will employ a series of CART to minimize the fitting
remain of each test sample [30, 31]. Currently, EL generally
can be divided into “bagging” and “boosting” two subcate-
gories. Random forest (RF) is the representative of
bagging-based EL, which first will randomly apply partial
learning samples to establish a CART and subsequently
complete a prediction, and at last, under a loop of such com-
puting operation, the average of all gained fitting results will
be regarded as the final predicted outcomes for test dataset
[31]. As the result of each test sample is an average
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estimation of many CARTs, the impact of underfitting or
overfitting on the prediction, to a large extent, is reduced,
hence RF displaying an ideal robust nature [31]. Ao et al.
[32] and other researchers noticed this advantage of RF in
the fitting and then utilized it to implement the application
in the petrophysical characterization [33, 34]. Although the
experiments launched by them manifest RF that is capable
of completing a satisfactory fitting for porosity, permeability,
or water saturation, this model is still an undesirable regres-
sion solver, because to measure the working performance of
a fitting solver, robustness is only the secondary metric, and
the primary pursue is a capability that will enable the predic-
tor to gain a minimum error for the computing objective.

Gradient boosting decision tree (GBDT) is a classic
boosting model, fundamentally defining the basic comput-
ing rule of boosting-based EL that the fitting errors will be
progressively reduced to a minimum by a set of CARTs
[30]. Specifically, test dataset first will be predicted by an
average of all learning samples, and correspondingly the
produced fitting error information will be used to establish
the first CART, and next the remaining error determined
by this CART for each test sample will be assembled to cre-
ate the following CART, and finally given such computing
loop, the fitting errors will be gradually reduced to a mini-
mum [30]. GBDT manages to gain a minimum upon the fit-
ting errors, thus exhibiting as a more suitable solver in the
regression in comparison with RF. Nonetheless, the achieved

experimental proofs indicate that GBDT generally is incapa-
ble to produce a perfect prediction and always causes a tre-
mendous waste on the memory of training data; Chen and
Guestrin [35] then provided some theoretical improvements
in terms of loss function and data storage and eventually
proposed a new model called extreme gradient boosting
(XGBoost). This GBDT-based model can indeed obtain a
wonderful score on the fitting precision, but since its com-
puting speed will be exponentially decelerated when more
learning samples are used in the training, it usually performs
inefficiently in the process of big data [36]. Ke et al. [36]
emphatically analyzed the construction of CART and pur-
posefully designed several algorithms such as gradient-
based one-side sampling (GOSS), exclusive feature bundling
(EFB), and histogram to accelerate the establishment of each
CART, consequently creating a XGBoost-based model
named light gradient boosting machine (LightGBM). Based
on some tests, it is proved that LightGBM can complete a
prediction faster compared to XGBoost, and the computing
performance is also acceptable and sometimes even better
than that of XGBoost [36]. Therefore, LightGBM shows
the greater potential for the fitting of reservoir parameters.
Zhou et al. [37] employed LightGBM to predict permeability
based on a feature selection of well logs, and in accordance
with the analysis of the obtained results, ensured LightGBM
is a “sharp tool’ for the petrophysical prediction. Hadavimo-
ghaddam et al. [38] studied an automatic regression for

Table 1: Classic petrophysical models employed to predict effective porosity, effective permeability, and water saturation of conventional
petroleum-bearing reservoirs.

Reservoir
parameter

Model General expression Variable

Porosity
(ϕ, %)

Single-log model
[4]

ϕ = 1/Cshð Þ x − xma/xf − xma

À Á Csh: compaction factor; x: value from
acoustic, density, or neutron log; xma: logging
value of matrix; xf : logging value of fluid

Wyllie-Rose
model [5]

ϕ = 1 − Δtma/Δtð Þ1/zp Δtma: acoustic logging value of matrix; Δt:
value of acoustic log; zp: formation factor

Density-neutron
root-mean-
square (RMS)
model [1]

ϕ = 1/Cshð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρma/ρf − ρma

� �2
+ d − dma/df − dma

À Á2r Csh: compaction factor; ρ, d: values of density
and neutron logs; ρma, dma: density and
neutron logging values of matrix; ρf , df :

density and neutron logging values of fluid

Permeability
(K , mD)

Kozeny-Carman
model [6, 7]

K = aϕ3/ 1 − ϕð Þ2S2 a: empirical coefficient; ϕ: porosity; S: specific
surface area of rock

Krumbein-Monk
model [8]

K = a1g
a2gc

a1, a2: empirical coefficients; g: median
grain diameter; gc: standard deviation of g

Timur model [2] K = a1ϕ
a2 /S2wi

a1, a2: empirical coefficients; ϕ: porosity; Swi:
irreducible water saturation

Water
saturation
(Sw, %)

Archie model [9] Sw =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abRw/ϕmRtð Þn

p a, b,m, n: empirical coefficients; Rw:
resistivity of formation water; Rt : resistivity

of true formation

Waxman-Smits-
based model [3]

Ct = αSnw + βSqw
Ct : conductivity of true formation; α, n:
coefficient and power of water saturation

term; β, q: coefficient and power of shale term

Poupon-
Leveaux-based
model [10]

Ct = αSnw + γSpw + βSqw

Ct : conductivity of true formation; α, n:
coefficient and power of water saturation
term; γ, p: coefficient and power of cross

term; β, q: coefficient and power of shale term
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water saturation, and through a comparison demonstrated,
LightGBM is a better selection.

Although the strong capability of LightGBM for the fit-
ting issue is solidly verified in practical cases, the prediction
of a small-volumetric dataset which will arise an underfitting
for LightGBM is never considered. Transfer learning is a
conception of deep learning, specially addressing the train-
ing of a small-volumetric dataset [39]. If the handed samples
have the similar characterization, the dataset with a smaller
volume can be trained well by a ready-made network estab-
lished by the rest larger-volumetric dataset, which is just the
computing mechanism of transfer learning [39, 40]. Hence,
with the integration of transfer learning, the generalization
of LightGBM will be enhanced, especially for the process
of a small-volumetric dataset. Additionally, to guarantee
the predicting quality of LightGBM, two advanced tech-
niques, continuous restricted Boltzmann machine (CRBM)
and Bayesian optimization (Bayes), are introduced as assis-
tants to improve the significance of inputs and the setting
of employed hyperparameters [41, 42]. Accordingly, on the
basis of transfer learning, a new hybrid EL-based model is
proposed for the fitting of porosity, permeability, and water
saturation, called CRBM-Bayes-LightGBM. In the following
paragraphs, methodology, data validation, and discussion of
experimental results for the proposed predictor will be
described in details orderly.

2. Methodology

In this chapter, methodology of the proposed predictor will
be described by several sections, including preprocessing of
raw samples, dimensional reduction of input logs, modeling
of LightGBM, optimization of hyperparameters, embedding
of transfer learning, and performance measure of fitting.
Given the understanding of each computing section, the
computing flow, established on the basis of ensemble and
transfer learnings, applied to regress three target reservoir
characters, will be provided as a final section.

2.1. Preprocessing. As well as logs are measured by electronic
apparatuses, the achieved logging sequences will inevitably
be affected by noisy information. Then, to raise signal-to-
noise ratio (SNR) of the raw inputs, noisy samples must be
excluded. Since generally measuring value will exceed a nor-
mal varying limitation upon the impact of noise, a noisy
point can actually be viewed as an outlier, and therefore, a
detection of outliers becomes accessible to filter the basic
dataset. Tukey’s method is skilled in removing outliers and,
as it only applies quartile information, is easily implemented
and thus adopted to detect the noisy inputs [43]. Lower
inner fence (LIF) and upper inner fence (UIF) will be
employed by this method to form a normal varying limita-
tion and then conduct a judgment for outliers. The equation
set calculating two fences is given below [43]:

IQR = 1:5 × Q3‐Q1ð Þ,
LIF =Q1‐IQR,
UIF =Q3 + IQR,

ð1Þ

where Q1 is the lower quartile, Q3 is the upper quartile, and
IQR means the inner quartile range.

For an input log, if values are larger or smaller than UIF
or LIF, they will be determined as outliers and then excluded
from the raw dataset [43]. Nonetheless, prior to modeling,
the scale of each log also has to be considered. Since conven-
tional logging sequences vary with different orders of magni-
tude, the contribution provided by the logs with small orders
in the prediction will be dramatically reduced if all logs are
directly applied during the modeling. Hence, normalization
for well logs becomes essential.

Now, if the original input matrix is expressed by Am1n1
= ½Xori, Yori�, where m1 is the number of input samples, n1
is the number of columns of the input matrix, Xori is the
original logging matrix, and Yori stands for the core-
measured vector of porosity, permeability, or water satura-
tion, after a detection of outliers and a normalization, it
can be rewritten by Amn1

= ½Xpre, Ypre�, where m is the new
number of input samples and Xpre and Ypre are the logging
matrix and core-measured vector gained from preprocess-
ing, respectively.

2.2. Dimensional Reduction of Well Logs. Although the pre-
processing has enhanced the quality of the input logs, the
amount of utilized logs—which is a crucial element impact-
ing the predictor’s computation speed—is never taken into
account. Faster prediction will be made with fewer input
variables, and training data must then be reduced in dimen-
sion [36]. LightGBM employs EFB to reduce the dimension-
ality of input data, whereas conventional logging sequences
are generally not mutually exclusive or specifically they can
take nonzero values simultaneously [36]. EFB hence presents
unsuitably for the process of well logs. To find a powerful
solver for the dimensional reduction, restricted Boltzmann
machine (RBM), being well-known as a feature extractor
from deep belief network (DBN), can be regarded as a
potential candidate because it is feasible to extract more or
less new variables from the raw dataset and meanwhile can
ensure that the extracted information is beneficial in the pre-
diction [44]. As original RBM is only functional for the
binary information, CRBM, a RBM-based extractor specially
applied to compute the data varying continuously, is
adopted to realize a reduction on the dimensionality of the
logging matrix [41]. The construction of CRBM is simple
and only composed by a visible and a hidden layer. The
mathematical expressions of two layers are written below
[41, 45]:

Pθ hj Vj
À Á

= Csf VTW + CσCnorm
À Á

transitingð Þ,
Pθ vi Hjð Þ = Csf WH + CσCnormð Þ reconstructingð Þ,

Csf xð Þ = Cla +
Cua − Clað Þ
1 + e−Cμx
À Á ,

ð2Þ

where P represents the probabilistic activity function, θ is
the set of hyperparameters, V is the visible matrix, H is the
hidden matrix, vi is ith visible vector, hj is jth hidden vector,
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W is the weight matrix, Cσ is the noise variance, Cnorm
stands for the normal distribution used to generate noisy
information, Csf represents the sigmoid function, Cla is the
lower limitation of the sigmoid, Cua is the upper limitation
of the sigmoid, and Cμ is the noise controller.

For a review of the above expressions, it is clear that the
input data will be handled by the visible and then transited
to the hidden via the weight matrix. To guarantee the tran-
siting quality, the hidden matrix will be sent back to the vis-
ible as a reconstructed matrix, and then a check will be
executed in which the transited data will be proved qualified
if the error between the observation and reconstructed data
is acceptable. If the transiting is unqualified, the data cur-
rently held by the visible will be trained by CRBM once
again, and subsequently a second round checking the recon-
structed data will be conducted. Upon a loop of transiting
and reconstructing, an iterative training for CRBM is formed
[41, 45]. Since the weight matrix and noise controller rou-
tinely are viewed as the hyperparameters, the training targets
of CRBM contain W and Cμ [41, 45]. Hinton [46] proposed
a faster training algorithm named contrastive divergence
(CD) for RBM-based extractors and, demonstrated a satis-
factory training that can be gained only after one iteration,
then CD also known as CD-1. However, with an increasing
on the size of input matrix, CD-1 will be exponentially
slower [44]. Thereby, a mini batch technique should be
embedded during the training. This technique will divide
the raw inputs into several minibatches, and it is validated
that the computing time cost of all minibatches is much less
than that of an entire input matrix [47]. Accordingly, with
the introduction of CD-1 and minibatch technique, the iter-
ation for two target hyperparameters can be expressed math-
ematically as [41, 45–47]

wct
ij = Cmw

ct−1
ij +

Clr

Cmini

� �
× 〠

Z

z=1
Pθ hj V0z��À Á

v0zi − Pθ hj V1z��À Á
v1zi

À Á
,

Cct
μ = CmC

ct−1
μ + Clr

Cmini

� �
× 〠

Z

z=1

Pθ hj V0z��À Á2 − Pθ hj V1z��À Á2� �

Cct−1
μ

� �2

0
B@

1
CA,

ð3Þ

where wij is the element of the weight matrix in ith raw and j
th column, Cm is the momentum coefficient, Clr is the learn-
ing rate, Cmini is the size of a minibatch, Z is the number of
minibatches, superscripts ct and ct − 1, respectively, repre-
sent ctth and ct − 1th epoch, and superscripts 0z and 1z,
respectively, stand for the original and the first reconstructed
status of a mini batch.

The epoch ct means the iteration of CRBM. Since a
training of all minibatches also will be iteratively completed,
to make a discrimination, the iteration corresponding to the
training of CRBM is named as epoch.

Given the application of CRBM, the input matrix Amn1
= ½Xpre, Ypre� can be rewritten as Amn = ½X, Y�, where n is
the number of columns of the new input matrix and X and

Y represent the CRBM-transformed logging matrix and
core-measured vector, respectively.

2.3. Modeling. The procedure enters the modeling step when
the input data have been prepared. In this level, the executor
is the core predictor, LightGBM, and it mostly uses a strong
learning machine to do the job. A strong learning tool is
made up of several CARTs, or more technically, several week
learning tools [36]. Then, according the computing theory of
EL, the modeling implemented by LightGBM can be
expressed as [36–38]

Flgb xið Þ = arg min
α

〠
m

i=1
Lloss yi, αð Þ + 〠

Lcn

l=1
〠
Jl

j=1
〠
i∈Qj

Á
−Llr ∂Lloss yi, yi,l−1′

� �
/∂yi,l−1′

� �

∂2Lloss yi, yi,l−1′
� �

/ ∂yi,l−1′
� �2

+ Lr1

2
64

+ Lr2
∂Lloss yi, yi,l−1′

� �
/∂yi,l−1′

∂2Lloss yi, yi,l−1′
� �

/ ∂yi,l−1′
� �2

0
B@

1
CA

23
75,

ð4Þ

where Flgb represents the strong learning machine, xi is ith
input sample, Lloss stands for the loss function, yi is the
observation of ith input sample, α is a constant, Lcn is the
number of week learning machines, Jl is the number of leaf
nodes of lth CART, Qi is the zone of jth leaf node, Llr is the
learning rate, yi,l−1′ is the predicted value gained from l − 1th
CART, and Lr1 and Lr2 are the regularizations.

The type of Lloss commonly used is squared, and hence, a
selection of α can be an average of all input samples. Since
the equation given above is derived from XGBoost, which
will be rather low-efficient when dealing with more input
samples, LightGBM will also simultaneously conduct some
algorithms including GOSS, EFB, histogram, and leaf-wise
to accelerate the computation during the training [36].
GOSS will abandon the samples having smaller gradient
contributions in the modeling of each week learning
machine, then realize a gradual shrinking of the size of the
input matrix, and accordingly lift the modeling efficiency.
As aforementioned, EFB is inappropriate for the process of
well logs and thus can be ignored. Histogram is applied to
search the best split for a leaf node. Compared to the classic
searching mode, since histogram demands that a test point
for the best split can be selected within the histogram-
based statistical results of all input samples, the trials used
for the searching of the split will be much fewer, and then
the time spending on the searching will be dramatically
reduced. Thereby, by histogram, a CART will be rapidly
established. Leaf-wise is a relative concept of level-wise,
which only allows CART to generate one leaf node in each
depth. Based on this rule, a CART will grow faster, but a dee-
per construction also will be obtained, which will possibly
cause an overfitting. Thus, the depth of each CART univer-
sally will be restricted in the training of LightGBM. As
GOSS, histogram, and leaf-wise algorithms are indispensable
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for LightGBM, in the following validation, they will be used
as a default setting and never mentioned.

2.4. Optimization. The core predictor applies many hyper-
parameters during the training, and then to guarantee the
predicting quality, a parametric optimization is required.
Bayes at present is hot in the field of EL owning to its high
efficiency in the multiobjective optimization [42, 48, 49].
Compared to random search (RS), because of employing
surrogate posterior information to determine an optimal
solution, Bayes seems to be more reasonable, and compared
to swarm intelligence (SI), it can utilize fewer trials to com-
plete an optimization faster [42, 48, 49]. Therefore, Bayes is
adopted as a more potential optimizer for LightGBM. This
optimizer will employ a surrogate model to compute prior
and posterior data, and a common choice for the surrogate
model is the Gaussian process (GP). GP assumes the varia-
tion of each hyperparameter for the computing objective
complies with a normal distribution, and then in this cir-
cumstance, the expression of each hyperparameter can be
written as [42, 48, 49]

βj
i ∼N μj

i , σ
j
i

� �
, ð5Þ

where βj
i represents the jth status of ith hyperparameter, N

stands for the normal distribution, and μj
i and σj

i are the

mean and variance corresponding to βj
i , respectively.

If more input information is available for GP, the varia-
tion of each hyperparameter will be more stable, and accord-
ingly the optimal setting for the computing objective will be
more easily searched out [42, 48, 49]. Then, for a hyperpara-
meter, when an initial GP is formed, how to appropriately
acquire the rest optimizing information becomes a key prob-
lem. Acquisition function is an answer, which will assist
Bayes to find out the best iterative point of each hyperpara-
meter from the current GP [42, 48–50]. Probability of
improvement (PI), expected improvement (EI), and Gauss-
ian process-upper confidence bound (GP-UCB) are the
three classic acquisition functions, and upon the previous
findings, it is argued that EI and GP-UCB are relatively more
effective in acquiring the best solution for the next iteration
of Bayes [48–50]. As EI is more complex by applying cumu-
lative distribution function (CDF) and probability distribu-
tion function (PDF), GP-UCB then becomes a simpler as
well as effective selection for Bayes [48–50]. The equation
of GP-UCB is given below [48–50]:

βq+1
i = arg max

j
μqi + 1:96σqi
À Á

, ð6Þ

where βq+1
i is the q + 1th status of ith hyperparameter, μqi is

the GP-estimated vector composed by former q statuses of
the mean of ith hyperparameter, σqi is the GP-estimated vec-
tor composed by former q statuses of the variance of ith
hyperparameter, and j = 1, 2,⋯, q.

Given the usage of GP-UCB, Bayes will first apply the
original input information as prior data to produce posterior

data via GP, subsequently determine the best iterative values
for hyperparameters and save them as the new posterior
data for the next computing round, and finally, when the
optimizing iteration is ceased, will figure out the best para-
metric setting [48–50].

2.5. Transfer Learning. LightGBM or broadly EL will cause
an overfitting or an underfitting when dealing with a
small-volumetric dataset and preferentially encounters the
underfitting [37, 38]. Then, in practical case, there exists a
new challenge for the prediction of LightGBM, which should
be seriously considered. Transfer learning, a concept or a
skill in the deep learning, could be a potential solver because
it is particularly developed for the process of a small set of
samples [39, 40]. According to the principle of transfer
learning, a small-volumetric dataset with the characteristics
comparable to another big set can be trained successfully if
a ready-made predictor created by this large set is available
[39, 40]. If a ready-made strong learning machine can be
used in the training, LightGBM will then be applicable for
a smaller number of samples by mimicking this computing
process. Specifically, given an available strong learning
machine trained by the 1st dataset, for the 2nd small-
volumetric dataset featured similarly with the 1st dataset,
its modeling and parametric optimization can be directly
initialized on the basis of the strong learning machine, which
then will enable LightGBM to be capable in creating a fast as
well as effective training and meanwhile, to a large extent, to
avoid an occurrence of the overfitting or underfitting during
the modeling. Therefore, for the training and prediction of a
small-volumetric dataset in the following experiment, an
integration of the proposed predictor and transfer learning
will be applied to provide an effective solution.

2.6. Performance Measure. The common metric applied to
measure the fitting performance is mean squared error
(MSE), while for porosity and water saturation, this metric
would be too small to generate a better discrimination [8,
17–19]. Then, root-mean-square error (RMSE) is adopted
to evaluate the fitting quality of these two reservoir charac-
ters. The equation computing RMSE is shown below:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1

yi − yi′
� �2

m

0
B@

1
CA,

vuuuut ð7Þ

where yi′ is the predicted value of ith sample.
Permeability normally varies with different orders of

magnitude so that RMSE can be implemented based on the
logarithmic values of the predicted permeability data
[17–19]. There has an example that can make a better illus-
tration for the advantage of the usage of logarithmic perme-
ability in the performance measure. If the observation of a
sample is 1mD and there exist two predicted results which
are 0.1mD and 2mD, the absolute fitting errors of them will
be 0.9mD and 1mD, respectively, and then 0.1mD will be
considered as the better fitting result owing to its smaller fit-
ting error. However, according to the theory of logging
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interpretation which demonstrates that the permeability
values in the same order of magnitude will be regarded more
closely, 2mD should be a more reasonable result [2, 8, 17,
18, 19]. Then, if the logarithmic values of 0.1mD and
2mD are applied, the fitting errors will be 1mD and
0.3mD, and consequently, 2mD will be viewed as the better
fitting outcome. Given this explanation, RMSE used to mea-
sure the permeability data can be written as

RMSEp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1

lg yi/yi′
� �� �2

m

0
B@

1
CA,

vuuuut ð8Þ

where RMSEp stands for the RMSE of permeability
information.

2.7. Computing Flow. Based on the theoretical analysis
above, a computing flow of the proposed predictor for the
petrophysical regression and another case including transfer
learning are designed and illustrated in Figures 1 and 2,
respectively.

The workflow shown in Figure 1 overall contains four
major steps: (1) preprocessing: upon the preparation of the
raw dataset, the logging data first will be detected by Equa-
tion (1) to remove outliers and subsequently processed
under a normalization. Finally, the achieved new logging
matrix and the corresponding core-measured vector will be
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Extract
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Extract
Learning
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Itialize
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Bayesian optimization
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Gain surrogate
Posterior data Bayesian rule Gain surrogate

Prior data

Obtain current optimal solution
For hyper-parameter setting
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cross validation
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Establish optimized
Lightgbm-cored predictor

Obtain optimal solution
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N
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Y

Modeling
and

optimizing
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Figure 1: Computing flow of LightGBM-cored predictor for petrophysical regression of sandy-mud reservoirs. LightGBM= light gradient
boosting machine.
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merged as the basic dataset. The core-measured vector can
be composed by porosity, permeability, or water saturation
data. (2) Dimensional reduction: this step will reduce the
number of inputs and meanwhile enhance the significance

of the inputs for the prediction. Input logs first will be loaded
by the visible and transit to the hidden. To check the transit-
ing quality, the gained hidden matrix will be sent back to the
visible, and then a comparison between the observation and

Pre-trained network

Training based on
transfer learning

pre- trained sections

Architecture of deep learning neural network

Extract
Learning
Dataset

intialize
LightGBM

Apply pre-trained iterative solution as surrogate
prior data to initialize bayaesian optimization

Exploration and
exploitation

Gain surrogate
Posterior data Bayesian rule Gain surrogate

Prior data

Obtain current optimal solution
For hyper-parameter setting

K-fold
cross validation

Cease at
Max iteration

Establish optimized
LightGBM-cored predictor Obtain optimal solution

Raw
dataset

Pre-
processing

Dimensional
reduction

Modeling
and

optimizing
Prediction

N

Y

Figure 2: Computing flow of LightGBM-cored predictor for petrophysical regression of sandy-mud reservoirs based on transfer learning.
LightGBM= light gradient boosting machine.
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reconstructed data in the visible will be launched. If the
reconstructed error is acceptable or the training is ceased
at the max epoch, the output in the hidden extracted by
CRBM will be regarded as new input variables, or the train-
ing will be continued. All operations will be implemented by
Equations (2) and (3). Since less new variables are required,
the dimensionality of input matrix actually is reduced. The
matrix composed by new variables at last will be merged
with core-measured vector, and a new basic dataset accord-
ingly will be obtained. (3) Modeling and optimizing: to ini-
tialize LightGBM, the learning part of the new basic
dataset will be taken. Bayes can then be used after determin-
ing all hyperparameters. In order to find the optimal itera-

tive point, the optimizer first applies GP as a surrogate
model, then calculates the posterior data using the Bayesian
method, and finally makes a trade-off using Equation (6). To
acquire a robust iterative result, a K-fold cross validation
subsequently will be utilized during the optimization. When
Bayes is ceased at the max iteration, the optimal parametric
setting will be known, and accordingly, Equation (4) can be
confirmed. (4) Prediction: under the usage of the established
LightGBM, the test part of the new basic dataset can be pre-
dicted, and the estimation of the fitting results for porosity
and water saturation can be finalized by Equation (7) and
for permeability by Equation (8).
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Figure 3: Geographic locations of the Ordos Basin (a) and study zone (b) and distribution of cored wells within the study zone (c).
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Figure 2 displays another workflow containing transfer
learning. The upper part illustrates how transfer learning is
applied in the training of a deep neuron network. The pre-
trained network established by a large set of samples can
be used as a front-end engine to launch the training for
a small set of samples, and then by imitating this comput-
ing mechanism, the achieved LightGBM-cored predictor
can be regarded as a basis to execute a training for a
small-volumetric dataset. Specifically, preprocessing,
dimensional reduction, and modeling and optimizing
obtained previously can be viewed as the pretrained sec-
tions, and then for the training of a small dataset, the
modeling and optimizing can be initialized on the basis
of the previous strong learning machine and parametric
setting. To gain a better fitting for the small dataset, the
previous strong learning machine can be enhanced by

adding more week learning machines. Since the data of
small set is featured similarly with that used by the pre-
trained predictor, the optimal setting theoretically will be
not much different with the pretrained one and then can
be fast searched out via transfer learning. Consequently,
an effective LightGBM-based training for a small-
volumetric dataset becomes accessible under the support
of transfer learning. When the training is completed, the
predictor produced from a small dataset can be employed
to execute a qualified prediction.

3. Validation, Results, and Discussion

In this chapter, the predicting capability of LightGBM-cored
predictor or the feasibility of the designed computing flows
will be validated by the data collected from the study zone.

Table 2: Summary of quartile-based statistical information of applied well logs.

log1
AC (μs/

m)
CNL
(%)

DEN (g/
cm3)

GR
(API)

SP
(mV)

PE (b/
e)

AT10
(Ω·m)

AT20
(Ω·m)

AT30
(Ω·m)

AT60
(Ω·m)

AT90
(Ω·m)

Value

212.80 22.05 2.62 92.90 84.32 3.35 19.07 17.48 16.64 15.98 15.63

204.64 20.46 2.62 82.80 83.01 3.33 24.73 20.40 19.22 18.14 17.83

202.41 18.37 2.61 78.19 81.60 3.31 25.58 18.86 17.49 16.36 16.08

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

230.86 21.03 2.50 96.94 52.34 2.71 8.63 6.12 5.19 4.64 4.51

232.66 21.58 2.50 91.91 51.94 2.71 8.95 6.29 5.30 4.72 4.59

235.76 22.22 2.50 82.69 51.62 2.74 9.63 6.69 5.60 4.98 4.84

Max 330.12 76.56 2.68 150.23 88.26 4.22 73.08 41.19 38.88 39.86 40.45

Min 183.99 9.16 1.53 40.49 23.93 1.72 1.70 2.09 2.78 1.95 1.73

Q1 223.98 19.82 2.41 72.60 43.39 2.74 7.58 6.29 5.07 4.00 3.74

Q3 247.38 24.06 2.59 102.58 80.25 3.21 14.43 13.13 12.86 12.76 12.78

IQR2 35.10 6.37 0.28 44.97 55.28 0.71 10.28 10.26 11.69 13.14 13.56

LIF3 188.88 13.45 2.13 27.63 -11.89 2.04 -2.70 -3.97 -6.62 -9.14 -9.82

UIF4 282.48 30.43 2.88 147.55 135.53 3.92 24.71 23.39 24.55 25.90 26.35

Value within inner fence

Value outside inner fence
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Noisy
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Figure 4: Judgment of noisy samples for logging samples. AC= acoustic log; CNL= compensated neutron log; DEN=density log;
GR= gamma ray; SP = spontaneous potential; PE = photoelectric absorption cross-section index; AT10, AT20, AT30, AT60, and
AT90 = resistivity of formation measured by array induction log at 10-inch, 20-inch, 30-inch, 60-inch, and 90-inch logging depth.
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Some experiments will be designed purposefully to obtain the
results and then from different perspectives to reveal the work-
ing performance of the proposed predictor. Finally, given the
achieved experimental results, a comprehensive discussion
will be provided to argue the capability and generalization of
CRBM-Bayes-LightGBM in the practical case.

3.1. Data Source and Experimental Design. The Ordos Basin,
geographically located in the northern China as shown in
Figure 3(a), is a giant petroleum-bearing basin, and given
the previous findings, it is uncovered that there still exist
a great amount of hydrocarbon resources and most of

them are accumulated within the sandy-mud reservoirs
[51, 52]. As a result, there is still considerable work to
be done in the exploration of the Ordos Basin, and one
key goal is to get a better understanding of reservoir clas-
sification. Porosity, permeability, and water saturation are
the three important indicators, and the petrophysical con-
dition of the reservoirs may well define the storage capa-
bilities of oil and gas. Thus, the prediction of these three
reservoir characteristics becomes more vital.

The study zone for the petrophysical prediction in this
paper is in the Jiyuan Oilfield of the Ordos Basin, located
between the Tianhuan Depression and Yishan Slope as

Table 3: Initial settings of employed approaches for dimensional reduction.

Approach CRBM (continuous restricted Boltzmann machine) PCA (principal component analysis)

Parametric setting

Size of visible layer Cvð Þ = 11
Size of hidden layer Chð Þ = 6
Learning rate Clrð Þ = 0:1
Max epoch CEPð Þ = 100

Training error Ceð Þ = 0:001
Size of mini batch Cminið Þ = 100

Momentum coefficient Cmð Þ = 0:9
Noise variance Cσð Þ = 0:2
Noise controller Cμ

À Á
= 0:2

Lower limitation of the sigmoid Clað Þ = 0
Upper limitation of the sigmoid Cuað Þ = 1

Solver SPCAð Þ = SVD∗

Number of reserved variables NPCAð Þ = 6

∗ SVD = singular value decomposition.
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Figure 5: Reconstructions of AC (a) and GR (b) implemented by continuous restricted Boltzmann machine (CRBM). AC= acoustic log;
GR= gamma ray.
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displayed in Figure 3(b) [51, 52]. 24 cored wells presented
in Figure 3(c) are available to provide the predicting data.
Routinely, when the basic computing materials are pre-
pared, the petrophysical prediction can be directly imple-
mented by the models listed in Table 1, but in this
study, only well logs and some core-measured data of
three target reservoir characters can be used, resulting in
an ineffective of those models. As mentioned before, the

essence of the petrophysical prediction is a logging-based
regression, and then CRBM-Bayes-LightGBM is proposed
as a potential fitting predictor. To validate the predicting
capability of LightGBM-cored predictor, the handled mate-
rials from the reservoirs within the member of Chang 8
are collected and assembled as the raw dataset. The data
from the northern subzone is provided by 20 wells as
shown in Figure 3(c), and 3013 samples are assembled.
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Figure 6: Correlations of applied well logs (a), variables extracted by continuous restricted Boltzmann machine (CRBM) (b), and variables
gained by principal component analysis (PCA) (c). AC= acoustic log; CNL= compensated neutron log; DEN=density log; GR= gamma ray;
SP = spontaneous potential; PE = photoelectric absorption cross-section index; AT10, AT20, AT30, AT60, and AT90 = resistivity of
formation measured by array induction log at 10-inch, 20-inch, 30-inch, 60-inch, and 90-inch logging depth; CV1 to CV6 are variables
extracted by CRBM; PV1 to PV6 are variables produced by PCA.
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For the southern part, only 4 wells offer the predicting
materials, and the number of samples is just 280. The log-
ging part of each sample is the same, composed of 11 well
logs including acoustic log (AC, μs/m), compensated neu-
tron log (CNL, %), density log (DEN, g/cm3), gamma ray
(GR, API), spontaneous potential (SP, mV), photoelectric
absorption cross-section index (PE, b/e), and 5 array
induction logs (AT10, AT20, AT30, AT60, and AT90,
Ω·m). Since the set of samples offered by the southern
subzone is much smaller and meanwhile the samples of
two subzones are featured by the same logging sequences,
the prediction of the southern subzone meets the comput-
ing rule of transfer learning and thereby will be executed
in accordance with the workflow shown in Figure 2 [39,
40]. Accordingly, the pretrained predictor will be estab-
lished by the data derived from the northern subzone,
and the computing flow should comply with Figure 1.

Consequently, three experiments are designed purpose-
fully to implement the data validation. The first experi-
ment will verify the computing capability of the
proposed predictor based on the application of the data
of the northern subzone. The second one will testify
whether the working performance can be improved when
more learning samples are trained. In the last experiment,
the data of the southern subzone will be predicted under a
combination of ensemble and transfer learnings to demon-
strate whether the workflow given by Figure 2 is applica-
ble. The platform for the following computation is
Spyder 3 (Python 3.7.6).

3.2. The First Experiment. Since the second experiment will
apply more samples to conduct a test, 2513 samples are pre-
served in the first experiment, and the rest 500 samples are
left to the next validation. According to the computing flow

Table 4: Initial settings of light gradient boosting machine (LightGBM) predictor and optimizers, and variation ranges of hyper-parameters.

Initial setting of core predictor

Number of CARTs Lcnð Þ = 1001

Learning rate Llrð Þ = 0:001
Max depth of a CART Lmdð Þ = 5
Max leafs of a CART Llnð Þ = 8

Max bins to split a node Lmbð Þ = 82

Min leafs in a node Lmlð Þ = 23

Min gain to split a node Lmg

À Á
= 0:0014

L1 regularization Lr1ð Þ = 0:001
L2 regularization Lr2ð Þ = 0:001

Initial setting of optimizer 5

RS
Max iteration Rmið Þ = 50

Next range for linearly increased variable Rleð Þ = x/5, 5x½ �6
Next range for exponentially increased variable Rep

À Á
= 0:05lgx, 20lgx½ �7

PSO

Max iteration PSmið Þ = 50
Number of seeds PSnð Þ = 10

Initial inertia weight PSiwð Þ = 0:9
Final inertia weight PSfw

À Á
= 0:4

Elastic coefficients PSe1, PSe2ð Þ ∈ 0, 1½ �8
Acceleration coefficients PSa1, PSa2ð Þ = 2

Bayes

Max iteration Bmið Þ = 50
Surrogatemodel Bmð Þ = GP9

Balance coefficient for acquisition function Bυð Þ = 0:5

Variation ranges of hyperparameters

Lcn ∈ 100, 1500½ �
Llr ∈ 0:001, 1½ �
Lmd ∈ 5, 20½ �
Lln ∈ 8, 2048½ �
Lmb ∈ 8, 2048½ �
Lml ∈ 2, 5½ �
Lmg ∈ 0, 2½ �

Lr1 ∈ 0:001, 10½ �
Lr2 ∈ 0:001, 10½ �

1CART= classification and regression tree; 2max bins employed by Histogram algorithm to split a leaf node; 3min leafs required at a leaf node or there will
have a cut for this leaf node; 4min gain required to split a leaf node or the growth of this node will be ceased; 5RS = random search; PSO = particle swarm
optimization; Bayes = Bayesian optimization; 6lower and upper limits set by a fifth and five times of target x, respectively; 7lower and upper limits set by a
twentieth and twenty times of log10 base of target x, respectively; 8random values varying within [0,1]; 9GP =Gaussian process.
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Figure 7: Variations of hyperparameters of light gradient boosting machine (LightGBM) implemented by RS (a), PSO (b), and Bayes (c),
and downtrends of RMSE of porosity values generated by three applied optimizers during the whole iteration (d). RS = random research;
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shown in Figure 1, the first task is preprocessing. The detec-
tion of outliers will be executed by Equation (1). Table 2 dis-
plays a summary of quartile-based statistical information of
all well logs. Prior to the removing of outliers, one problem
should be considered that since each kind logging value will
play as an outlier, a sample will contain one or more outliers
and then how to conduct a judgment on the detection
becomes a key. Here, a rule is defined that a sample contain-
ing three or more outliers will be viewed as a noisy sample
and then must be excluded. Figure 4 provides a related illus-
tration. Based on this rule, 18 noisy samples are detected by
the computed values of LIF and UIF, and thus, the number
of the used samples is 2495. Subsequently, all logs have to
be normalized. The normalizing range is set by [0,1], which
means the variation of each log will be restricted within an
interval between 0 and 1.

Next task is the dimensional reduction, which will be
implemented by CRBM. To make a contrast, principal com-
ponent analysis (PCA), another classic approach used to
reduce the dimensionality of inputs is introduced. Upon
the previous findings, the empirical as well as useful initial
settings of CRBM and PCA are given in Table 3 [41, 45,
53, 54]. As 11 well logs are employed, the size of visible layer
is 11, and to create a fast prediction, a half reduction of input
well logs is required, and thus, the size of the hidden is 6. To
be fair, the number of reserved variables of PCA should be
same and accordingly is assigned by 6. For the computing
of CRBM, the transiting quality should be checked primar-
ily. Figure 5 presents the reconstructing situation of two
exampled logs, and the better matching in any subplot well
demonstrates the transiting is qualified. After the working
of CRBM and PCA, there remains a question that how to
argue the variables extracted by which approach are more
effective. Commonly, for the regression, the collinearity of
independent variables will dramatically affect the reliability
of fitting results, and then the input variables should be non-
linear as much as possible [12–15]. In this way, the correla-

tion of variables will be a good illustration to rise an
argument. Generally, if the correlation coefficient is larger
than 0.5, the related two variables will be considered in a col-
linear relationship [8, 12–15]. Figure 6(a) shows the correla-
tion of all well logs, and from the values it can be known that
most logs are collinear, especially for the array induction
logs. Then, the direct usage of all logs is unsuitable to launch
a petrophysical regression. Figures 6(b) and 6(c) display the
correlation of the extracted variables of CRBM and PCA,
respectively. Given a counting, only one coefficient larger
than 0.5 (CV5-CV6) is found in Figures 6(b), and 6 unex-
pected coefficients are discovered in Figure 6(c), clarifying
that most variables produced by CRBM are nonlinear and
therefore the output information from the CRBM computa-
tion is more beneficial for the following fitting. Through the
dimensional reduction, the real basic dataset used for the
prediction is achieved.

Now, the process comes into the modeling and optimiz-
ing. 2075 samples are chosen randomly to construct the
learning dataset, and the rest is employed as a test dataset.
A suggested initial setting of LightGBM is shown in
Table 4 [36–38]. To stress the optimizing effect of Bayes,
RS and particle swarm optimization (PSO) which is a repre-
sentative of SI are adopted as competitive optimizers.

The settings of three optimizers are given in the middle
part of Table 4 [42, 48–50, 55–59]. 5-fold cross-validation
is employed to generalize the optimizing results according
to the design of the computing flow. Then, in each cross val-
idation, 415 learning samples will be predicted in the optimi-
zation. Figures 7(a)–7(c) illustrate the variations of all
hyperparameters of LightGBM, respectively, implemented
by RS, PSO, and Bayes. Each subplot indiscriminately shows
a fierce variation, implying the optimal parametric setting is
very different with the initial one and then emphasizing the
significance of the optimization in the modeling. Figure 7(d)
displays a measure of the optimizing results. Although every
optimizer presents a downtrend on the RMSE evaluation,

Table 5: Initial settings of competitive predictors and variation ranges of applied hyperparameters.

Core predictor 1 Initial setting Variation ranges of hyperparameters

KNN
Number of neighbors Knð Þ = 5

Solver Kalð Þ = 1, 2½ �2
Distance function Kdf

À Á
= 1, 2½ �3

Kn ∈ 5, 50½ �
Kal ∈ 1, 2½ �8
Kdf ∈ 1, 2½ �9

SVR

Sν = 0:14

Regularization SCð Þ = 0:01
Smoothing factor Sσð Þ = 0:015

Kernel function Skf
À Á

= RBF∗

Sν ∈ 0:1, 0:6½ �
SC ∈ 0:01, 10½ �
Sσ ∈ 0:01, 1½ �

RF

Number of CARTs Rcnð Þ = 1006

Max depth of a CART Rmdð Þ = 5
Min samples to split a node Rmsð Þ = 57

Min leafs in a node Rmlð Þ = 2

Rcn ∈ 100, 1500½ �
Rmd ∈ 5, 20½ �
Rms ∈ 5, 20½ �
Rml ∈ 2, 5½ �

1KNN= k-nearest neighbors; SVR = supper vector regression; FR = random forest; 2“1” means KD-tree, “2” means Ball-tree; 3“1” means Manhattan distance,
“2” means Euclidean distance; 4an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors; 5control the window
length of each probability density distribution; 6CART= classification and regression tree; 7min samples required to split a leaf node or the growth of this node
will be ceased; 8only 1 or 2 will be chosen during iteration; 9only 1 or 2 will be chosen during iteration; ∗ RBF = radial basis function, which is a non-
hyperparameter.
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Figure 8: Variations of hyperparameters of KNN (a), SVR (b), and RF (c) implemented by Bayesian optimization and downtrends of RMSE
of porosity values obtained by four validated predictors during the whole iteration (d). KNN=k-nearest neighbors; SVR= support vector
regression; RF = random forest; LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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Figure 9: Fitness of porosity results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and LightGBM-
cored predictor (d) in the first experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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Figure 10: Fitness of permeability results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the first experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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Figure 11: Fitness of water saturation results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the first experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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the Bayes-optimized line gains the smallest value, and mean-
while, the iteration of Bayes is ceased most early, which then
strongly argues that Bayes is higher-efficient in comparison
with RS and PSO in the optimization. As a better optimizing
effect is demonstrated by Bayes, the reasonability of the inte-
gration of CRBM and Bayes for LightGBM is proved.

After the optimization is completed, the construction of
LightGBM or the expression of Equation (4) can be con-
firmed. To highlight the predicting performance, three
sophisticated fitting models are introduced as competitors,
including KNN, SVR, and RF. Since these competitive
solvers also employ hyperparameters to implement the
modeling, CRBM and Bayes will also be applied as assistants,
and then the real names of three competitors are CRBM-
Bayes-KNN, CRBM-Bayes-SVR, and CRBM-Bayes-RF,
respectively. The initial settings empirically used for three
competitive predictors are displayed in Table 5 [23–25,
27–29, 32–34]. Figures 8(a)–8(c) record the Bayes-
optimized variations of the hyperparameters of KNN, SVR,
and RF, respectively. Similarly, for any subplot, the frequent
changing of each hyperparameter manifests that the initial
setting is far from the optimized status, once again underlin-
ing the essential application of the optimizer in the ML-
based prediction. The RMSE estimation for the training of
four validated predictors is presented in Figure 8(d). Obvi-
ously, the proposed predictor still holds the smallest RMSE
and gains this score at the earliest iteration, indicating that
LightGBM-cored predictor comparatively has the higher
efficiency in the prediction and also implying that this pre-
dictor could have greater potential to produce the reliable
results in the practical prediction.

When all predictors are trained, the test dataset com-
posed by 420 samples will be predicted in the final stage of

the data process. Figures 9–11 exhibit the fitting between
the observations and the predicted results of porosity, per-
meability, and water saturation, respectively. Figure 9 here
is exampled. If the predicted values are closer to the observa-
tions, a larger R2 will be gained [12–15]. Hence, through a
comparison, LightGBM-cored predictor becomes the winner
owning to its largest R2. For other two figures, the R2 infor-
mation also points out the proposed predictor achieves a vic-
tory. Moreover, Table 6 summarizing the experimental
information presents that no matter in what kind of petro-
physical regression, the smallest RMSE value is always held
by LightGBM-cored predictor. Overall, given the better
working performance or the more reliable experimental
results, CRBM-Bayes-LightGBM is proved more capable in
the regression of porosity, permeability, and water
saturation.

3.3. Second Experiment. Generally, for a ML-based predictor,
training more samples will reinforce the input-output map-
ping, and then a better prediction will be obtained [17–19].
Therefore, in this experiment, all learning samples will be
used, and the aim is to validate whether the application of
a large set of learning samples can raise an enhancement
on the predicting capability of the proposed predictor. The
number of learning samples has now reached up to 2575.
All training conditions for four validated predictors will fol-
low the previous ones. Figures 12–14 illustrate the fitting of
porosity, permeability, and water saturation, respectively.
Similarly, Figure 12 is selected as an instance. For each sub-
plot, since the fitting line produced in this experiment is
closer to the perfect fit in comparison with the previous
one, a larger R2 is obtained, and thus, one thing is verified
that training more learning samples is indeed effective to

Table 6: Measured information of porosity, permeability, and water saturation gained by four validated predictors in three experiments.

Model 1
RMSE results for porosity (%) evaluated by Equation (7) 2

1st experiment 2nd experiment 3rd experiment nontrans/trans 3

KNN-cored predictor 1.2048 0.9882 0.8234/0.5543

SVR-cored predictor 1.1751 0.9215 0.7436/0.5168

RF-cored predictor 1.1024 0.8502 0.6466/0.4599

LightGBM-cored predictor 0.8947 0.7091 0.6096/0.3934

RMSE results for permeability (mD) evaluated by Equation (8)

1st experiment 2nd experiment 3rd experiment nontrans/trans

KNN-cored predictor 0.4027 0.3466 0.1375/0.1015

SVR-cored predictor 0.3956 0.3440 0.1700/0.1189

RF-cored predictor 0.3660 0.3201 0.1499/0.1070

LightGBM-cored predictor 0.3024 0.2510 0.1115/0.0761

RMSE results for water saturation (%) evaluated by Equation (7)

1st experiment 2nd experiment 3rd experiment nontrans/trans

KNN-cored predictor 4.5537 3.8576 6.5779/4.8992

SVR-cored predictor 4.3016 3.7810 6.1735/4.6108

RF-cored predictor 3.9348 3.4938 5.7748/4.3459

LightGBM-cored predictor 3.6630 2.8941 4.8863/3.2708
1KNN= k-nearest neighbors; SVR = supper vector regression; FR = random forest; LightGBM= light gradient boosting machine; 2RMSE = root-mean-square
error; 3“nontrans” means normal prediction, and “trans” stands for the prediction implemented under the support of transfer learning.
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Figure 12: Fitness of porosity results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the second experiment. “standard fit” means the fitting is gained in the first experiment; KNN=k-
nearest neighbors; SVR= support vector regression; RF = random forest; LightGBM= light gradient boosting machine; RMSE= root-
mean-square error.
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Figure 13: Fitness of permeability results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the second experiment. “standard fit” means the fitting is gained in the first experiment; KNN=k-
nearest neighbors; SVR= support vector regression; RF = random forest; LightGBM= light gradient boosting machine; RMSE= root-
mean-square error.
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Figure 14: Fitness of water saturation results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the second experiment. “standard fit” means the fitting is gained in the first experiment; KNN=k-nearest
neighbors; SVR= support vector regression; RF = random forest; LightGBM= light gradient boosting machine; RMSE= root-mean-square
error.

24 Geofluids



improve the working performance of any competitive pre-
dictor. Figures 13 and 14 and the RMSE information shown
in Table 6 also manifest the same conclusion, which then
solidly demonstrate the benefit of the application of more
learning samples in a prediction. Besides, under a contrast,
a better score in terms of R2 or RMSE estimation is yet gen-
erated by LightGBM-cored predictor, arguing once again
that the proposed predictor can be viewed as a preferential
selection for the petrophysical regression.

3.4. Third Experiment. The data derived from the southern
subzone will be trained and predicted in this experiment.
As aforementioned, this dataset is much small, only contain-
ing 280 samples, and then its operation needing the support
of transfer learning. The workflow will reference Figure 2.
Based on the detection of outliers, 2 noisy samples are
labeled, and thus, the number of the used samples is 278.
75 samples are chosen in a random pattern to assemble the
test dataset, and the rest ones compose the learning dataset.
The pretrained section for each validated predictor follows
the one obtained in the 2nd experiment. Other training con-
ditions yet employ the settings given by the 1st experiment.
When the modeling work is completed, the prediction can
be implemented. Figures 15–17 exhibit the fitting of three
target reservoir characters. For the regression case of poros-
ity as shown in Figure 15, two kinds of information are
revealed: (1) without the usage of transfer learning, the fit-
ting marked by pink color presents much unreliably in any
subplot; (2) after equipping with transfer learning, the pre-
dictor becomes capable to yield a better fit and a higher R2.
The content shown in Figures 16 and 17 is similar, which
then indicate that the training of a small-volumetric dataset
is accessible for any competitor to produce a qualified petro-
physical regression under the application of transfer learning.
The RMSE information given by Table 6 is another proof for
this indication. Furthermore, since the proposed predictor still
performs better due to its higher R2 in the related figures and
lower RMSE values in Table 6, a fact is fully evidenced that no
matter what kind of dataset there uses, LightGBM-cored pre-
dictor always can gain more satisfactory predicted results and
then present with a better generalization and stronger robust-
ness. Consequently, the proposed predictor acquires a com-
plete victory in three experiments, acting as a more
intelligent solver for the petrophysical regression.

3.5. Discussion. In the 1st experiment, the selection of
approach in the dimensional reduction and optimization is
demonstrated comparatively. To create a fast prediction, less
input variables are required, and then a reduction should be
implemented on the dimensionality of inputs. Since the task
is a regression, the independent variables should be nonlinear
as much as they possibly can to avoid the occurrence of col-
linearity, and then the correlation of input variables becomes
an accessible indicator to measure the quality of the dimen-
sional reduction. Figures 6(b) and 6(c) indicate that com-
pared to the output of PCA, the variables extracted by
CRBM are more nonlinear as only one pair of collinear vari-
ables is created, which then testifies that the reduction exe-
cuted by CRBM is more beneficial for the following

regression. For the demonstration of the optimizing section,
Figure 7(d) evidences the superiority of Bayes because this
optimizer can gain a lower RMSE estimation and simulta-
neously figure out this score at an earlier iteration in compar-
ison with RS and PSO. Therefore, given the comparative
analysis of the experimental results, the integration of CRBM
and Bayes for the core predictor is proved both reasonable
and effective in the petrophysical regression.

A simple as well as practical approach to enhance the pre-
dicting capability ofML-basedmodels is to applymore learning
samples during the training. The theoretical explanation is that
with the usage of more learning samples, the input-outputmap-
ping established in the training stage will be reinforced and
given that the model will become capable to produce a more
satisfactory prediction. Then, in the 2nd experiment, a larger
set of learning samples is employed to complete a petrophysical
fitting. Through the observation of Figures 12–14 and a com-
parative analysis among the values in Table 6, one thing can
be confirmed that the results generated from the 2nd experi-
ment are more qualified than the previous ones. Thereby, the
operation of training more learning sample is demonstrated
applicably to raise an improvement on the working perfor-
mance of any validated predictor. Accordingly, in the petrophy-
sical regression, if the fitting results are unsatisfactory, training a
larger set of samples will be a smart alternative.

Sometimes, in the petroleum exploration, fewer logging
materials will be available, and then when only a small-
volumetric dataset can be applied for the fitting of porosity, per-
meability, or water saturation, ML-based models extremely will
encounter an underfitting. Given the computing theory of
transfer learning, the underfitting caused by a smaller set of
samples can be well addressed by a pretrained model con-
structed by a larger set of samples, but a precondition is that
all samples used should be featured similarly. Since fewer cored
wells within the southern subzone as shown in Figure 3(c) are
available while the compositions of the handled logging
sequences for two subzones are same, the prediction for the
southern subzone actually meets the computing mechanism
of transfer learning. Hence, the third experiment is designed
to verify whether an expected petrophysical regression can be
gained for the southern subzone under the support of transfer
learning. According to the workflow displayed in Figure 2, sev-
eral validations are conducted, and given the results both shown
in Figures 15–17 and recorded in Table 6, a fact is strongly
argued that the regression of a small-volumetric dataset for
any predictor will be very unqualified without the application
of transfer learning, whereas by taking advantage of the pre-
trained information gained on the basis of transfer learning,
any predictor established from the training of a small set of
samples will become capable to produce the expected fitting
results. Then, the content exhibited in Figure 2 is proved feasi-
ble, which can be employed in the practical case.

Last but by no means least, upon a comprehensive anal-
ysis of the information both illustrated in Figures 9–17 and
given in Table 6, it is discovered that the larger R2 and
smaller RMSE are always held by LightGBM-cored predic-
tor, which then solidly demonstrate that no matter what
kind of dataset there uses or what kind of prediction there
has, the proposed prediction always can be regarded as a
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Figure 15: Fitness of porosity results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the third experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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Figure 16: Fitness of permeability results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the third experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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Figure 17: Fitness of water saturation results provided by KNN-cored predictor (a), SVR-cored predictor (b), RF-cored predictor (c), and
LightGBM-cored predictor (d) in the third experiment. KNN=k-nearest neighbors; SVR= support vector regression; RF = random forest;
LightGBM= light gradient boosting machine; RMSE= root-mean-square error.
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more intelligent solver for the petrophysical regression in
comparison with other three competitors. Consequently,
since a stronger predicting capability and a better robustness
are evidenced for the proposed predictor, CRBM-Bayes-
LightGBM combined with transfer learning deserves a more
widespread application in the petrophysical regression.

4. Conclusion

Given a comprehensive as well as comparative analysis of
the experiment results, some critical points regarding the
working performance of four employed predictors in the
regression of porosity, permeability, and water saturation
are summarized as follows:

(1) To create a fast and effective regression and mean-
while to guarantee the fitting quality for LightGBM,
the dimensionality of inputs and the setting of hyper-
parameters should be reduced and optimized, respec-
tively. CRBM and Bayes are introduced to address the
dimensional reduction and parametric optimization,
and through several tests, the integration of them is
proved both reasonable and functional for LightGBM

(2) For KNN-, SVR-, RF-, and LightGBM-cored predic-
tors, there exist three kinds of conclusive informa-
tion: (1) training more learning samples indeed can
rise an enhancement on the predicting capability of
any predictor; (2) based on the training of a small-
volumetric dataset, the petrophysical regression
implemented by any predictor will be rather unreli-
able; (3) under the support of transfer learning, any
predictor established from the training of a small
set of learning samples will become capable to pro-
duce the expected results for the regression of three
target reservoir characters

(3) No matter what kind of dataset there uses, compared
to KNN-, SVR-, and RF-cored predictors, the pro-
posed predictor always presents with a stronger com-
puting capability and a better robust nature, then
becoming a preferential selection for the petrophysical
regression and accordingly deserving a more wide-
spread application in the field of logging interpretation

Since the essence of other reservoir characters such as pore
pressure and index of brittleness also can be viewed as a
logging-based regression, there could have a deeper probe for
the proposed predictor in the petrophysical regression. There-
fore, in the future study, it is worth further improving the com-
puting capability of LightGBM-cored predictor and then
making a new breakthrough in the petrophysical regression.
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