
Review Article
Lower Cambrian Organic-Rich Shales in Southern China: A
Review of Gas-Bearing Property, Pore Structure, and Their
Controlling Factors

Gang Li , Ping Gao , Xianming Xiao, Chengang Lu , and Yue Feng

School of Energy Resources, China University of Geosciences, Beijing 100083, China

Correspondence should be addressed to Ping Gao; gaoping1212@cugb.edu.cn

Received 6 May 2022; Revised 27 May 2022; Accepted 3 June 2022; Published 25 June 2022

Academic Editor: Yuxiang Zhang

Copyright © 2022 Gang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Lower Cambrian shales are widely developed in southern China, with greater thicknesses and higher TOC contents. Although
the shale gas resource potential has been suggested to be huge, the shale gas exploration and development is not satisfactory. At
present, the gas-bearing property evaluation of the Lower Cambrian shale is still a hot spot of concern. According to previous
works, this paper systematically summarizes the gas-bearing characteristics and controlling factors of the Lower Cambrian
shales in southern China. The buried depth of Lower Cambrian shales mainly ranges from 3000m to 6000m, and the
thickness of organic-rich shale intervals (TOC > 2%) varies from 20m to 300m. The TOC content and EqVRo value are
generally up to 2%-10% and 2.5%-6.0%, respectively. The gas content of the Lower Cambrian shales in the Weiyuan-Qianwei
block of the Sichuan Basin and the western Hubei area generally exceeds 2m3/t, and gas composition is dominated by CH4. In
southeastern Chongqing, northwestern Hunan, and northern Guizhou areas, the gas content of the Lower Cambrian shales is
generally <2m3/t, and the N2 content is generally >60%. In the Lower Yangtze region, the Lower Cambrian shale reservoirs
basically contain no gas. Higher maturity, lower porosity, and less-no organic pores are suggested to be responsible for low gas
contents and/or the predominate of N2 in shale gas reservoirs. Strong tectonic deformation is an important factor leading to
the massive gas loss from shale reservoirs, thus resulting in no gas or only a small amount of N2 in the Lower Cambrian
shales. In a word, the Lower Cambrian shale gas plays with low maturity and relatively stable tectonic condition, especially
deep-ultradeep zones, may be the favorable targets for shale gas exploration.

1. Introduction

With the continuous growth of global oil and gas demand
and the continuous decline of conventional oil and gas
production, unconventional oil and gas with great resource
potential has gradually become a new field, which has
been highly valued by various countries and oil companies
[1–7]. Total global production of shale gas in 2020 is
7688 × 108m3, which is mainly derived from North Amer-
ica, China, and Latin America. Among them, the United
States is the main country of global shale gas development
and production in 2020, with total shale gas yield of
7330 × 108m3[8]. The successful exploitation of shale gas
in the United States has provided numerous valuable expe-
riences for China.

China started shale gas exploration and development as
early as 2010, and shale gas pilot tests for geological selection
evaluation and development in different onshore areas had
been conducted, revealing that China had abundant shale
gas resources, especially marine shale gas [9, 10]. Since
commercial exploitation of shale gas in China had been
conducted in 2014 [8], the proven reserves and production
of shale gas had exceeded 2 × 1012m3 and 200 × 108m3 in
2020, respectively [11]. At present, China ranks second in
the world in terms of shale gas production.

The Lower Cambrian shales are important marine
source rocks in southern China and are also key targets
for shale gas exploration [12–18]. Such a shale succession
is widely distributed, with greater thickness and total area
up to ð30 − 50Þ × 104 km2, and the predicted geological
resource of shale gas is as high as 35:16 × 1012m3 (<
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4500m) [1, 19, 20]. However, the exploration and develop-
ment of the Lower Cambrian shale gas in many blocks had
not made substantial breakthroughs [21–24]. At the same
time, the maturity of the Lower Cambrian shales is very
high and at the overmature stage
(equivalent vitrinite reflectance ðEqVRoÞ > 3:0%-3.5%).
Due to strong tectonic deformation, the gas content of
the shale changes greatly and the influencing factors are
complex [25–30]. Thus, these factors have hindered the
process of exploration and development to some extents.

Shale gas belongs to a self-generated and self-storage
unconventional natural gas [31, 32]. Organic matter (OM)
enrichment is the material basis for shale gas generation.
Shale has a certain porosity and nanopore network, which
is the basic condition for shale gas accumulation. Preserva-
tion condition is another key factor affecting shale gas
enrichment [33]. These factors are closely related to shale
composition, thermal evolution, sedimentary facies, and
other geochemical property, and they are controlled by geo-
logical conditions such as the intensity and mode of tectonic
activity [34–42]. Gas-bearing property (gas content, compo-
sition, and occurrence form) of shale is the embodiment of
comprehensive effect of these factors. Understanding the
impact of these factors on the gas-bearing property of shale
can help to screen the core blocks of shale gas and thus eval-
uate the exploration and development potential of studied
gas shale reservoirs, which is more prominent for the Lower
Cambrian shales in southern China.

In recent years, there have been many literatures on the
Lower Cambrian shales in southern China and are mainly
contributed by Chinese scholars (Figure 1). Among them,
many publications are related to the evaluation, exploration,
and development of the Lower Cambrian shale gas in south-
ern China. Therefore, based on a large number of previous
works, this paper systematically reviews the geochemical
characteristics, current situation of shale gas exploration
and development, and the gas-bearing characteristics of the
Lower Cambrian shales in southern China and summarizes
the development mechanism, the source of nonhydrocarbon
gas, and the influence of tectonic deformation on the gas-
bearing property of shale, thus providing a reference for fur-
ther exploration and development for shale gas.

2. Geochemical and Gas-Bearing
Characteristics of the Lower
Cambrian Shales

2.1. Geochemical Characteristics. The Lower Cambrian
shales in southern China are widely distributed across the
whole Yangtze Platform. Organic-rich shale intervals are
mainly distributed in the Sichuan Basin, western Hubei,
Chongqing, northwestern Hunan, northern Guizhou, and
southern Anhui areas, which are mainly deposited in the
deepwater shelf facies (Figure 2). Affected by various factors
such as sedimentary facies and structures, the lower
Cambrian stratas are named differently in different regions
(Figure 3). Qiongzhusi Formation in southwestern Sichuan,
Niutitang Formation in northern Guizhou, southeastern
Chongqing and northwestern Hunan, Shuijingtuo Forma-

tion in northeastern Chongqing and western Hubei, and
Hetang Formation in southern Anhui are all equivalent.
The thickness distribution of Lower Cambrian organic-rich
shales has two centers, which are located in the Deyang-
Anyue ancient rift trough in the Sichuan Basin and the
southeastern margin of the Yangtze Platform, respectively.
The former is controlled by the rift trough with thickness
of 60m-300m, while the latter is controlled by sedimentary
facies with thickness of 30m-120m [43–46]. These areas are
also the main potential targets for the Lower Cambrian shale
gas exploration and development currently.

In recent years, extensive geochemical studies have been
carried out on the Lower Cambrian shales and some basic
understandings are obtained [23, 24, 44, 51–58]. A brief
overview of three aspects, including TOC, OM type, and
maturity, can be concluded in the following.

The TOC content of the Lower Cambrian shales in
southern China varies greatly, ranging from 0.1% to 15%
(Table 1). In the southern part of the Sichuan Basin, the
TOC content is generally in the range of 2.0% to 3.0%
[12, 54, 57, 59]. In the Yangtze regions outside the
Sichuan Basin, the TOC content of shales can reach as high
as 5% to 10% [23, 24, 55, 58, 60–65]. TOC is one of the
important indicators to evaluate the exploitation value of
shale gas. At present, the lower limit of TOC for commercial
shale gas development is generally 2.0% [66–69]. Therefore,
the Lower Cambrian shales generally display greater shale
gas potentials in terms of the TOC evaluation.

The organic macerals of the Lower Cambrian shales are
mainly composed of sapropelite, and the parent materials
are derived from lower aquatic organisms [12]. The δ13C
value of kerogen is -35.9‰–-29.2‰, with an average of
-32.0‰ [23, 44, 57, 70, 71], so the OM type of the Lower
Cambrian shales is mainly type I [72, 73].

In the whole Yangtze region, the Lower Cambrian shales
have high maturity, with the EqVRo value ranging from
2.5% to 6.0% [30, 33, 56, 74–78]. The EqVRo value of the
Lower Cambrian shales in the Upper-Middle Yangtze region
mainly varies from 3.0% to 4.0%. In the Lower Yangtze region,
the maturity is relatively higher, and the EqVRo value is
mainly in the range of 3.5%-4.5% and even exceeds 4.5% in
some areas (Table 1). The high maturity of the Lower Cam-
brian shales is closely related to their old age, large burial
depth, and multiple thermal events [79]. According to shale
gas data in the United States, shale gas reservoirs can also
develop under high overmaturity conditions [80, 81], but
the maturity of shale with commercial potential is generally
limited within the EqVRo < 3:5% [75, 82].

2.2. Gas-Bearing Characteristics. At present, the number of
wells drilled for the Lower Cambrian shale gas evaluation,
exploration and development in southern China has reached
70-80 [23, 24, 79, 96–98]. Gas-bearing characteristics of the
Lower Cambrian shales from representative wells are sum-
marized in Table 2. In general, the gas-bearing property of
the Lower Cambrian shales varies greatly. The shale reser-
voirs in most areas/blocks contain low gas content or are
rich in N2. Few shale gas wells in the Weiyuan-Qianwei
block of the Sichuan Basin, the Yichang area of western
Hubei and Chengkou area of northern Chongqing areas

2 Geofluids



120

90

60

30

0
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21

Year

N
um

be
r o

f a
rt

ic
le

s p
ub

lis
he

d

Total number of articles published in English
Total number of articles published in Chinese

Figure 1: Statistical histogram of literatures related to the study of the Lower Cambrian shales and shale gas in China. The data of Chinese
articles (blue column) comes from the “CNKI,” the data of English articles (orange column) comes from the “ScienceDirect.” The search
methods are all through title, abstract, and keywords.
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can yield industrial gas flow and the gas compositions are
dominated by CH4.

In the Weiyuan-Qianwei block of the Sichuan Basin, the
gas-in-place (GIP) content of the Qiongzhusi Formation
shales from the Well W201 ranges from 1.10 m3/t to
3.51m3/t, with an average of 2.01m3/t, and initial test yield
of 1:08 × 104m3/d. The Qiongzhusi Formation shales in
the Well JY1 have a gas content of 1.02m3/t-4.68m3/t, with
an average of 2.03m3/t, and the initial test yield of 8:60 × 104
m3/d [96]. In the Yichang area, the GIP content of the
Well YY1 varies from 0.58m3/t to 5.48m3/t, with an
average of 2.05m3/t. The thickness of the organic-rich
shale intervals with the GIP content greater than 2m3/t
is 35m, and the initial yield of horizontal well fracturing
section is 6:02 × 104m3/d. The GIP content of the Well
EYY1 is 0.32m3/t-4.48m3/t, with an average of 2.3m3/t,
and the initial yield of horizontal well fracturing section
is 7:83 × 104m3/d [98]. Shale gas with the predominant
of CH4 was also found in the Chengkou block of northeastern
Chongqing and the Well TX1 of northern Guizhou area. The
former has an average desorbed gas content of 1.07m3/t [99],
while the latter has a gas content of 1.10m3/t-2.88m3/t with an
initial daily yield of 0:3 × 104m3 [23]. In southeastern Chong-
qing, northwestern Hunan, and northern Guizhou areas
(Upper Yangtze region), the Lower Cambrian shales not only
have low gas content but also the gas compositions are mainly
composed of N2, with its percentage of 60%-90%. Figure 4
shows the gas compositions of representative shale gas wells
with high content of N2 in the Upper Yangtze region. The
N2 content has exceeded 60% and can be classified as the
high-N2 shale gas reservoirs [100]. At the same time, the
δ15N value of the Lower Cambrian shale gas in southern China
is generally in the range of -2.6‰ to 0‰ [101–104]. The gas
content of the Lower Cambrian shales in the Lower Yangtze
area is also relatively low. For example, the highest GIP

content of the Lower Cambrian shales from the Well XY1
in southern Anhui is 1.30m3/t, and the average GIP con-
tent is 0.94m3/t. The highest GIP content of the Lower
Cambrian shales from the Well WY1 is only 0.15m3/t
[24] (Table 2).

3. Pore Characteristics of the Lower
Cambrian Shales

3.1. Pore Development Characteristics. The pores in shales
are mainly divided into intergranular pores, intragranular
pores, and OM pores [36, 37, 110–113]. Numerous studies
have shown that the pores with diameter of >5-10 nm can
be observed by scanning electron microscopy (SEM). The
differences of pore development characteristics between the
Lower Cambrian shales and the Lower Silurian shales in
southern China are mainly reflected in the development
degree of organic pores. Organic pores of the Lower Silurian
shales are generally well developed, and the pores display the
relatively larger diameters [84, 96, 114–116]. However, the
development degree of organic pores in the Lower Cambrian
shales is generally worse than that in the Lower Silurian
shales. The organic pores in the Lower Cambrian shales
are relatively small-sized and there display obvious differ-
ences in different regions [96, 117–120].

In the Jiaoshiba block of the Sichuan Basin, OM pores
with clear morphological outlines, such as near-spherical,
ellipsoidal, gneiss-shaped, pit-shaped, meniscus, and slit-
shaped, are widely developed in the Lower Silurian shales.
The pore diameter is mainly distributed between 2nm and
1μm, mostly of mesopores. The surface porosity of OM
ranges from 10% to 50% with an average of 30% [84].
Abundant organic pores in organic-rich shales can form
good gas conduction networks and improve the connectiv-
ity of shales.

Strata Southwestern
Sichuan

Northern
Guizhou

Southeastern
Chongqing

Qingxudong Fm.

Jindingshan Fm.

Mingxinsi Fm.

Niutitang Fm. Shuijingtuo Fm.

Shipai Fm.

Tianheban Fm.

Shilongdong Fm.

Regions
Northeastern
Chongqing

Western
Hubei

Northwestern
Hunan

Southern
Anhui

Dachenling
Fm.

Hetang
Fm.

Niutitang
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Liuchapo
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Yanjiahe
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Longwangmiao
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Canglangpu
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Figure 3: Stratigraphic division and correlation of the Lower Cambrian typical plays (modified from Zhu et al. [45]; Hu et al. [48]; Zhang
et al. [49]; Zhao et al. [50]).
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OM pores are relatively developed in the Lower Cam-
brian shales from the Sichuan Basin, which generally occur
within the infilling OM and residual kerogen. The diameter
of organic pores in the Lower Cambrian shales is generally
less than 50nm, mostly of 10 nm to 30nm, which is smaller
than that in the Lower Silurian shales [96, 119]. The infilling
OM is distributed in the intragranular pores of pyrite fram-
boids and clay platelets, as well as the intergranular pores of
quartz grains. Nanoscale pores are generally developed
within the infilling OM [119].

The pore types of the Lower Cambrian shale reservoirs
in western Hubei are mainly composed of organic pores,
which usually have spongy, circular, or subcircular shapes.
The pore diameter ranges from 4nm to 84nm, with an
average of 12 nm [120]. The surface porosity generally var-
ies from 5% to 20% [98]. Ma et al. [117] revealed that
organic pores of the Lower Cambrian shales in the south-
eastern Chongqing were unevenly developed, and only
some organic pores could be viewed. The organic pores
generally have relatively small diameter, with mostly elon-
gated or pinhole shapes, and the pore diameter varies
from 10nm to 50nm. The organic pores are distributed
in a dot network, and the connectivity is relatively poor.
The surface porosity varies from 0.01% to 20%, with an
average of 8%. The OM of the Lower Cambrian shales

in northern Guizhou can be divided into two types, i.e.,
residual primary OM and secondary infilling OM [119].
The former displays a strip-shape or a large block, and
organic pores can be rarely observed. However, the latter
is mainly filled in the intragranular or intergranular pores
of clay platelets and quartz grains, and spongy organic
pores, with pore diameter of less than 50nm, can be gen-
erally observed. Some of these organic pores are isolated,
but some are interconnected. They are not uniformly
developed within different parts of same OM particle,
showing pore heterogeneity [118]. There have obvious dif-
ferences in the development of OM pores in the Lower
Cambrian shales.

3.2. Porosity and Pore Structure Characteristics. Significant
differences in the porosity and pore structure are also
occurred between the Lower Cambrian and Upper
Ordovician-Lower Silurian shales in southern China. Previ-
ous works have showed that the Wufeng-Longmaxi Forma-
tion shales had the porosity of 1.46%-8.22%, with an average
of 4.79%. The specific surface area varies from 6.2m2/g to
32.1m2/g, with an average of 17.56m2/g-23.84m2/g. Total
pore volume varies from 0.02 cm3/g to 0.07 cm3/g, with an
average of 0.041 cm3/g. These porosity and pore structure
parameters of the Lower Cambrian shales are significantly

Table 2: Gas-bearing characteristics of the Lower Cambrian shales in the southern China (see Figure 2 for well locations).

Regions Well Formation
Gas content (m3/t)
Range/Average

Average content of CH4
(%)

Average content of N2
(%)

References

Sichuan Basin

W201 Qiongzhusi Fm. 1.10-3.51/2.01 95 nd

[96, 105, 106]JS1 Qiongzhusi Fm. 1.51-2.41/1.80
>90 <10

JY1 Qiongzhusi Fm. 1.02-4.68/2.03

Western Hubei area

YY1 Shuijingtuo Fm. 0.58-5.48/2.05 90 8

[98]
EYY1 Shuijingtuo Fm. 0.32-4.48/2.30

>90 <10YD4 Shuijingtuo Fm. 0.50-3.13/1.54

ZD2 Shuijingtuo Fm. 0.23-4.45/2.15

Chongqing area

YC1 Niutitang Fm. 0.03-1.12/0.22 16 84
[97]

YY1 Niutitang Fm. 0.01-0.16/0.03 1 97

CY1 Shuijingtuo Fm. 0-1.23/0.65 >90 <10 [107]

C1 Shuijingtuo Fm. 0.05-3.18/1.17 >90 <10 [55]

Northwestern Hunan area

CY1 Niutitang Fm. 0.03-2.10/1.02 9 72 [21, 79]

CY-1 Niutitang Fm. 0.33-0.95 80 20
[97]

HY1 Niutitang Fm. 0.10-0.29/0.02 13 84

BY2 Niutitang Fm. 0.11-0.71 9 91 [79]

Northern Guizhou area

CY1 Niutitang Fm. 0.30-1.80 >95 nd

[23, 92]
TX1 Niutitang Fm. 1.10-2.88 80 16

YM1 Niutitang Fm. 0.10-0.40 nd >90
HD1 Niutitang Fm. 0.09-1.31/0.42 <30 nd

HY1 Niutitang Fm. 0.32-2.00/1.50 >85 nd [106, 108]

FC1 Niutitang Fm. 0.40-3.50 84 5 [79]

Southern Anhui area
XY1 Hetang Fm. 0-1.30/0.94 <0.08 nd

[24, 109]
WY1 Hetang Fm. 0-0.15 nd nd

Note: “nd” means not detected; CY-1 means Ciye1 Well, while CY1 means Changye1 Well in northwestern Hunan area.
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lower than those of the Upper Ordovician-Lower Silurian
shales. The porosity of the Lower Cambrian shales ranges
from 0.3% to 3.33%, with an average of 1.62%. The spe-
cific surface area ranges from 0.8m2/g to 18.2m2/g, with
an average of 7.06m2/g. Total pore volume ranges from
0.001 cm3/g to 0.04 cm3/g, with an average of 0.023 cm3/g
(Table 3).

The differences of pore structure between the Lower
Cambrian and Upper Ordovician-Lower Silurian shales in
different regions are also reflected in the pore diameter dis-
tribution. Wang et al. [121] had revealed that the micropore
diameters of the Wufeng-Longmaxi Formation shales in the
Sichuan Basin were mainly distributed around 0.35 nm,
0.46 nm-0.62 nm, and 0.83 nm and the nonmicropores were
mainly composed of smaller mesopores. The pore diameter
is generally distributed between 2nm and 10nm, while the
macropores are rarely observed (Figure 5(a)). The pore
structure of the Lower Cambrian Qiongzhusi shales in the
Sichuan Basin is mainly composed of mesopores with a
diameter of 2 nm-7 nm. The micropores also have a contri-
bution to total pore volume, and the peaks are mainly
distributed around 0.34nm, 0.58 nm, and 0.83 nm. The
macropores contribute little to total pore volume [122]
(Figure 5(b)). The micropores of the Lower Cambrian shales
in the northeastern Chongqing and northern Guizhou are
well developed with pore diameter mainly ranging from

0.6 nm to 2nm, while the nonmicropores are underdevel-
oped. However, there are some differences between these
two regions. The nonmicropores in the northeastern Chong-
qing are mainly composed of small mesopores and the pore
diameter is generally less than 10nm, while the nonmicro-
pores in the northern Guizhou are distributed between
2nm and 100nm [16, 123] (Figures 5(c) and 5(d)).

The contribution of organic pores to total pores in the
Upper Ordovician-Lower Silurian shales is also significantly
higher than that in the Lower Cambrian shales. Wang et al.
[124] have found that organic porosity accounted for 13.9%-
21.4% total micropore porosity in the Lower Silurian shales
with an average of 17.61%, and organic porosity accounted
for 10.4%-17.3% total micropore porosity in the Lower
Cambrian shales with an average of 14.10%. Ma et al.
[117] used the FIB-SEM 3D reconstruction method to
compare the contribution of organic porosity in the Lower
Silurian and Lower Cambrian shales in southeastern Chong-
qing and found that organic porosity of the Lower Silurian
shales contributed 13.36%-23.51% total porosity. However,
organic porosity of the Lower Cambrian shales only contrib-
uted 0.16%-5.93% total porosity. Total porosity of shales
should be mainly composed of dissolved pores and inter-
granular pores of inorganic minerals. Nie et al. [125] sug-
gested that the volume of organic pores of the Lower
Silurian shales in southern Sichuan accounted for 30%-
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Figure 4: The gas compositions of the Lower Cambrian shale gas reservoirs in southern China. (a) Well YC9 in southeastern Chongqing, (b)
Well CY1 in northwestern Hunan, and (c) Well TM1 in northern Guizhou (original data from Jiang et al. [79]; Wang et al. [92]; Jiao et al.
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40% total pore volume, while the volume of organic pores of
the Lower Cambrian shales in the northern Guizhou
accounted for only 5%-40% total pore volume, with an
average of about 20%.

4. Factors Controlling Porosity and Gas
Content of the Lower Cambrian Shales

In general, there have twomain factors affecting pore develop-
ment and gas-bearing property of shales. One is the geochem-
ical property of shales, including the TOC content, maturity,
mineral composition, and kerogen type [113, 128–135].
Another is the geological characteristics of shales, including
structural evolution and burial depth [75, 136–138]. The lower
Cambrian shales in southern China are characterized by poor
pore development, low CH4 content, and high N2 content,
which may be related to the high maturity and strong tectonic
deformation.

4.1. OMMaturity. The OMmaturity can control gas compo-
sitions of shale gas reservoirs and affect their gas-bearing
property [23, 47, 139–142]. The OM maturity can also affect
pore characteristics of shales, especially the generation and
evolution of organic pores, thus influencing reservoir prop-
erty [130, 131, 143, 144]. The porosity of the Lower Cam-
brian shales in southern China is generally low (generally
<2.0%). Different explanations are accounted for such low
porosity values [22, 96, 145, 146], but high maturity is gen-
erally regarded to be a key factor [75, 120, 127, 147].

Borjigin et al. [148] believed that kerogen was a kind of
high molecular polymer, which was composed of condensed
cyclic aromatic nuclei linked with heteroatom bonds or
aliphatic chains. During the evolution of kerogen, aliphatic
chain bridges and heterocyclic functional groups are broken,
releasing compound fragments of different sizes (e.g., bitu-
men with different relative molecular weights and volatile
substances). When organic molecular fragments were
released but not left completely from the kerogen parent,
steric hindrance effect would be continued and condensation
reaction would be hindered. The original storage space could
be maintained within the disorderly arranged fragments.
When fragments were discharged, the condensation reaction
was strengthened, thus leading to reduction of pores due to
the rearrangement and condensation of surrounding aro-
matic nuclei. Therefore, removal of aliphatic chains and het-
eroatom bonds can help to eliminate condensation barriers
via hydrocarbon generation processes, such as decarboxyl-
ation and dealkylation [149]. Thus, the generation and evo-
lution of organic pores are intimately related to thermal
evolution process.

Previous studies have shown that organic porosity of
shale could not increase monotonically with the increasing
of OM maturity. Wang et al. [150] believed that organic
porosity of shale generally increased with the increasing of
OM maturity within the gas generation stage (Ro = 1:3%
-2.0%), but organic porosity generally declined increased at
the Ro > 2:0%. However, such a threshold (Ro = 2:0%) still
remains controversial. More and more authors gradually
believed that there were two peaks of hydrocarbon genera-

tion and the transition point of the second peak was gener-
ally 3.0% to 3.5% Ro [127, 142, 151, 152]. For example, Xu
et al. [153] suggested that organic porosity increased rapidly
with the increasing of OM maturity within the Ro < 3:0%,
while it decreased significantly within the Ro ranging from
3.0% to 4.0%. The organic porosity slowly decreased at the
Ro > 4:0% (Figure 6(a)). Consistent with organic porosity
evolution of shale, pore structure of OM also undergoes a
similar evolution trend. Thermal simulation experiments
revealed that the evolution of organic pore structure could
be divided into three stages, i.e., first stage (Ro ≈ 0:6%-
2.0%), second stage (Ro ≈ 2:0%-3.5%), and third stage
(Ro > 3:5%). During the first stage, the oil generated from
kerogen would fill the intragranular and intergranular pores
thus resulting in the reduction of pore spaces. Subsequently,
the oil would be thermally cracked into gas and organic
pores are formed. During the second stage, kerogen, pyrobi-
tumen, and heavy hydrocarbon gas (C2-5) would be further
cracked into CH4 and solid bitumen, thus resulting in a
rapid increase of organic pores. During the third stage, with
the further increase of temperature and pressure, the graph-
itization of OM would lead to the destruction of nanopore
structure, and a large amount of nitrogen gas could be gen-
erated [139] (Figure 6(b)).

At the overmatured stage, original and secondary
organic pores might be collapsed, shrunk, and compacted
due to the escape of a large amount of hydrocarbon gas
from organic pores, resulting in a large reduction of
organic porosity [22, 47]. Other studies suggested that
such a reduction might be related to the carbonization
caused from strong condensation of aromatic structure of
OM [82, 96, 145, 148, 154]. For example, Wang et al.
[82] found that the porosity and resistivity of the Qiongz-
husi and Longmaxi Formation shales in the Sichuan Basin
displayed a sudden drop at the EqVRo > 3:5%, and they
believed that the OM carbonization might destroy organic
pore structure of shales. Wang et al. [155] also found that
the laser Raman of OM in the Lower Cambrian shales
showed obvious Raman peaks (1347.2 cm-1-1606.4 cm-1)
pointing to carbonization when the EqVRo value was
greater than or equal to 3.2%-3.5%.

The formation of high-N2 shale gas in the Lower Cam-
brian shales in southern China is also closely related to
maturity. Thermal simulation experiments have shown that
shale samples can produce a certain amount of N2 in the
high-overmature stage [100, 156–160]. The N2 can be
formed from OM and inorganic minerals. The organic
N2 can be generated from sapropel and humic kerogen,
while the inorganic N2 can be derived from nitrogen-
containing minerals, such as nitrate, nitrite, and ammo-
nium [158, 161, 162]. The formation of inorganic N2 is
related to the ammoniation of ammonium-containing
compounds via thermal catalysis [163], which is mainly
occurred under the condition of the EqVRo < 3:4%. Thus,
the N2 generation potential in shales at this stage is mainly
dependent on the content of inorganic nitrogen [164]
(Figure 7). When a large amount of inorganic nitrogen is
released, the hydrocarbon generation potential of kerogen
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Figure 5: Pore size distribution of the Lower Paleozoic shales in southern China. (a) The Lower Silurian shale samples in southern Sichuan,
(b) the Lower Cambrian shale samples in southern Sichuan, (c) the Lower Cambrian shale samples in northeastern Chongqing, and (d) the
Lower Cambrian shale samples in northern Guizhou (modified from Wu et al. [16]; Wang et al. [121]; Yang et al. [122]; Zhu et al. [123]).

0.8

0.6

0.4

0.2O
M

 p
or

os
ity

 (%
)

0
0 1 2 3 4

EqVRo (%)
5 6 7

(a)

100

Micropore
Mesopore
Micropore+Mesopore

80

60

40

20

0
0 1 2 3 4 5

EqVRo (%)

Su
rfa

ce
 ar

ea
 (m

2 /g
)

(b)

Figure 6: Cross-plots of the EqVRo value versus (a) OM porosity and (b) specific surface area (modified from Chen and Xiao [139]; Xu et al.
[153]).

10 Geofluids



is also exhausted and reactive nitrogen species will con-
tinue to be released.

Organic N2 is mainly produced in the overmature stage
of OM, and the high overmatured kerogen has the greater
potential to generate high-N2 shale gas [104, 159, 160,
164]. For example, Gai et al. [164] conducted pyrolysis anal-
ysis of the Lower Cambrian shales (EqVRo = 2:85%) from
the southeastern Chongqing area and found that the N2
and CH4 production rates were increased rapidly at the
EqVRo = 3:03%. When the EqVRo was greater than 3.4%,
the yield of CH4 began to decline and the yield of N2 contin-
ued to increase. When the EqVRo was greater than 4.48%,
the yield of N2 exceeded that of CH4 (Figure 8(a)). In geolog-
ical conditions, the maturity of the Lower Cambrian shale
gas with high-N2 content had been proved to be higher.
For example, the relative content of N2 in shale gas reser-
voirs from the Well CY-1 (northwestern Hunan) and Well
TM1 (northern Guizhou) is above 70% (Table 2), and the
EqVRo value of these shales is basically greater than 3.0%
[52, 104]. Wu et al. [103] revealed that the N2 content of
the Lower Cambrian shale gas reservoirs in the Well FC1
(northern Guizhou) was closely related to the degree of ther-
mal evolution. When EqVRo was greater than 3.5%, the rel-
ative content of N2 increases rapidly and was basically
greater than 60% (Figure 8(b)).

The organic nitrogen content of shales is the material
basis to influence the yield of N2 at the high overmatured
stage. Compared with the Lower Silurian shales, the Lower
Cambrian shales in southern China usually have higher
content of organic nitrogen. Liu et al. [165] showed that
organic nitrogen content of the Lower Silurian shales in
southern Sichuan ranged from 0.07% to 0.21%, with an
average of 0.14%. However, organic nitrogen content of the
Lower Cambrian shales in northern Guizhou varied from
0.23% to 0.60%, with an average of 0.45% [103]. As the
degree of thermal evolution increases, organic nitrogen is
gradually converted into N2 [158]. In addition, the pores
were preferentially filled with oil or solid bitumen at the

high overmatured stage, so available pore spaces could be
declined and gas flow could be restricted [143], resulting in
the weak adsorption capacity of CH4 on OM [166]. Under
such a condition, the CH4 can be easily escaped into shallow
surface, while the adsorption capacity of N2 on OM remains
unchanged [167]. Therefore, the N2 that generated at the late
stage of hydrocarbon generation can be easily remained in
the shale reservoirs and finally form the shale gas reservoirs
with the characteristics of low content of hydrocarbon and
high content of N2. The combination of the abovementioned
factors should be responsible for the formation of the high-
N2 shale gas reservoirs of the Lower Cambrian.

In a word, the OM of the Lower Cambrian shales in
southern China is generally highly-matured, and the EqVRo
value is generally >3.0% or even >3.5% in many areas [75].
The OM maturity may be mainly responsible for the low
porosity of the Lower Cambrian shales, which exerts some
influences in pore structure and gas-bearing property of
shales in different blocks.

4.2. Tectonic Deformation. Compaction is also one of major
factors affecting porosity of shales [35, 37, 125, 168, 169].
Previous studies have shown that intense compaction would
reduce the porosity by 80%-90% for high overmatured
shales [169, 170]. The Lower Cambrian shales in southern
China not only underwent strong compaction but also expe-
rienced strong tectonic deformation, especially in the vast
areas outside the Sichuan Basin [22, 75, 127]. The pores
(especially organic pores) and pore structures would be
changed due to the deformation of shales [171]. Previous
studies have shown that porosity was positively correlated
with brittle deformation and negatively correlated with duc-
tile deformation [123]. Pan et al. [172] believed that brittle
deformation of coal changes its chemical structure via the
conversion of mechanical friction to thermal energy in the
fault zone, while the ductile deformation mainly leaded to
the deformation of the coal macromolecular structural unit
and the dislocation creep of the aromatic ring via the
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accumulation of strain energy, thus resulting in chemical
structure destruction of the coal and the decrease of the
porosity. Exploration practices showed that the deformation
of shale under shallow burial (low pressure and low temper-
ature) generally manifested as brittle deformation, while the
shales gradually evolved from brittle-ductile transition zone
to ductile zone under deep burial (burial depth of about
5000 m, high temperature and high pressure) [173]. Under
such a condition, the ductility would be enhanced and
organic pores would be seriously reduced due to compaction
and extrusion [148].

TOC is an important factor affecting shale deformation
[174], because OM has weaker resistant to compaction rela-
tive to mineral matrix. The compaction effect of shales with
high TOC content is stronger than that of shales with low
TOC content at the same conditions, then influencing the
decrease ratio of the porosity [119]. Milliken et al. [37] found
that the porosity of the Marcellus shales in North America
increased with the increase of TOC content at the TOC <
5:6%, while the porosity will decrease at the TOC content
exceeding 5.6% (Figure 9(a)). The Lower Cambrian shales
in southern China also show a similar pattern, but the
TOC threshold for the reversal of porosity is varied. For
example, the TOC threshold for the Well XYA in southern
Anhui, Well YD2 in western Hubei and Well HY1 in north-
ern Guizhou appears to be about 2%, 3%, and 5%, respec-
tively (Figure 9(b)). However, the porosity of the Lower
Silurian shales in Well JYA and Well PYA continues to
increase with the increase of TOC content when the TOC
content ranges from 0.3% to 5.6% (Figure 9(b)). These
results suggest that the relationship between TOC and
porosity is complex and may be influenced by other factors,
such as mineral composition, maturity, and tectonic defor-
mation of shales. For example, Ma et al. [55] made a com-
parison of the porosity and pore structure between the
Lower Cambrian deformed and nondeformed shales in
northeastern Chongqing and found that the average poros-
ity of deformed shales was 0.81% and the nondeformed

shales was 1.24%. The average BET specific surface area
and BJH pore volume of deformed shale are 7m2/g and
0.0073 cm3/g, respectively, and those of nondeformed shale
are 11.4m2/g and 0.011 cm3/g, respectively.

The content of clay minerals of the Lower Cambrian
shales in southern China is generally in the range of about
20% to 40%, and clay minerals mainly include illites, illite-
smectite mixed layers, and a small amount of chlorites and
kaolinites [22, 47, 118, 122, 176]. With the increasing burial
depth, montmorillonites would be transformed into illites or
illite-smectite layers. The specific surface areas of illites and
illite-smectite layers are 7.1m2/g and 30.8m2/g, respectively,
which are significantly lower than that of montmorillonites
(76.4m2/g) [177]. Therefore, the specific surface area of
shale mineral matrix would be significantly reduced during
the transformation of clay minerals, although some pores
and fractures are newly formed during such a transforma-
tion [178]. Clay minerals with high content will affect the
mechanical property of shales and increase the plasticity of
shales. The porosity and pore size of shales are more likely
to be reduced without the support of rigid minerals and fluid
pressure under high-pressure conditions [123, 148]. As
shown in Figure 10(a), shale porosity is negatively correlated
with clay mineral content. Brittle minerals have a significant
positive impact on pore characteristics of shales [179].

Brittle minerals are generally stable and difficult to be
dissolved, and their rigid frameworks can enhance the
compaction resistance of shale. Thus, the pores (especially
organic pores) could be effectively preserved under deep
burial conditions [123, 127, 180]. The content of brittle min-
erals in the Lower Cambrian shales in southern China is
high, and the quartz is the most common brittle mineral
accounting for about 40%-60% of total minerals [56, 86,
120, 123]. As shown in Figure 10(b), the porosity is posi-
tively correlated with quartz content of shales. On the one
hand, such a positive correlation may be resulted from wide-
spread development of biological quartz fragments in
marine shales [181–184]. The presence of biogenic silica
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can indirectly denote high TOC values [122], which can help
increase porosity of shales, especially for OM pores. On
the other hand, quartz has high hardness, which is benefi-
cial to prevent pore collapse due to compaction. Some
brittle grains are easily slipped or rotated at grain bound-
aries due to structural deformation, and they can move
with respect to each other and form space in the weak
zones of grains junction [185]. However, authigenic quartz
can also plug pores in clay minerals which results in a cer-
tain reduction in porosity [122].

Except for few blocks with relatively stable structures in
the Sichuan Basin, the Lower Cambrian shales in southern
China have undergone strong tectonic deformation, which
is considered to be one of major reasons accounting for the
low content of natural gas or the enrichment of N2 in shale
gas reservoirs. For example, in the southeastern Chongqing

area, on the one hand, relative sliding between hard ground
(the underlying Dengying siliceous dolomites) and ductile
organic-rich shales (the Lower Cambrian) can lead to the
formation of detachment zones due to the compressive
stress in the southeast direction [30, 167, 186, 187]
(Figure 11); on the other hand, the Lower Cambrian shales
were usually uplifted resulting in the formation of numerous
thrust faults due to strong tectonic compression. The Lower
Cambrian Niutitang shales were usually penetrated into the
surface via the faults [167] (Figure 12). These faults and
detachments together constitute a network for fluid intru-
sion and gas loss, resulting in the destruction of shale gas
reservoirs, the loss of hydrocarbons, and the introduction
of atmospheric N2 into the shale reservoirs [100, 188].
Through the analysis of fluid inclusions, Jiao et al. [101] also
found that the salinity of quartz and calcite inclusions in the
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Lower Cambrian shales from the southeastern Chongqing
area varied greatly, ranging from 0.5% to 27% NaClep, indi-
cating that the fluid activity had been affected by atmo-
spheric water precipitation [189, 190]. However, there have
some exceptions. For example, the Lower Cambrian shales
in the Chengkou block were strongly deformed and buried
shallowly, but the gas content is relatively high (around
1m3/t) and the gas compositions are dominated by CH4
(Table 2). Until now, there is no consensus on its formation
mechanism. Zhu et al. [123] believed that the strong tectonic
deformation led to the opening of intergranular pores, intra-
granular pores, microchannels, and microfractures in the
Lower Cambrian shales, thus increasing the storage spaces.
Han et al. [191] found that well-developed micropores, high
pore-specific surface area, and strong gas adsorption capac-
ity might be responsible for the enrichment of the Lower
Cambrian shale gas in northeastern Chongqing. Meng
et al. [192] thought that the Lower Cambrian shales are
mainly characterized by micropores and small mesopores,
with undeveloped mesopores, and their pores, such as
OM-hosted pores and clay-hosted pores may be flattened
by extrusion and/or compaction to have silt-like or layered

shapes. This unique pore structure is obviously not condu-
cive to gas loss and would play an important role in the
preservation of shale gas. Ma et al. [22] suggested that
three-dimensional connected pore system consisting of
nanometer-sized intergranular pore spaces, aggregate pore
spaces in clay flakes, and a pore network in the cleavage
domains was developed in the Lower Cambrian shales,
which might have a great contribution to preservation of
shale gas in northeastern Chongqing.

4.3. Gas Occurrence and Pore Structure. Shale gas occurred
in three forms: adsorbed, free, and dissolved phases, of
which the adsorbed and free phases are predominated in
shale gas [32]. Free gas mainly occurred in pores and natural
fractures, while adsorbed gas mostly accumulates on the OM
surface and micropores of inorganic minerals. Under the
burial conditions, such two gas phases basically maintain a
dynamic equilibrium of adsorption-desorption [193]. Previ-
ous works have reported that adsorbed gas content in typical
shale gas plays (e.g., Lewis, Eagle ford, Marcellus, and
Barnett) showed that the proportion of adsorbed gas varied
greatly, ranging from 20% to 70% [194, 195]. The proportion

5 cm 5 cm

Figure 11: Detachment layers developed at the bottom of the Lower Cambrian in southeastern Chongqing area. (modified fromWang et al.
[167]).
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of adsorbed gas in the Lower Cambrian shale gas reservoirs
in southern China is relatively high, ranging from 50% to
60%, while the proportion of free gas is relatively small,
ranging from 40% to 50% [195–197].

The porosity has an important effect on gas content of
shale reservoirs. In general, the higher the shale porosity is,
the higher total gas and free gas content would be [3, 129,
198]. Luo et al. [44] showed a positive correlation between
measured porosity and gas content of the Lower Cambrian
shales in the western Hubei (Figure 13(a)). Wang et al.
[150] found that the porosity of the Lower Cambrian shales
(2.5%) was lower than that of the Lower Silurian (6%). At
the burial depth of 3000m, free gas content of the Lower
Cambrian shales (1.2m3/t-2.3m3/t) is significantly lower
than that of the Lower Silurian shales (6.0m3/t-6.8m3/t).
They suggested that the porosity is the major factor control-
ling the differences of free gas content for these two succes-
sions of shales. However, the correlation between the
adsorbed gas content and porosity is different from that of
free gas. Chalmers et al. [124, 129] found no obvious correla-
tion between the adsorbed gas content and porosity in
organic-rich shales, which is consistent with the works of
Ma et al. [22] (Figure 13(b)). The major reason is that CH4
gas adsorption is mainly restricted by organic pores and
organic pores of Lower Cambrian shales only contribute to
a part of total shale pores.

Pore structure also has a certain influence on the storage
capacity of shales, which in turn affects the gas content of
shale [124, 199]. The specific surface area of pores greatly
affects the storage capacity of shale and thus content of
adsorb gas [200]. The specific surface area of shales is mainly
provided by micropores and mesopores, but the specific sur-
face area of macropores is far less than that of micropores
and mesopores under the conditions of a united volume.
Therefore, the more micropores and mesopores in the shale
reservoirs are, the stronger adsorption capacity would be
[201]. Previous works have revealed that the pore structure
of the Lower Cambrian shales in southern China is mainly
composed of micropores and mesopores, but macropores
are relatively underdeveloped (Figure 5). Nanopores with

the diameter less than 10nm provide most of the specific
surface area of the Lower Cambrian shales. There nanopores
are mainly contributed from organic pores and control the
adsorption capacity of shales [55, 122, 127, 195], leading to
the predominate of adsorbed gas in total gas [22, 195–197].

5. Summary and Outlook

Geological and geochemical characteristics, gas-bearing
characteristics, and their controlling factors of the Lower
Cambrian shales in southern China have been extensively
investigated. Several major conclusions can be drawn in
the following:

(1) The Lower Cambrian organic-rich shales are mainly
distributed in the Sichuan Basin, western Hubei,
Chongqing, northwestern Hunan, northern Gui-
zhou, and southern Anhui areas. The TOC content
greatly varies, mostly of 2%-10%. The shales are
highly and over matured, and the EqVRo value
ranges from 2.5% to 6.0%. The gas content of shales
also greatly varies, ranging from 0 to 5.48m3/t, and
moreover, most shale gas reservoirs display low gas
content or relative enrichment of N2. Only few shale
gas reservoirs in some blocks have high gas content
and are enriched with CH4.

(2) The porosity of the Lower Cambrian shales is very
low, with an average of 1.47%-2.08%. Pore structure
of shales is characterized by micropores and meso-
pores with smaller diameter (<10 nm). The porosity
of shales is mainly contributed from mineral-related
pores. The organic nanopores are relatively underde-
veloped, which might have major contributions to
micropore and mesopore with smaller diameter.

(3) Gas-bearing property of the Lower Cambrian shales
might be controlled by geochemical characteristics,
OM maturity, and tectonic deformation degree. The
high content of N2 in shale gas reservoirs might be
mainly attributed to atmospheric source and/or
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pyrolytic source, whichmay be linked to highmaturity
(EqVRo > 3:0%-3.5%) and or detachments and faults.

This review has provided some progresses of the explo-
ration and development of the Lower Cambrian shale gas
reservoirs in southern China, but it is still difficult to
completely and objectively evaluate their resource potentials.
In particular, major factors controlling pore development
and preservation, as well as gas-bearing property of the
Lower Cambrian shales remain unclear, which severely
hinder the evaluation and exploration of shale gas in the
southern China. With the increasing degree of shale gas
exploration, some key research fields should be paid much
more attentions, e.g., OM sources and types, OM formation
and enrichment, generation-expulsion-evolution of hydro-
carbon, the coupling relationship of mineral diagenesis,
OM evolution and pore evolution, formation mechanism
of nonhydrocarbon gases (e.g., N2), competitive adsorption
of nonhydrocarbon gases to CH4, and its influences on gas
content. In a word, the Lower Cambrian shale gas play
with the low EqVRo value and the relatively stable tec-
tonic conditions (especially deep-ultradeep burials) should
be the favorable targets for the exploration and develop-
ment of shale gas.
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