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Compressional and shear wave velocities (Vp and Vs, respectively) are important elastic parameters to predict reservoir
parameters, such as lithology and hydrocarbons. Due to acquisition technologies and economy, the shear wave velocity is
generally lacking. Over the last few years, some researchers proposed deep learning algorithms to predict the shear wave
velocity using conventional logging data. However, these algorithms focus either on spatial feature extraction for different
physical properties of rocks or on sequential feature extraction in the depth direction of rocks. Only focusing on feature
extraction in a direction of rocks might lead to a decrease in prediction accuracy. Therefore, we propose a hybrid network of a
two-dimensional convolutional neural network and the gated recurrent unit (2DCNN-GRU), which can establish more
complex nonlinear relationships between the input and output data based on the spatial features extracted by 2DCNN and the
sequential features extracted by GRU. In this study, two cases are used to validate the reliability and prediction accuracy of the
proposed network. Comparing the prediction results of 2DCNN, GRU, and the proposed network, the proposed network
shows better performance. Meanwhile, for improving the prediction accuracy of the proposed network, the relationship is
analyzed between the prediction accuracy of the proposed network and the length of the input sample.

1. Introduction

Compressional and shear wave velocity (Vp and Vs, respec-
tively) are very important parameters in hydrocarbon fields for
characterizing and evaluating reservoir, identification of the
pore types, and estimation of the dynamic properties of rocks
[1–4]. Due to various reasons, shear wave velocity is generally
lacking. Therefore, it is necessary to study a shear wave predic-
tion method with high prediction accuracy and strong general-
ization ability to improve the reservoir prediction accuracy.

Currently, empirical regression methods, rock physics
methods, and machine learning methods are the main
methods for shear wave velocity prediction. Since empirical
methods are the fastest and easiest to apply, linear or nonlin-
ear empirical relationships between compression and shear

wave velocities have been proposed by various researchers
[5–12]; however, they are constrained by site-specific and
the rock type.

A variety of methods for predicting the shear wave veloc-
ity on the basis of rock physics have been proposed. These
rock physics models focused on the modeling of the modu-
lus of the rock matrix, dry rock, and saturated rock of the
equivalent medium. In particular, for the modeling of the
dry rock modulus of an equivalent medium, complex pore
shapes were the research focus. Jørstad et al. [13] used both
DEM and self-consistent approximation (SCA) for the shear
wave velocity prediction in sandstones and concluded that
the effective-medium theories were more accurate by com-
paring the results with those predicted from empirical
regression methods. Xu and White [14] proposed a hybrid
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approach to predict the shear wave velocity based on a shaly
sandstone formation using a combination of the Kuster and
Toksöz (KT) model [15] and the differential effective
medium (DEM) model [16]. Based on the widely used Xu–
White model and Gassmann’s equations [17], Bai et al.
[18] analyzed the influence of errors of input parameters of
rock matrix, fluid inclusions, porosity, and aspect ratio
(AR) on the prediction accuracy of shear wave velocity. Bai
et al. [19] illustrated that a variable aspect ratio method in
the Xu–White model was significantly improved. Liu et al.
[20] proposed a differential Kuster–Toksöz (DKT) model
to predict shear wave velocity and focused on the process
in which the porosity with certain geometric shapes is grad-
ually increased from zero to its final value to overcome a
diluted concentrated pore of the KT model. Yang et al.
[21] developed a revised Xu-White model and improved
the estimated shear wave velocity for a calciferous sandy
shale formation by considering the effect of the volume
fraction of limestone. In the past ten years, with the devel-
opment of unconventional oil and gas, rock physics
models of complex reservoirs have been developed rapidly.
Xu and Payne [22] extended the Xu-White model, origi-
nally designed for clastic rocks, to carbonate rocks and
proposed a carbonate rock physics model with complex
pore types. Zhang [23] established an anisotropic rock
physics model to predict shear wave velocity, which was
suitable for rocks with high-angle fractures. Based on the
dual pore theory, an anisotropic rock physics model of
tight oil sandstone was proposed, and the influence of clay
content and type and pore connectivity and type on it was
systematically studied by Huang et al. [24]. Assuming that
shale is a laterally isotropic medium, Gui et al. [25]
proposed a shear wave velocity prediction method that
considered the microscopic characteristics of the rock.
Liu et al. [26] proposed a method for predicting shear
wave velocity suitable for organic-rich rocks. The accuracy
of these methods for predicting shear wave velocity
depended on the accurate calculation of reservoir geophys-
ical parameters such as porosity, pore type, pore shape,
mineral composition, and water saturation. However, these
high-precision parameters are difficult to obtain, which
increases complexity and indeterminacy of rock physics.

With the rapid development of software and hardware
technology, some researchers use machine learning algo-
rithms to predict shear wave velocities using logging data
[27–33]. Deep learning developed from artificial neural
network algorithms is a research hotspot in academic
and industrial circles. Comparing with traditional shallow
learning, deep learning improves the accuracy of predic-
tion or classification by constructing many hidden layer
machine models with complex function approximation
and layer-by-layer feature transformation. The convolu-
tional neural network (CNN) with spatial feature capture
has achieved good results in different geophysical fields
including interpretation of reservoir parameters from logging
data [34, 35], seismic interpretation [36–38], and seismic
inversion [39–42]. Based on the characteristics of logging
data based on long-term dependencies, a long-short-term
memory (LSTM) network was proposed to predict the
shear wave velocity and its application in the identification

of geophysical parameters of complex reservoirs [43–46].
Comparing with LSTM which required a long training
time, the gated recurrent unit (GRU) has the characteris-
tics of faster speed and basically unchanged accuracy by
simplifying the internal structure of LSTM [47]. Sun and
Liu [48] proposed a GRU-based shear wave velocity pre-
diction method. The above applications show that deep
learning models have been successfully applied in the field
of geophysics and are in rapid development.

Predicting shear wave velocity is essentially a typical
regression problem in data processing. Compared with
the empirical and rock physics methods, deep learning is
better at handling regression problems by building many
hidden-layer machine models with complex function
approximations and layer-by-layer feature transformations.
In order to fully mine the sequential features in the depth
direction of rocks and spatial features of different physical
properties of rocks, a hybrid network of two-dimensional
convolutional neural network and gated recurrent unit
(2DCCN-GRU) was constructed to predict the shear wave
velocity using conventional logging data. This network
takes full advantage of the powerful spatial features
extracted by 2DCNN and the sequential features extracted
by GRU. The process of predicting Vs using the 2DCNN-
GRU hybrid network included data normalization, gener-
ating sample datasets, and constructing the 2DCNN-GRU
hybrid network and its training and prediction. The Vs
prediction of the two cases confirmed that the 2DCNN-
GRU hybrid network was an accurate and reliable method
of Vs prediction.

2. Methodology

2.1. Convolutional Neural Network (CNN). CNN, which is a
feed-forward artificial neural network, is widely used in the
field of vision and image. With the rapid development of
deep learning, it has been proven to successfully solve vari-
ous geological problems, such as fault recognition, reservoir
prediction, lithofacies classification, and geological parame-
ter inversion [39, 40]. CNN typically consists of the convolu-
tional layers, the pooling layers, and the fully connected
layers (Figure 1). In the convolutional layers, the data of
the input layer is convolved with the convolutional kernels
of the convolutional layers, which can mine the local features
between the data. Its weight sharing feature greatly reduces
the complexity of the network. The nonlinear relationship
of the data is added through the activation function, usually
the rectified linear function (“ReLU”) to avoid overfitting.
When the data is passed into the convolution layer, the
output features can be expressed as

ylj = σ 〠 al−1i wl
ij

� �
+ blj

� �
, ð1Þ

where ylj represents the j-th feature map of the l-th layer, al−1i

represents the i-th featuremap of the previous layer,wl
ij denotes

the weightmatrix of the l-th layer, blj represents the correspond-
ing bias term, and σ represents the activation function.
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Considering the intrinsic relationship between shear wave
velocity and various logging data, inspired by the extremely
high feature extraction ability of a 2D convolutional neural
network, the 2D convolution is used to extract more high-
dimensional information and preserve topology as well as
type and depth of log data.

2.2. Gated Recurrent Unit (GRU). A recurrent neural net-
work (RNN) [49] is very effective for mining data with
sequence characteristics. The hidden unit of the RNN with
long-term sequence storage contains a loop that can com-
bine the output at the current moment with the input at
the next moment as the input at the next moment. There-
fore, the RNN is particularly suitable for processing logging
data that varies with sedimentary facies in the depth direc-
tion. However, due to the relatively simple structure of
RNN, problems such as gradient disappearance or explosion
are prone to occur in practical applications [50], and it can
only hold memory functions for short-term data. In
response to the above problems, the RNN variants LSTM
[51] and GRU [52] were proposed. LSTM sets three-unit
gates (forget gate, input gate, and output gate) to update
the input data and obtain the ability of long-term memory
data. However, the hidden unit of LSTM has many parame-
ters, a complex structure, and a long training time. Com-
pared with the LSTM network, the reset gate and update
gate of GRU can reduce the network training parameters,
shorten the training time, and improve the generalization
ability of the network under the premise of ensuring the
prediction accuracy [53] (Figure 2).

The structure of GRU combined the reset gate (rt), the
update gate (zt), the output of the hidden state at t − 1
(ht−1), the output of the hidden state at t (ht), and the input
at t (xt); they can be expressed as

rt = σ Wr ht−1, xt½ � + brð Þ, ð2Þ

zt = σ Wz ht−1, xt½ � + bzð Þ, ð3Þ

~ht = tanh W~h ht−1 ∘ rt , xt½ � + b~hð Þ, ð4Þ

ht = 1 − ztð Þ ∘ ht−1 + zt ∘ ~ht , ð5Þ
where Wr ,Wz ,W~h and br , bz , b~h are the weights and

biases, respectively, which are learned, “σ” is the logistic func-
tion sigmoid, ~ht is the new hidden state at t, “∘” represents the
dot product, and “[ ]” represents that two vectors are con-
nected. The reset gate controls how much information from
the previous state is retained. On the other hand, the update
gate is contrary to the function of the reset gate [52].

2.3. Building a Hybrid Network of 2DCNN-GRU. The shear
wave velocity changing with time has a certain periodicity
and has a nonlinear relationship with various factors such
as density, porosity, Vp, and resistivity. Therefore, a
2DCNN-GRU hybrid network was proposed in this study
to solve the problem of lack of shear wave velocity. The
structure of 2DCNN uses the convolution kernels to fully
excavate the high-dimensional features of different logging
data, while the series data of time and depth cannot be accu-
rately excavated. The structure of GRU has a strong ability to
capture features in sequence data, while it is easy to intro-
duce noise and lose some features during the calculation
process [54], which is difficult to express the spatial features
of the data and ultimately leads to deviations in the predic-
tion results. To make up for the shortcomings of a separate
network, the 2DCNN and the GRU are combined to make
full use of the spatial convolution characteristics of 2DCNN
and the sensitivity of GRU to sequence data to establish a
nonlinear relationship between input and output. The struc-
ture of the 2DCNN-GRU hybrid network (Figure 3) and the
flow chart of the shear wave velocity prediction (Figure 4)
are as follows.

It can be seen clearly from Figure 3 that the first part
of the 2DCNN-GRU is the CNN, which convolves with
the input logging data through the convolution kernels
to obtain the spatial characteristics and uses padding to fill
it which can keep the size of the input sample unchanged
after convolution. The second part of 2DCNN-GRU is the

Input Convolutional kernel Convolutional feature

Max Pooling

Output feature
Fully 

connected 
layer

Figure 1: The structure of CNN and its unrolled network.
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GRU, which uses the spatial features extracted by the first
part as the input of this layer. In particular, the first layer
of GRU adopts the method of returning intermediate
values. Both of the networks use activation functions to
increase the nonlinearity of the network and use dropout
to prevent overfitting and increase the generalization abil-
ity of the network. Finally, these features are taken into
the fully connected layer to obtain the prediction of the
shear wave velocity.

3. Prediction Framework Based on 2DCNN-
GRU

Figure 4 shows the shear wave velocity prediction frame-
work based on the 2DCNN-GRU hybrid network, and the
specific process includes the following 4 parts.

3.1. Feature Selection. Deep learning networks are often used
to deal with classification and regression problems.

σ

ht
~

Vector sum
Vector element multiplication
Vector connection 

tanh

ht-1

1-

ht

zt rt

σ

xt

Figure 2: The internal structure of GRU.
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Figure 3: The structure of the 2DCNN-GRU hybrid network. A 2DCNN-GRU network is mainly composed of an input layer, a CNN
Network, a GRU Network, and a fully connected layer.
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Predicting shear wave velocity using conventional logging
data is a typical regression problem. The assumptions that
deal with regression problems often require correlations
between input and output data. The correlation coefficient
between logging data and shear wave velocity is shown in
the cross-plot (Figure 5). The correlation coefficients
between shear wave velocity (Vs) and compression wave
velocity (Vp), neutron porosity (CNL), gamma (Gr), shale
volume (Sh), density (RHOB), and water saturation (Sw)
are, respectively, 0.791, 0.576, 0.324, 0.300, 0.004, and
0.003. In these selected logs, the correlation between density,
Sw, and shear wave velocity is small. In addition, the corre-
lations between other logging data and shear wave velocity
are all above 0.3, which satisfies the assumption that deep
learning deals with regression problems.

3.2. Data Normalization. Since there are different degrees of
differences between different logging data, it is necessary to
normalize the logging data to speed up the training process,
which can reduce the impact on the network accuracy [55].
The logging data have mapped the range of [0, 1] with the
MinMaxScaler normalization method. The normalization
formula can be expressed as

Y = X − Xmin
Xmax − Xmin

, ð6Þ

where Xmin and Xmax are the minimum and maximum
of a sequence X, respectively, and Y represents the result
of normalization.

3.3. Generating Sample Datasets. The recurrent neural net-
work has various network structures in dealing with time
series problems, such as one-to-one, one-to-many, many-
to-one, and many-to-many. Due to the depositional law of
the subsurface in the depth direction, a many-to-one struc-
ture is adopted in the process of the prediction framework
based on 2DCNN-GRU (Figure 6).

3.4. Network Training and Evaluation. To speed up the net-
work training, the loss function mean square error (MSE)
was used to calculate the gap between the predicted values
and the true values in this study; at the same time, the Adap-
tive Moment Estimation [56] was used to back-propagate to
update the weight parameters. The prediction performance
of the network was evaluated by mean absolute error
(MAE) and correlation coefficient (R2) in this study, which
can be expressed as

MAE = 1
m
〠
m

i=1
yi − ~yiið Þj j, ð7Þ

R2 = ∑m
i=1 ~yi − �yið Þ2

∑m
i=1 yi − �yið Þ2 ,

ð8Þ

where m represents the number of samples, yi represents
the real value, ~yi represents the predicted value, and �yi repre-
sents the mean of samples.
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Figure 4: The VS prediction framework of the 2DCNN-GRU hybrid network.
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4. Testing and Analysis

The logging data used in our study were derived from the
Tarim Basin (Figure 7). The target layer is buried at a depth
of about 5500m, mainly composed of medium-fine sand-
stone, and the reservoir porosity is less than 10%, which
are typical characteristics of deep tight sandstone. In order
to verify the prediction accuracy of the 2DCNN-GRU hybrid
network proposed and optimize its parameters, the network
is trained with the logging data from 8 wells in a certain area,
and tested with another 2 wells to verify its accuracy and
generalization, and two cases are adopted using the optimi-

zation algorithm Adaptive Moment Estimation (Adam),
the loss function Mean Squared Error (MSE), and Dropout
to avoid overfitting of the network. In case I, the results of
the 2DCNN, GRU, and 2DCNN-GRU hybrid network were
analyzed and compared to verify the prediction accuracy of
the 2DCNN-GRU hybrid network. In case II, the influence
of sample length on the prediction accuracy of the
2DCNN-GRU hybrid network was analyzed.

4.1. Case I. Predicting shear wave velocity based on deep
learning is essentially a sequence prediction problem. Fully
considering the spatial and sequential features of the logging
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data, the 2DCNN-GRU hybrid network was established to
predict the shear wave velocity, and its results were com-
pared with those of the separate 2DCNN and GRU. The
structures of the 2DCNN-GRU, 2CNN, and GRU networks
are listed in Table 1.

Figure 8 shows the loss errors of 2DCNN-GRU,
2DCNN, and GRU networks. After a period of training,
the loss values of all networks reach the minimum value
and remain the same. It can be seen that the 2DCNN-
GRU hybrid network has the lowest loss error in that the

Density (g/cm3) Gamma (API) Neutron (%) DTC (𝜇s/ft) SH (%) SW (%) DTS (𝜇s/ft)
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Figure 7: The visualization of logging data.
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Figure 6: The structure of recurrent neural network (many-to-one).
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shear wave velocity prediction values are closer to the true
values than the other two networks. The logging data are
convolved with the convolution kernels to extract the high-
dimensional spatial features of the logging data. However,
the logging data has time-series features in the depth direc-
tion, so the extracted spatial features are inputted into the
GRU for time-series feature extraction, which can combine
the spatial and time-series features of the logging data to
predict shear wave velocity.

To compare the difference between the prediction per-
formances of the three networks, the 2DCNN-GRU,
2DCNN, and GRU perform shear wave velocity prediction
on the same test set and the experimental results are shown
in Figure 9. Although the predicted values of the three

networks are generally similar in trend to the true values,
the predicted values of the 2DCNN-GRU hybrid network
are closer to the true values than those of the other two net-
works at 5570-5590m.

As can be seen from Figure 10, the prediction of a single
2DCNN or GRU at this stage is always slightly higher than the
true values, but the prediction effect of the 2DCNN-GRU that
integrates spatiotemporal features has been greatly improved.
That is to say, combining with the spatiotemporal features of
the logging data can better predict shear wave velocity.

In order to analyze the prediction results of the three
networks more precisely, the mean absolute error (MAE)
and correlation coefficient (R2) were used to quantitatively
evaluate the prediction accuracy of the three networks

Table 1: The structures of the 2DCNN-GRU, GRU, and 2DCNN.

Network
name

Architecture
Kernel size of 2DConv

layers
Number of conv filters and GRU

units
Trainable
parameters

Other parameters

2DCNN-
GRU

Conv+GRU+GRU
+dense

15 ∗ 3ð Þ 16 + 32 + 64 32097
Padding = “same”

Return_
sequences = true

2DCNN Conv+conv+dense 15 ∗ 3ð Þ + 15 ∗ 3ð Þ 16 + 32 30529 Padding = “same”

GRU GRU+GRU+dense 0 32 + 64 22721
Return_

sequences = true

Conv: 2D convolution+ReLU activation.
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Figure 8: Loss error curves of 2DCNN-GRU, 2DCNN, and GRU networks.
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(Figure 11). The correlation coefficient between the data pre-
dicted by the 2DCNN-GRU hybrid network and the true
values was higher than that by the other two networks and
was as high as 0.866. Moreover, the MAE of 2DCNN-GRU
was lower than that of 2DCNN and GRU and was as low
as 0.0165. Compared with the 2DCNN-GRU hybrid net-
work, the reason for the low prediction accuracy of 2DCNN
and GRU is that both of them only predict shear waves from
single spatial or temporal features of logging data. Therefore,

the 2DCNN-GRU hybrid network that comprehensively
considers spatiotemporal features improves the accuracy of
shear wave velocity prediction.

4.2. Case II. Due to the depositional law of the subsurface in
the vertical direction, there is a certain correlation between
the sequence sampling points, which indicates that the length
of the input sample plays an important role in the prediction
of shear wave velocity by deep learning. In order to analyze
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Figure 9: Prediction results of three networks in case I. The last three subgraphs indicate the final prediction results. The blue line represents
the true values and the red line represents different prediction results based on three networks. The left one is the prediction result from
2DCNN-GRU, the middle one is that from 2DCNN, and the right one is that from GRU. To analyze the prediction performance of the
three networks more clearly, the differences between the prediction of the three networks were compared in the form of local
amplification (Figure 10).
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the optimal sample length, the vertical length of the convolu-
tion kernel in the CNN was consistent with the input sample
length, and the horizontal length was set to 3. A total of 9
experiments were performed with sample lengths set to 3,

10, 15, 20, 25, 30, 35, 40, and 65. The structure of the
2DCNN-GRU hybrid network is shown in Table 2.

Prediction results of the 2DCNN-GRU hybrid network
are shown in Figure 12. It can be seen that under different
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Figure 10: The local amplification comparison of 2DCNN-GRU, 2DCNN, and GRU.
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Figure 11: The evaluation metrics of 2DCNN-GRU, 2DCNN, and GRU networks.

Table 2: The structures of the 2DCNN-GRU hybrid network in 9 experiments.

Network
name

Architecture
The length of the convolution kernel

and sample
Number of conv filters and

GRU units
Trainable
parameters

Other parameters

2DCNN-
GRU

Conv+GRU
+GRU

3 32 + 32 + 64 40897

Padding = “same”
Return_

sequences = true

10 32 + 32 + 64 41569

15 32 + 32 + 64 42049

20 32 + 32 + 64 42529

25 32 + 32 + 64 43009

30 32 + 32 + 64 43489

35 32 + 32 + 64 43969

40 32 + 32 + 64 44449

65 32 + 32 + 64 46849

Conv: 2D convolution+ReLU activation+dropout.
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sample lengths, the prediction effects of 2DCN-GRU are dif-
ferent. With the continuous increase of the sample length,
the prediction effect of the network becomes better first
and then worse. When the input sample length is 35, the
prediction effect of the network is the best. Compared with
other sample lengths, the predicted values in the dotted box
are the closest to the true values, but with the continuous
increase of the sample length, the prediction effect of the
network changes gets worse. This is because the convolu-
tion kernels of 2DCNN can only extract local features but
cannot obtain global information as the sample length
increases; at the same time, the GRU cannot effectively
associate the input at the current moment with the histor-

ical data, which can make the prediction effect much worse
than before.

Moreover, all experimental results had been evaluated by
the correlation coefficient (R2) and mean absolute error
(MAE) (Figure 13). It can be seen clearly that the correlation
coefficient (R2) first increased and then decreased with the
input sample length, while the trend of MAE was just the
opposite during the whole testing process. When the length
of the input sample reached 35, the correlation coefficient
(R2) reached the highest value at 0.877; at the same time,
the MAE reached the lowest value at 0.0160, which indicates
that the predicted values were closest to the true values. At
the same time, the correlation between the predicted values
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Figure 12: Nine experimental results based on the 2DCNN-GRU hybrid networks. The vertical lengths of the convolution kernels from left
to right were set to 3, 10, 15, 20, 25, 30, 35, 40, and 65, respectively.
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and the true values was analyzed in the form of a cross-plot
(Figure 14), and the correlation reached 0.877. To sum up,
the prediction accuracy of the 2DCNN-GRU hybrid net-
work is affected by the length of the input samples. When
the input sample length and convolution kernel length are
35, the prediction effect of the network is the best.

5. Conclusion

Considering the sequential features in the depth direction of
rocks and spatial features of different physical properties of
rocks, a new network 2DCNN-GRU hybrid network was
proposed in this study, which can extract the spatial features
of logging data from the 2DCNN and input them into the
GRU to extract the temporal features, fully considering the
temporal and spatial features of the logging data to predict
Vs. In the case of I, the correlation coefficient, mean absolute
error, and loss function of the evaluation parameters of

2DCNN-GRU were better than those of the separate
2DCNN and GRU, reaching 86.6, 0.165, and 5.2375e-04,
respectively; comparing the prediction results of 2DCNN,
GRU, and 2DCNN-GRU, the prediction effect of 2DCNN-
GRU is better than that of 2DCNN and GRU alone. In the
case of II, the prediction accuracy of 2DCNN-GRU was
affected by the input sample length. The prediction accuracy
of 2DCNN-GRU first increased and then decreased with the
input sample length. When the sample length was 35, the
prediction accuracy of the network reached the highest.
The experimental results show that the newly proposed
2DCNN-GRU hybrid network outperforms other networks
in prediction performance. In addition, the 2DCNN-GRU
hybrid network proposed in this study was a supervised
machine learning whose prediction accuracy was dependent
on training sample accuracy.
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