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Reservoirs with overpressure are of great importance for petroleum exploration where commercial production can be usually
obtained. Studying the distribution characteristics and controlling factors of reservoir overpressure is crucial for further
petroleum exploration. In this study, we investigate the vertical and planar distribution of reservoir overpressure in the Mahu
sag, northwestern Junggar basin by analyzing measured pressure data from well testing of oil reservoirs. In the Baikouquan-
Jiamuhe Formation, reservoir overpressure is widely distributed, and the pressure coefficient increases from the margin to the
center of the sag and generally increases with the increasing altitude. Crossplot analysis of density and velocity in the Triassic
strata and Permian Fengcheng Formation is conducted to further investigate the influence of undercompaction in the Mahu
sag for the first time. The result suggests that undercompaction has little influence on reservoir overpressure, whereas fluid
charging may play a vital role in the development of overpressure. Our research further conducted the analyses of distribution
of source rocks and oil-source correlation. The results further confirmed that hydrocarbon generates from the Fengcheng
Formation and charges into other reservoirs, suggesting that hydrocarbon generation and fluid charging are the main
mechanism of reservoir overpressure.

1. Introduction

Reservoirs with abnormally high pressure are usually the
most favorable targets for oil and gas exploration, and reser-
voir overpressure can enable commercial production from
these reservoirs. Therefore, many researchers began to focus
on reservoir overpressure, mainly investigating the distribu-
tion of reservoir overpressure [1, 2], the factors controlling
the development of reservoir overpressure [3–6], the influ-
ence on reservoir quality [7–11], the relationship between
overpressure and diagenesis, etc. [12–14].

In the Mahu sag, northwestern China, proved, probable,
and possible reserves are about 30 billion tons. Reserves in
the lower Triassic Baikouquan Formation, the upper Perm-
ian Wuerhe Formation, and the lower Permian Fengcheng
Formation hold up to 20 billion tons. Petroleum exploration
has revealed that reservoir overpressure is well developed in

layers consisting of sandstones and conglomerates below the
Triassic. Therefore, studying the characteristics and control-
ling factors of reservoir overpressure in the Mahu sag is
extremely important for further petroleum exploration.

In previous studies, some researchers investigated the
reservoir overpressure in the Jurassic strata in the central
Junggar basin or other regions of the basin [15, 16], some
focused solely on the reservoir overpressure in the Triassic
strata in the Mahu sag, and the mechanism of overpressure
in the Mahu sag remains controversial [17, 18]. Lacking
enough data, few researchers paid attention to the reservoir
overpressure through all the Triassic-Permian reservoirs in
the Mahu sag. In recent years, with the increasing numbers
of petroleum wells in the sag, more and more data are avail-
able for investigating the reservoir overpressure in the Mahu
sag and adjacent areas. Besides, the acoustic velocity and the
density method were proposed to determine the origin of
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overpressure in the early 21st century [19, 20]. In recent
years, Zhao et al. [6] use this method to study the overpres-
sure in the Qingshankou Formation in the Songliao basin
and East China Sea basin. However, this method has not
widely used in China, especially in the Junggar basin. In this
study, 195 formation pressure data are analyzed from over
100 exploration wells in the Mahu sag and adjacent areas
and utilized to investigate the characteristics of reservoir
overpressure. Acoustic velocity and the density method,
analyses of source rocks distribution, and oil-source correla-
tion are conducted to further analyze the controlling factors
of reservoir overpressure.

2. Geological Setting

The Junggar basin, located in the northwest part of China,
covers an area of about 130000 km2 (Figure 1(a)) [21]. The
basin is a superimposed basin developed from late Paleozoic
to Cenozoic [22, 23]. In late Carboniferous, the western
Junggar basin experienced intense collision between the
Junggar plate and the Kazakhstan plate [22, 24]. The thrust-
ing and uplifting continued until late Permian, which also
results in intense denudation. From the Triassic, the western
Junggar basin entered a depression stage with uplift and
denudation for several times [22, 25]. The Mahu sag is
located in the northern portion of the Junggar basin, cover-
ing an area of 5000 km2 (Figure 1(a)) [26]. The Mahu sag is
bounded by Wuxia-Kebai fault belt to the north, Dabasong
uplift to the south, Zhongguai uplift to the west, and Luliang
uplift to the east (Figure 1(a)).

In the Mahu sag, sedimentary formations are widely dis-
tributed, including Carboniferous, Permian, Triassic, Juras-
sic, Cretaceous, and Cenozoic from oldest to youngest
(Figure 1(b)) [27, 28]. The sag still receives sediments from
the surrounding fault belts. The basin infill can be divided
into four main units (Figure 1(b)): (1) the lower Carbonifer-
ous is considered a metamorphic basement of the Junggar
basin and characterized by chaotic seismic reflection, which
is dominated by volcanoes; (2) the upper Carboniferous
unconformably overlies on the basement, made up of con-
glomerates, volcanoes interbed with mudstones or coals;
(3) the lower and middle Permian is uplifted and denudated
near the Wuxia-Kebai fault belt, chiefly consisting of con-
glomerates near the fault belt and sandstones and mudstones
in the sag; (4) the upper Permian Upper Wuerhe Formation
and its overlying formations sequentially overlap the under-
lying formations to the northwest in the sag.

The Jiamuhe Formation and the Fengcheng Formation
are mainly the most important source rocks in the Mahu
sag [29, 30]. The Jiamuhe Formation (P1j) consists of volca-
noes, conglomerates, sandstones, and mudstones (Figure 2).
The Fengcheng Formation (P1f) in the sag is dominated by
dolomitic shales, dolomitic siltstones, and sandstones with
alkaline minerals or evaporates. The Xiazijie Formation
(P2x) and Lower Wuerhe Formation (P2w) are mainly char-
acterized by sandstones with mudstones interbedded. The
Upper Wuerhe Formation (P3w) and Baikouquan Forma-
tion (T1b) are mainly composed of coarse conglomerates
and sandstones, the product of alluvial fan and fan delta

facies [31, 32]. The Karamay Formation (T2k) and Baijian-
tan Formation (T3b) are featured by thick mudstones with
thin sandstones interbedded, making them the most signifi-
cant caprocks in the sag.

3. Reservoir Overpressure Data

Various methods for overpressure characterization are
developed, including dimensionless overpressure, dynamic
pressure increment, and pressure coefficient [33–36]. Pres-
sure coefficient is defined as the ratio of initial reservoir pres-
sure and the corresponding hydrostatic pressure, a
parameter for judging whether the formation pressure is
normal [36]. The formula is shown as Pc = Pr/Pw = Pr/ρgh,
where the Pc is the pressure coefficient, the Pr is the reservoir
pressure, the Pw is the corresponding hydrostatic pressure,
the ρ is the density of formation water, and h is the vertical
depth of the stratum. In well oil testing, a pressure gauge is
placed in the middle of the formation to be tested, and the
upper and lower parts are sealed with a packer, respectively.
When the formation pressure comes to stabilization, a pres-
sure data is measured and recorded as the formation pres-
sure. During this test, the formation is considered to be in
an enclosed environment, and disturbance of fluid flows
can be ignored. Therefore, in this study, the pressure coeffi-
cient for overpressure characterization is adopted. Reservoir
pressure data are measured by an electronic pressure gauge
during well testing of oil reservoirs, while the h can be mea-
sured directly. The ρ is taken as an average value of ground-
water in the Mahu sag, 1.023 g/cm3. Thus, 195 measured
pressure coefficient data were obtained from over 100 wells
in the Mahu sag and adjacent regions (Figure 3), including
24 data of Jurassic strata, 20 data of Baijiantan Formation
and Karamay Formation, 84 data of Baikouquan Formation
and Upper Wuerhe Formation, 26 data of Lower Wuerhe
Formation and Xiazijie Formation, 24 data of Fengcheng
Formation and Jiamuhe Formation, and 17 data of upper
Carboniferous. In the oil and gas industry, it is generally con-
sidered that the pressure coefficient of overpressure is larger
than 1.2 [37, 38].

4. Results

Among these data, all the data of Jurassic strata are lower
than 1.2, meaning that the pressure of Jurassic strata is nor-
mal. Half of Baijiantan-Karamay Formation pressure coeffi-
cients are normal, and half of pressure coefficients are higher
than 1.2, which means overpressure is locally developed in
the Baijiantan-Karamay Formation. In the Baikouquan-
Upper Wuerhe Formation, the altitude of data ranges from
1500 to 4500m, and the value of pressure coefficient varies
from 0.8 to 1.94. In the Lower Wuerhe-Xiazijie Formation,
the altitude of data ranges from 2509 to 4600m, and the
value of pressure coefficient varies from 0.94 to 1.84. In the
Fengcheng-Jiamuhe Formation, the altitude of data ranges
from 2400 to 4600m, and the value of pressure coefficient
varies from 1.0 to 2.1, mainly distributes between 1.1-1.76
with a maximum value of pressure coefficient 2.14 in the
Fengcheng Formation. The pressure coefficient of the upper
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Carboniferous with altitude from 0-5500m varies from 1.0
to 1.4. Noticeably, data of the upper Carboniferous mainly
distribute in the northwestern margin of the sag (in or near
the fault belt).

4.1. Vertical Distribution of the Overpressure. Based on these
data, the relationships between pressure coefficients of dif-
ferent reservoirs and their altitudes are analyzed here
(Figure 3). The pressure coefficients of all reservoirs are
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Figure 1: (a) Tectonic units and (b) a geological structure profile of the Mahu sag.
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plotted on Figure 3 with different symbols. We can find that
pressure coefficients of the Baijiantan-Karamay Formation
range from 0.8 to 2.1 with altitude from 1100-4000m, and
the pressure coefficients exhibit a systematic increase with
corresponding increase in altitude (Figure 3(b)). Besides, in
the Baikouquan Formation and its underlying Permian

strata (T1b-P1j), the pressure coefficients generally increase
with the increasing altitude of reservoirs (Figure 3). Different
from the overlying formations, the pressure coefficients of
the upper Carboniferous have no obvious relationship with
the altitude (Figure 3(f)). We also constructed a cross-
section of pressure coefficient in the Mahu sag, from Well
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BY1 to Well MZ2 (Figure 4). It can be found that reservoir
overpressure is widely developed in the sag, and the pressure
coefficient increases from the margin to the center of the sag,

e.g., from BY1 to MZ1, and increases with the increasing
altitude from the Baikouquan Formation to Fengcheng For-
mation, e.g., Well AC1. Besides, the cross-section shows that
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Figure 3: Relationship between measured pressure coefficient and altitude in the Mahu sag.
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the Baikouquan-Upper Wuerhe Formation corresponds to
the top surface of the reservoir overpressure, sealed by its
overlying thick mudstones in the Baijiantan Formation
(Figure 4).

4.2. Planar Distribution of the Overpressure. For a better
understanding of the planar distribution, pressure coefficients
are plotted in a planar graph (Figure 5). In the Baijiantan-
Karamay Formation, reservoir overpressure occurs only at
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areas aroundWell MH1, Well AH1,Well MZ4, andWell D1,
especially around Well D1 with a value of 2.0 (Figure 5(a)).
The other areas are characterized by normal reservoir pres-
sure coefficients. In the Baikouquan-Upper Wuerhe Forma-
tion (Figure 5(b)), reservoir overpressure exists in the areas
around Well MH1, southeastern areas of Well AH1, and
southwestern areas of X72, suggesting that three centers of

reservoir overpressure develop in the sag. It can be found that
pressure coefficients are higher in the sag than that in the slope
near the fault belt and generally increase from the slope to the
center of the sag (Figure 5(b)). In the Lower Wuerhe-Xiazijie
Formation (Figure 5(c)), although most of data are limitedly
distributed in the western margin of the sag, it can be found
that pressure coefficients in the northern margin are lower
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than 1.0 but generally larger than 1.2 in the sag with a maxi-
mum value of 1.84 in the area around Well MZ2. In the
Fengcheng-Jiamuhe Formation, with a few exceptions, pres-
sure coefficients are larger than 1.2 in the sag, indicating that
reservoir overpressure iswidely developed in these formations
(Figure 5(d)). Noticeably, we can find that pressure coefficient
is up to 2.1 in the area nearWuerhe (Well FC1), which means
that a local center of reservoir overpressure develops in the
margin of Mahu sag (Figure 5(d)). In the upper Carbonifer-
ous, pressure coefficients are limitedly distributed in the fault
belt and northern margin of the sag (Figure 5(e)). However, it
can be found that pressure coefficients are larger than 1.2 in
theWuerhe area while lower than 1.2 in other areas, revealing
that reservoir overpressure distributes regionally in the north-
ern margin of the sag.

Overall, reservoir overpressure is developed in the Trias-
sic and its underlying strata in the Mahu sag. The reservoir
overpressure of Baijiantan-Karamay Formation and upper
Carboniferous is limited in regional areas while reservoir
overpressure distributes widely in the Baikouquan-Jiamuhe

Formation. Pressure coefficients in the Baijiantan-Jiamuhe
Formation generally increase from the margin of the sag to
the center of the sag and increase with the increase of alti-
tude. However, pressure coefficients in the upper Carbonif-
erous have little relationship with the altitude. The
characteristics of reservoir overpressure in the Mahu sag
are analyzed here; however, the factors influencing the dis-
tribution of reservoir overpressure remain further to be
investigated.

5. Discussion

In previous literatures, factors controlling the development
of reservoir overpressure generally include undercompac-
tion, hydrocarbon generation, fluid expansion, tectonic
movement, clay mineral dehydration, and hydrothermal
pressure [39–42]. The clay mineral dehydration and hydro-
thermal pressure are considered not related with the hydro-
carbon generation [43]. Most researchers pay more attention
to the influence of undercompaction and hydrocarbon
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generation. In the Mahu sag, we focus on the roles of under-
compaction, quartz cementation, hydrocarbon generation
and fluid charging, tectonic movement, and caprocks in
the formation of reservoir overpressure. Due to the limita-
tion of our study, other factors for overpressure can not be
ignored.

5.1. Undercompaction. Undercompaction refers to a phe-
nomenon that pore fluid is prevented from flowing out of
thick mudstones in time during rapid sedimentation, caus-
ing the value of pore pressure to be higher than that of
hydrostatic pressure. When sandstones and other reservoirs
are interbedded within mudstones, this process can also lead
to overpressure in reservoirs. In the Mahu sag, the Karamay-
Baijiantan Formation consists of thick mudstones with deep
burial depth. Taking Well D11 as an example (Figure 6), the
Karamay Formation (3826-4208m) is dominated by mud-
stones with 3-8m thin sandstones interbedded and charac-
terized by rapid changing acoustic curve (AC). The
measured pressure coefficients range from 0.9 to 1.4. Only
in three intervals (3850-3910m, 4010-4030m, and 4100-
4120m) where the layers are dominated by sandstones dem-
onstrated that the pressure coefficients are relatively higher
than 1.2, whereas the pressure coefficients of layers domi-
nated by thick mudstones are normal. Besides, the underly-
ing Baikouquan Formation is dominated by conglomerates
and sandstones, e.g., Well M18 (Figure 7). In the Baikou-
quan Formation, the reservoir pressure is 66.7MPa and the

pressure coefficient is 1.74. The overpressure exists in con-
glomerates and sandstones with particle support structure,
showing no material basis of mudstone undercompaction.

Crossplot analysis of density and velocity provides an
efficient method to distinguish the effects of undercompac-
tion and fluid charging [44–46]. It is considered that density
and velocity of rocks increase with the increasing burial
depth. Due to the influence of undercompaction, the density
and velocity both show obvious low anomalies in the density
and velocity crossplot. However, under the influence of fluid
charging, rock density usually remains the same or shows a
slight reduction. Here, crossplot analysis of the Triassic
strata and Permian Fengcheng Formation is conducted,
using logging data from 7 wells in the Mahu sag
(Figure 8). It can be found that the density of the Triassic
mudstone (purple dots) ranges from 2.60 to 2.66, which is
assumed as a normal value of undercompaction in the Mahu
sag. However, the acoustic velocity varies from 2500 to
4000m/s; these data are far away from the Gardner curve
and much less than the theoretical value (Figure 8). The high
density and low acoustic velocity of the Triassic mudstone
indicate that undercompaction has little influence on over-
pressure, whereas fluid charging may play a vital role in
the development of overpressure. Besides, the density of
the Fengcheng Formation ranges from 2.55 to 2.70, and
the acoustic velocity varies from 3500 to 6000m/s
(Figure 8). These data are mainly around the Gardner curve,
suggesting that no effect of undercompaction occurs here.
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5.2. Quartz Cementation. Some researchers pay attention to
the influence of quartz cementation on reservoir overpres-
sure [47, 48]. It is generally believed that quartz cementation
is affected by the burial depth, rich silica sources, tempera-
ture, acidic environment, etc. In the Mahu sag, the lithology
of the Triassic reservoirs is dominated by sandstone and
conglomerates, whose mineral composition is mainly feld-
spar and rock debris (Figure 7). This indicates that the silica
sources are not available enough for quartz cementation in
layers below the Triassic. Besides, in the period of early
Permian, the northwestern margin of the Junggar basin is
considered to be a semideep to deep alkaline lake [49]. This
also suggests that the sedimentary environment is not suit-
able for quartz cementation. In addition, overpressure
caused by chemical compaction shows the characteristics
that the density increases with the enhancement of overpres-
sure while the velocity does not decrease nor has little
decreases [50]. As mentioned above, crossplot analysis of
density and velocity also shows that no obvious chemical
sedimentation occurs in the Triassic and the Fengcheng For-
mation (Figure 8).

5.3. Hydrocarbon Generation and Fluid Charging. The Feng-
cheng Formation is the most important source rocks in the
Mahu sag. The thickness of source rocks in the Fengcheng

Formation increases from the margin of the sag to the center
of the sag (Figure 9). Four areas around Wells MZ4, AH1,
FC1, and X72 with a maximum thickness of 150m exist in
the sag, which is generally consistent with the distribution
of reservoir overpressure (Figure 5). Previous researches
have shown that hydrocarbon generation reached a peak in
the late Triassic [51]. The distribution of source rocks in
the Fengcheng Formation reveals that hydrocarbon gener-
ates from the source rock and then charges into the sand-
stones or conglomerates, causing reservoir overpressure to
develop in and around the sag. Further, hydrocarbon flows
into its underlying and overlying reservoirs through faults
or unconformities and finally results in the formation of res-
ervoir overpressure in the Mahu sag. Fluid charging can be
proved by the analyses of oil-source correlation. In the Mahu
sag, taking Wells MH1 and JL55 as an example, oil-source
correlation analysis shows that the oil and gas in the Triassic,
Permian, and upper Carboniferous mainly originate from
the Fengcheng source rocks (Figure 10).

5.4. Faulting and Uplifting by Tectonic Movement. As men-
tioned above, fluid charging plays a vital role in developing
reservoir overpressure where faults act as conduits trans-
porting hydrocarbon flows. In the Mahu sag, four types of
faults, which are developed during multistage tectonic
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movements [52], show important influences on the develop-
ment of reservoir overpressure. To the first, faults develop
before the sedimentation of the Jiamuhe Formation, serving
as the conduits for oil and gas charging into Carboniferous
reservoir from the Fengcheng Formation. The second type
of faults develops in early Permian (P1j and P1f). These
faults control the subsidence center of the sag and the distri-
bution of source rocks. To the third, faults were formed dur-
ing the orogenic movement in the early-middle Permian
period. These faults provide efficient pathways for hydrocar-
bon in the Fengcheng Formation migrating to the Upper
Wuerhe Formation and Baikouquan Formation with a dis-
tance of 2000-4000m (Figure 4). This explains the reason
why reservoir overpressure exists in the Upper Wuerhe For-
mation and Baikouquan Formation. To the fourth, faults
were formed after Cretaceous, which are mainly micro-
strike-slip faults. Since the Baijiantan-Karamay Formation
is dominated by mudstones interbedded with sandstones,
local reservoir overpressure may develop under the influence
of fluid charging through faults (Figure 4).

Besides, uplifting has an important influence on the dis-
tribution of formation pressure. When strata in a deep depth

are uplifted, if they are overlain by caprocks with good sealing
capacity, their pressure would be abnormally higher than the
pressure of strata at shallow depth. In the Wuxia-Kebai fault
belt and in the northern margin of the Mahu sag, strata below
the Upper Wuerhe Formation are greatly uplifted during the
orogenic movement (Figures 1(b) and 4). Near the fault belt,
the lower-middle Permian sediments are products of alluvial
fan facies, dominated by coarse clastic rocks. Under the effect
of weak diagenesis, uplifting makes coarse clastic rocks and
faults near the fault belt the conduits for hydrocarbon migra-
tion. As a result, formation pressure near the fault belt is nor-
mal. Taking Well BY1 as an example, which is located at
Wuxia-Kebai fault belt, the pressure measurement while dril-
ling shows that the pressure coefficients of Carboniferous and
Permian reservoirs range from 1.07-1.10. We can find that
formation pressure is normal in the hanging wall or footwall
of fault (Figure 4). Besides, it can be found that some wells are
characterized with underpressure (<1.0) in layers, especially
the Karamay-Baijiantan Formations (Figures 3 and 5). These
wells are mainly located at areas in or near the fault belt. This
reveals that Wuxia-Kebai fault belt is a region where forma-
tion pressure has been released.
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5.5. Role of Caprocks. Thick mudstones are developed in the
upper-middle Triassic strata, overlying on the Upper
Wuerhe-Baikouquan Formation (T1b-P3w) in the sag and
Carboniferous reservoirs in the Zhongguai uplift. Thesemud-
stones are considered the most effective regional caprocks in
the sag, which is in consistent with the distribution of reser-
voir overpressure in the strata below the Triassic in the Mahu
sag (Figures 3 and 4). Reservoirs in the Upper Wuerhe-
Baikouquan Formation (T1b-P3w) are closely related with
the distribution of sediments of fan delta plain facies and allu-
vial fan facies, where conglomerates with high clay content
show a feature of low compressive strength. With the sed-
imentation and burial of Triassic-Cretaceous deposits, con-
glomerates in the Upper Wuerhe-Baikouquan Formation
are gradually densified, causing their porosities and perme-
abilities to be lower than the critical value for fluid charg-
ing. As a result, the upward and lateral migration of oil
and gas in the Upper Wuerhe-Baikouquan Formation is
prevented. Besides, as mentioned above, thick mudstones
are developed in its overlying Triassic strata. Thus, oil and
gas generated from the Fengcheng Formation can migrate
through faults and finally charge into reservoirs in the Upper
Wuerhe-Baikouquan Formation. The development of cap-
rocks, including the densified conglomerates in the upward
and lateral direction and overlying mudstones in the upper-
middle Triassic strata, is a necessary condition for the forma-
tion of reservoir overpressure in the Mahu sag.

The Fengcheng Formation is dominated by conglomer-
ates near the fault belt and changes into sandstones, dolo-
mitic sandstones, and fine-grained rocks towards the sag,
forming a complete sequence from reservoir to source rock.
Hydrocarbon generated from the source rock in the sag cen-
ter migrates into reservoirs in other formations by faults but
also migrates into conglomerates and sandstones near the
fault belt along the Fengcheng Formation. Similar to the
Upper Wuerhe-Baikouquan Formation, as the burial depth
increases, conglomerates with high clay content are gradually
densified, and thus, the upward migration into conglomer-
ates is prevented. Besides, sandstones and dolomitic sand-
stones are also densified, but oil and gas generated in the
later period can still migrate and accumulate in tight sand-
stones. The conventional reservoirs with normal pressure
and unconventional reservoirs with overpressure orderly
accumulate in the Fengcheng Formation in the Mahu sag,
where conventional oil reservoirs, tight oil, and shale oil
gradually change from the northeast sag margin to the sag
center [53].

6. Conclusions

Reservoir overpressure is widely developed in the Mahu sag,
northwestern Junggar basin. Analysis of measured pressure
data of oil reservoirs is conducted in this study. Results show
that, in the Baijiantan-Karamay Formation and upper Car-
boniferous, reservoir overpressure is limited in regional
areas. In the Baikouquan-Jiamuhe Formation, reservoir over-
pressure distributes widely and increases from the margin of
the sag to the sag center and generally increases with the
increasing altitude. Crossplot analysis of density and velocity

shows that undercompaction has little influence on reservoir
overpressure here. Analyses of source rock distribution and
oil-source correlation reveal that hydrocarbon flows out of
the Fengcheng Formation in deep depth and charges into
layers at shallow depth, indicating that hydrocarbon genera-
tion and fluid charging are responsible for the formation of
reservoir overpressure in the Mahu sag. Faulting and uplift-
ing by tectonic movement have an important influence on
distribution of reservoir overpressure. The development of
densified conglomerates near the fault belt and mudstones
in the upper-middle Triassic strata provides a necessary con-
dition for the formation of reservoir overpressure.
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