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Direct numerical simulation of pore-scale flow in porous media at pore scale is a fast developing technique to investigate pore-
scale flow behaviors. However, with the decrease of the spatial scale, the interfacial tension of the two-phase interface will have
an important impact on the two-phase flow processes. As a result, spurious currents near the interface with this method have
an important impact on the numerical accuracy and computational efficiency, seriously affecting the numerical prediction of
pore-scale fluid flow. Ghost cell method can greatly reduce the spurious currents near the interface, but it needs to locate the
phase interface accurately. In this work, a new method using constant velocity spiral to approximate the two-phase interface is
proposed. The method not only considers the curvature of the phase interface but also considers the influence of the curvature
change on the phase interface, which greatly improves the ability of the phase interface position. The new method can improve
the accuracy of interfacial tension treatment and then improve the prediction ability of volume of fluid in high interfacial
tension driven flow. Numerical simulations of capillary rising, droplet spreading on a plane, and bubble rising show that the
method is accurate and has a strong engineering application prospect.

1. Introduction

The two-phase flow process with a phase interface exists
widely in nature (such as rivers and lakes) and industrial
processes (oil recovery [1]).To deeply study the dynamic
behaviors and mechanism of the fluid behaviors at pore
scale is of great significance to understand macroscopic
behaviors and optimize development scheme. The research
methods for the flow with the phase interface mainly
include experimental methods [2–4] and numerical simu-
lation methods [5–7]. The experimental methods can pro-
vide the macroscopic characteristics and phenomena of
phase flow but do little for the research on the driving
mechanism of these macroscopic characteristics and phe-
nomena. With the development of related numerical algo-
rithms and improvement of computing ability of the
computers, numerical simulation method has gradually
become an important tool to study the multiphase flow
with the phase interface.

In the numerical simulation of pore-scale two-phase or
multiphase flow, Navier-Stokes equation is generally used
[7]. For instance, Raeini et al. used Navier-Stokes equation
to simulate pore-scale two-phase flow [8]. Guo et al. used
Navier-Stokes method to investigate the residual oil distribu-
tion and enhanced oil recovery method [9]. Ning et al.’s
group used Navier-Stokes Equation in the pore-scale simula-
tion of oil-water flow [10], pore-scale particle transport pro-
cess [11, 12], or particle flooding process [1] and have gained
interesting results of pore-scale multiphase behaviors (for
instance, capillary barriers [10, 13]). In the oil-water two-
phase flow, there is always interfacial tension which depends
on the curvature of interface and the interfacial energy per
unit area. Owing to a sharp increase of curvature in the
microscale condition, interfacial tension has to be the vital
one among kinetic behaviors. Therefore, only accurate com-
putation of interfacial tension can guarantee accurate pre-
diction of oil-water flow behaviors. From numerical point
of view, interfacial tension only exists on interface. It has
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singularity which makes it harder when coupling with
Naiver-Stokes equation. In order to compute it more accu-
rately, tracking of the position matters a lot. For now, there
are serval ways for tracking interface, front tracking method
(FTM) [14], level set method [15], and volume of fluid
(VOF) [16]. FTM uses two-dimensional curved surface
mesh to represent the phase interface, which makes the posi-
tion confirmed. However, when there is a change in the sur-
face topology, the mesh needs to be changed accordingly. In
extreme cases, we have to reconstruct the mesh, making the
treatment intractable. Level set method can track topology
accurately and is easier extended to three-dimensional cases,
but it needs to reinitiate level set function due to restricted
precision and may cause mass increase or loss. VOF uses
distribution of volume fraction of the primary phase to rep-
resent the phase and interface distribution and pure convec-
tion scalar equation to track its change. As a result, the mass
is conserved. Moreover, it is easier to deal with the changes
of topology and to extend to three-dimensional cases. This
method has been extensively used in pore-scale multiphase
flow [10, 17]. With this method, in order to trace movement
of interface accurately and reduce diffusion, high accurate
algorithms and subgrid interface structure is required.

For conventional VOF, nonphysical flow near the inter-
face, also known as “spurious currents,” usually appears
under high surface tension [18]. Generally speaking, this
problem is caused by two reasons. First, it is difficult to accu-
rately compute the position and curvature of interface. Sec-
ond, surface tension-induced pressure and surface tension
are unbalanced during Navier-Stokes discretization process.
The first problem has always been a hot spot. Solutions such
as finite difference method [19], ELVIRA method [20], and
least square method [21] are employed to improve the accu-
racy of interface normal calculation, whereas CLSVOF
(coupled level set with volume of fluid) method [22, 23]
and linear interface reconstruction method [24–26] are used
to obtain position, and the method in reference [18] can
increase the precision to compute curvature. As for the sec-
ond problem, reference [27] gives a strategy to make pres-
sure and interfacial tension balanced by introducing
interfacial tension-induced pressure into pressure equation
rather than dealing with interfacial tension directly in the
momentum equation. Moreover, they used ghost cell
method to sharply represent the interface. If the curvature
is computed accurately, interfacial tension calculation can
achieve the accuracy of the computer. In the ghost cell
method for interfacial tension treatment, the intersection
point of the connection line of interfacial cells with the inter-
face needs to be computed. The interfacial cells here is
denoted as two neighbor cells across the phase interface.
The accuracy of computing the intersection point matters a
lot for interfacial tension computation with high accuracy,
which relates with the dynamic behavior prediction in inter-
facial tension driven flows. Presently, interface distance
interpolation is usually employed to compute this point,
which does not consider the influence of interface curvature.
Sun and Su used an arc to approximate the interface near
ON in order to enhance the accuracy of solving for rI con-
sidering the influence of interface curvature on the position

of intersection point [28]. However, the actual interface is
not an arc, and the curvature of the interface may vary with
the position.

This article presents a new method for computing the
intersection point through approximating the subgrid inter-
face using a variable curvature curve. The influence of inter-
face curvature on the intersection point is taken into
account. As a result, the intersection point and the interface
curvature at this point are obtained with high accuracy.

2. Mathematical Model

The Navier-Stokes equation is used to describe the two-
phase motion.

∂ρu
∂t

+∇∙ ρuuð Þ−∇∙ μτð Þ = −∇p + ρg: ð1Þ

In addition, the two-phase fluid meets the continuity
restriction.

∇∙u = 0, ð2Þ

where ρ and μ are the average density and dynamic vis-
cosity coefficient of two phases, calculated from

χ = χ1α + 1 − αð Þχ2, ð3Þ

where χ1 and χ2 are the properties of phase 1 and phase
2 and α is the volume fraction of phase 1. Phase 1 is the pri-
mary phase, and phase 2 is the secondary phase; p is
dynamic pressure; g is gravity acceleration; u is the average
velocity of two phases. The following equation is used to
trace α.

∂α
∂t

+∇∙ uαð Þ = 0: ð4Þ

Equations (1) and (2) are used to describe the motion of
two phases.

τ is deformation rate tensor, given by

τ = ∇u + ∇uð ÞT : ð5Þ

When the two-phase interface exists, the pressure will
have a jump; i.e., the following equation is met:

pIO − pIN = σk, ð6Þ

where pIO is the pressure at the interface in the owner side
and pIN is the pressure at the interface on the neighbor side.
Owner and neighbour are two cells across the interface and
sharing the same face. σ is the interfacial tension coefficient,
and k is the curvature of the interface, which is calculated
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from the following equation:

k = −∇∙
∇α
∇αj j

� �
: ð7Þ

3. Solution Method and Procedure

In this paper, the collocated finite volume method was used
to discretize the equations, and the PISO algorithm was used
to decouple the pressure and velocity [29]. The pressure dif-
ference caused by the interfacial tension is separated from
the actual pressure. The half-discrete form of Equation (1)
is as follows:

apu =AH−∇pd−∇pc, ð8Þ

where ap is the value on the diagonal of the coefficient
matrix after discretization of the Equation (1) and AH is
expressed as

AH =〠
N

aNu + b, ð9Þ

where aN is the implicit contribution coefficient of neighbor
nodes to the current node during discretization of Equation
(1) and b is the explicit discrete contribution except pres-
sure; pc is the pressure gradient caused by the presence of
interfacial tension, and pd is the dynamic pressure.

Both sides of Equation (6) are divided by ap and
substituted in Equation (2) to give

∇∙
1
ap

∇pd

 !
= ∇∙

AH

ap

 !
−∇∙

1
ap

∇pc

 !
, ð10Þ

Equation (13) is the pressure equation derived by PISO
algorithm. The new pressure can be obtained by solving
the equation and substituted into Equation (6) to update
the velocity. The velocity flux at the cell face is calculated
from

φf =
AH

ap

 !
f

∙Sf −
∇pd
ap

 !
f

∙Sf −
∇pc
ap

 !
f

∙Sf : ð11Þ

It should be pointed out that the pressure gradient, ∇pc,
caused by interfacial tension in Equations (9) and (10)
should be further discussed.

The arbitrary polyhedral finite volume method is used to
discretize the equation, and the gamma scheme presented in
work [30] was used to discretize the convection term, and
the Crank-Nicolson scheme was for the time term [31],
and the central scheme is used to discretize the diffusion
term. The solution procedure of the equations is as follows.

Step 1. Solving velocity equation (Equation (1)) for velocity
prediction. Pressure at the previous time step is used.

Step 2. Solving pressure Equation (10) to obtain the pressure.

Step 3. Using Equation (11) to update velocity flux at the cell
face.

Step 4. Repeating Steps 2 and 3 to complete the pressure
calculation cycle.

Step 5. Calculating the velocity at the cell center using
Equation (8).

Step 6. Calculating the volume fraction using Equation (4).

Step 7. Updating the density and viscosity using Equation (3).

Step 8. Going to Step 1 for next time cycle.

4. Interfacial Tension Processing

4.1. Ghost Cell Method. In this paper, the ghost cell method
was used to deal with the interfacial tension [27]. Figure 1
illustrates the two-phase interface across two nearby mesh
cells. The dotted line represents the position of the interface;
O and N are the centers of the two adjacent cells, and Sf is
the position vector of the interface between the two ele-
ments. I is the intersection point between the line ON and
the phase interface, and f is the intersection point between
the line ON and the cell face. It can be seen from Equation
(5) that the interfacial tension leads to σk higher pressure
at the primary phase side than the secondary phase side.
Therefore, point O or N in the primary phase results in a dif-
ference in the direction of the pressure difference at the
interface. If αO > αN , O is in the primary phase. If αO ≤ αN ,
N is in the primary phase.

When O is in the primary phase, the pressure distribu-
tion along ON is shown in Figure 2(a); when N is in the pri-
mary phase, the pressure distribution along ON is shown in
Figure 2(b).

To solve Equations (10) and (11), it is necessary to calcu-
late the pressure gradient (including the pressure gradient,
pd , and dynamic pressure gradient, pc, caused by interfacial
tension) at the interface f . When O is in the primary phase,
the pressure gradient at the interface f can be expressed as

∇pð Þf =
pN − pO
rN − rOj j2 rN − rOð Þ + σkI

rN − rOj j2 rN − rOð Þ, ð12Þ

When N is in the primary phase, it can be expressed as

∇pð Þf =
pN − pO
rN − rOj j2 rN − rOð Þ − σkI

rN − rOj j2 rN − rOð Þ, ð13Þ

where kI is the curvature of the interface; it is calculated
from the following equation:

kI =
rN − rIj j
rN − rOj j kO + rO − rIj j

rN − rOj j kN : ð14Þ
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Equations (12) and (13) can be combined to give

∇pð Þf =
pN − pO
rN − rOj j2 rN − rOð Þ + sign αO − αNð Þ σkI

rN − rOj j2 rN − rOð Þ,

ð15Þ

where sign ðxÞ is a sign function. If x > 0, sign ðxÞ = 1; if
x < 0, sign ðxÞ = −1. The first and second terms on the right
of Equation (15) are the value of dynamic pressure, ∇pd , on
the cell face and the value, ð∇pcÞf , of the pressure gradient, ∇
pc, on the cell face caused by the interfacial tension.

The center of the element used in Equation (8) is recon-
structed by the following equation:

∇pc = 〠
f

1
Sf
�� �� Sf ⊗ Sf

 !−1

∙ 〠
f

1
Sf
�� �� Sf ∇pcð Þf ∙Sf

� � !
,

ð16Þ

where f includes all the faces of a cell and Sf is the area vec-
tor of the face of the cell concerned and points to the outside
of the cell.

4.2. Spiral-Based Interface Location Algorithm. In Equation
(14), rI is the intersection point between ON and the phase
interface. The accurate location of this intersection point is
very important to enhance the numerical accuracy of inter-
facial tension evaluation and further reduce the nonphysical
spurious currents near the interface. Assuming that the
interface passing through the point is a plane, the position
of the point is usually obtained by linear interpolation of
the distance from ON to the interface. Sun and Su used an
arc to approximate the interface near ON in order to
enhance the accuracy of solving for rI considering the influ-
ence of interface curvature on the position of intersection
point [28]. However, the actual interface is not an arc, and
the curvature of the interface may vary with the position.
Thus, based on the trajectory equation of constant velocity
spiral, the influence of the interface curvature variation on
the interface position was considered, and the curvature at

the intersection point between the interface and the central
line of the mesh cell is considered in this paper.

When the curvature at points O and N is small, the inter-
face can be approximated to a plane. The intersection point
rI is calculated by linear interpolation.

rI = βrN + 1 − βð ÞrO, ð17Þ

where

β = dOj j
dOj j + dNj j , ð18Þ

where dO and dN are the distances from the centers of
elements to the interface. rN and rO are the locations of
the centers of cell N and O.

In the interface tracking process, the fluid interface
between O and N is usually not a plane, and the interfaces
at different positions have different curvature. Therefore,
the variable curvature interface is approximated by the con-
stant velocity spiral as follows.

(1) The center, C, of the constant velocity spiral is found
first

Figure 3 shows the approximation of the constant veloc-
ity spiral of the curved surface. The grey-curved surface indi-
cates the fluid phase interface; OI and NI are the nearest
points of O and N on the phase interface, respectively; and
I is the intersection point of the phase interface and the
straight line ON . The center of the constant velocity spiral
is calculated from the following formula:

rC = β rN + RNnNð Þ + 1 − βð Þ rO + ROnOð Þ, ð19Þ

where rN and rO are the coordinates of the centers of ele-
ments N and O, RN and RO are the curvature radius of ele-
ments N and O, and nN and nO are the normal directions
of the faces calculated by positions N and O.

(2) With the center C, the constant velocity spiral is con-
structed, and the intersection point of constant
velocity spiral and ON is calculated

The coordinates of projection points, OI and NI , can be
expressed as

rOI
= rO + dOnO,

rNI
= rN + dNnN :

ð20Þ

If O, N , and C are on a straight line, the curvature radius
on the interface can be calculated by the following formula:

RI = βRN + 1 − βð ÞRO: ð21Þ

If O, N , and C are not on a straight line, the following

Sf

f

O N

I

Figure 1: Phase interface vs. mesh element.
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local coordinate system is constructed:

x′ = rO − rC
rO − rCj j ,

z ′ = rO − rCð Þ × rN − rOð Þ
rO − rCð Þ × rN − rOð Þj j ,

y′ = z ′ × x′,

ð22Þ

where x′, y′, and z ′ are the directions of the three axes in the
local coordinate system, where the constant velocity spiral is
constructed in plane x′y′. The projections of OI and NI on
plane x′y′ are as follows:

rOI
′ = rO − rOI

− rO
À Á

∙z ′
� �

z ′,

rNI
′ = rN − rN f

− rN
� �

z ′
� �

z ′:
ð23Þ

The constant velocity spiral is constructed by OI′ and NI′.
If the intersection point of the interface and ON is approxi-
mated by the intersection point of the constant velocity spi-
ral and ON , the following relationship is satisfied:

rC − rIj j − rC − rOI
′

��� ���
γI

=
rC − rNI

′
��� ��� − rC − rOI

′
��� ���

γ
, ð24Þ

where γ is the angle between CNI′ and COI′:

γ = arccos
rOI

′ − rC
� �

∙ rNI
′ − rC

� �

rOI
′ − rC

��� ��� rNI
′ − rC

��� ��� , ð25Þ

where γI is the angle between CI and COI′. Point I is on ON
and can be expressed as

rI = rO +m rN − rOð Þ, ð26Þ

γIj j = arccos rG − rCð Þ∙ rO′ − rCð Þ
rG − rCj j rO′ − rCj j : ð27Þ

During the calculation, γI is the angle (0 ~ 180°) between
COI′ and CI. The counterclockwise γI is positive, while the
clockwise γI is negative. The inner product of n′ and z ′ is
used to determine positive or negative γI .

n′ =
rOI

′ − rC
� �

× rI − rCð Þ
rOI

′ − rC
� �

× rI − rCð Þ
��� ��� , ð28Þ

γI = n′z ′
� �

arccos
rI − rCð Þ∙ rOI

′ − rC
� �

rI − rCð Þj j rOI
′ − rC

��� ��� : ð29Þ

Equations (29) and (26) are substituted into Equation
(24). The bisection method [32] is used to obtain m, i.e.
the position of the intersection point of the interface and O
N .

(3) Calculation of the curvature at the intersection point

Once m is obtained, the curvature radius at the intersec-
tion point is calculated from the following formula:

RI = RO + γI
γ

RN − ROð Þ, ð30Þ

O NI f

𝜎k

pO

pN

(a)

O NI f

pO

pN

𝜎k

(b)

Figure 2: Pressure distribution along ON in different situations: (a) O is in the primary phase. (b) N is in the primary phase.

C

O

NI

OI

N′I

O′I

N
I

f

G

NNN

Figure 3: Illustration of approximation of phase interface using
spiral.
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Thus,

kI =
2
RI

: ð31Þ

5. Test Case

5.1. Capillary Rising. Driven by the interfacial tension, the
water rises or falls along the capillary wall and finally stays
at a certain height when wetting the capillary. The retention
height is related to the wettability, interfacial tension coeffi-
cient, and capillary radius as follows:

H = 2σ cos θð Þ
ρgr

, ð32Þ

where θ is the contact angle between water and capillary
wall, σ is the interfacial tension coefficient, ρ is the density of
water, g is the acceleration of gravity, and r is the capillary
radius.

In this paper, the accuracy of the algorithm for simula-
tion of the flow process driven by the interfacial tension
was verified by the numerical simulation of the capillary ris-
ing process. Table 1 lists the physical parameters used in this
case. The capillary radius r = 0:001m, and the water height
in the capillary is 0.008m at the initial state. Under the joint
action of gravity and interfacial tension, the water-air inter-
face will move and finally stay at a fixed position. In order to
study the influence of wettability on the capillary rising
height, θ = 25o, θ = 35o, θ = 45o, θ = 55o, and θ = 65o are cal-
culated in this case, and the liquid rising height at different
wettability is obtained.

Figure 4 shows the relationship between the final liquid
height and wettability. Moreover, the calculations given by
Formula (31) are also shown in Figure 4 as a reference. It
can be seen from Figure 4 that the final equilibrium height
gradually decreases with the decrease of contact angle. The
numerical simulation results given in this paper are in good
agreement with the analysis results.

5.2. Droplet Spreading. When a droplet drops on a smooth
horizontal wall, the droplet spreads on the horizontal surface
and forms a stable shape under its wetting action. The
spreading process of the droplet is mainly affected by grav-
ity, interfacial tension, and viscous force, and the final stable
shape is directly related to the radius and contact angle of
the initial droplet.

The initial state of the semicircular droplet is shown in
Figure 5(a). The droplet has the radius R0 = 0:02m. Under
the joint action of gravity, viscous force, and interfacial ten-
sion, the final shape of the droplet is shown in Figure 5(b). H
is the height of the droplet, L is the width after the droplet

spreads, and θ is the contact angle. Considering no gravity
effect and assuming that the droplet is arc-shaped, the
spreading width, L, and height, H, are calculated as follows
according to the mass conservation of the droplet.

L = 2R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2 θ − sin θ cos θð Þ
r

sin θ, ð33Þ

H = R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2 θ − sin θ cos θð Þ
r

1 − cos θð Þ, ð34Þ

In order to compare the numerical simulation results
with the analysis results, the gravity effect is ignored in the
numerical simulation. The physical parameters of the fluid
used are shown in Table 2. Figure 6 shows the shapes of
the stable droplet at different contact angles: (a) θ = 30o,
(b) θ = 45o, (c) θ = 60o, (d) θ = 90o, and (e) θ = 135o. The
final shape of the droplet at different contact angles can be
qualitatively seen from Figure 6. The spreading width and
height of droplets at different contact angles are measured
and compared with the results obtained by Equations (33)
and (34), as shown in Figure 7. It can be seen from the figure
that with the increase of contact angle, the height of the
droplet increases, but the width of the droplet decreases.
The numerical simulation results are in good agreement
with the analysis results.

5.3. Bubble Rising. Bubble rising is an important multiphase
flow phenomenon with a free interface. The bubble shape,
which is controlled by viscous force, interfacial tension,
and buoyancy, changes with time. The accuracy of interfacial
tension processing plays an important role in prediction of
bubble shape.

0.013

0.012

0.011

0.010

0.009

0.008

0.007

0.006

0.005
20 30 40 50 60 70

𝜃 (°)

H
 (m

)

Analysis solution

Numerical solution

Figure 4: Liquid height in the capillary at different contact angle.

Table 1: Physical parameters used in the simulation of capillary rise.

Water density
(kg/m3)

Air density
(kg/m3)

Dynamic viscosity of
water (Pa·s)

Dynamic viscosity of
air (Pa·s)

Interfacial tension
coefficient (N/m)

Acceleration of
gravity (m/s2)

1000 1 10-3 1:48 × 10−5 0.0707106 10
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The computational domain and initial position of the
bubble are shown in Figure 8. The computational domain
is 2-D, 0.25m wide and 0.3m tall. The initial bubble has
its center 0.05m from the bottom and is round with a radius
of 0.025m. There are 250 cells in width and 300 cells in
height. The nonslip boundary condition is adopted for the
walls. The physical parameters used in the simulation are
listed in Table 3 and consistent with reference [33].

In order to verify the feasibility of the proposed algo-
rithm, the experimental results in reference [34] are shown
in Figure 9. It can be seen from Figure 9 that the initial bub-
ble is round (as shown in Figure 9(a)) and rises under the
action of buoyancy (as shown in Figure 9(b)); the center of
bubble rises very fast, and both sides of the bubble rises very
slowly, so the rising bubble gradually forms a “yoke” (as
shown in Figures 9(c) and 9(d)); as the bubble rises, the bub-
ble further deforms; i.e. the upper part of the bubble forms a

crescent, and the gas on both sides gradually separates from
the main bubble, as shown in Figure 9(e); as the bubble fur-
ther rises, smaller bubbles formed on both sides separate
from the main bubble, as shown in Figure 9(f). The bubble
shape predicted by numerical simulation at different time
is in good agreement with the experimental data, meaning
that the algorithm is accurate and feasible.

In order to further compare the numerical simulation
results with the experimental results quantitatively, the
position of the bubble and thickness of main bubble were
measured at different time and compared with the experi-
mental results in this paper. Figure 10 shows the change of
dimensionless displacement, ðd/RÞ1/2 (d is the displacement
of the bubble, and R is the radius of the initial bubble), of
the bubbler with dimensionless time, tðg/RÞ1/2 (t is physical
time, and g is acceleration of gravity). It can be seen from
Figure 10 that the vertical position of the bubble is approxi-
mately linear with time. The simulation results in this paper

R0

(a)

L

H
𝜃

(b)

Figure 5: Illustration of initial and spread droplet shapes: (a) initial droplet shape and (b) spread droplet shape.

Table 2: Physical parameters of droplet spreading in cases.

Water density (kg/m3) Air density (kg/m3)
Dynamic viscosity
of water (Pa·s)

Dynamic viscosity
of air (Pa·s)

Interfacial tension
coefficient (N/m)

1000 1 10-3 1:48 × 10−5 0.0707106

(a) (b) (c) (d) (e)

Figure 6: Droplet shape at different contact angles: (a) θ = 30o, (b) θ = 45o, (c) θ = 60o, (d) θ = 90o, and (e) θ = 135o.

4.5

4.0

3.5

3.0

2.5

2.0
1.5

0.5

0.0
40 60 80 100 120 140 160 18020

1.0

H
/R

 (L
/R

)

𝜃 (°)
L analysis solution
L numerical solution
H analysis solution
H numerical solution

Figure 7: Changes of droplet height and width with contact angles.

0.25 m

0.
3 

m

0.
05

 m

R

Bubble
R = 0.025 m

Figure 8: Computational domain and initial bubble location in the
simulation of bubble rising.
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are closer to the results of experiment 2. Due to the limita-
tion of measurement methods, the experimental results fluc-
tuate slightly at the initial time. Figure 11 shows the change
of dimensionless bubble thickness, T/ð2RÞ (T is the bubble
thickness), with dimensionless time, tðg/RÞ1/2. It can be seen
from Figure 11 that the simulation results of bubble thick-
ness in this paper are in good agreement with the experi-
mental results.

6. Conclusion

Under the framework of volume of fluid for simulation of
multiphase flow with a phase interface, a high-precision
locating algorithm for two-phase interface based on constant
velocity spiral was proposed to solve the problem that the
ghost cell method for dealing with the interfacial tension
needs accurate location of the phase interface. During loca-
tion of the phase interface by the algorithm, both the influ-
ence of the interface curvature on the location of the
interface and the influence of the change of the curvature
are taken into account to greatly enhance the location accu-
racy of the phase interface. The prediction accuracy of the
volume of fluid for multiphase flow at high interfacial ten-
sion is enhanced by accurately locating the phase interface.
Finally, the capillary rising, droplet spreading on a plane,
and bubble rising are simulated by using the developed
numerical model. The numerical simulation results are con-
sistent with the analysis results or experimental results. This
method has a high accuracy and strong engineering applica-
tion prospect.

Data Availability

The experimental data used to support the findings of this
study are included within the manuscript and the supple-
mentary materials.

0.15

−0.15

0.3

−0.3

0.06

−0.06

0

0−0.1 0.1

Y 
ax

is

x axis
(a) (b) (c) (d) (e) (f)

Figure 9: shows the change of bubble shape at different times: (a) t = 0:0107 s, (b) t = 0:0574 s, (c) t = 0:0898 s, (d) t = 0:1724 s, (e) t = 0:2125
s, and (f) t = 0:2625 s.

1.0

0.8

0.8 1.0 1.2 1.61.4

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

(d
/R

)1
/2

t (d/R)1/2

Experiment 1
Experiment 2

Numerical solution

Figure 10: Changes of bubble top with time.

Table 3: Physical parameters in the simulation of bubble rising.

Water density
(kg/m3)

Air density
(kg/m3)

Dynamic viscosity of
water (Pa·s)

Dynamic viscosity of
air (Pa·s)

Interfacial tension
coefficient (N/m)

Acceleration of
gravity (m/s2)

1000 1 10-3 1:77 × 10−5 0.0728 9.8

T
/(
2R

)

t (g/R)1/2

1.0

0.9

0.8

0.7

0.6
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Experiment 1
Experiment 2

Numerical solution

Figure 11: Changes of bubble thickness with time.
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